Lecture 4 notes
Continued review of pipelines.

* We analytically calculate the impact of pipeline stalls on performance. Ideal
pipeline speedup is equal to the pipeline depth. For each class of instructions
that may cause a stall, we calculate the additional CPI (cycles per
instruction). Dividing the pipeline depth with the overall CPI provides us
with an idea of the slowdown due to stalls

* We take a closer look at branches: In the 5-stage pipeline, a branch requires 3
stall cycles, two of which are wasted until we find out if the branch is taken
or not taken and one is wasted to update the PC. A trick to reduce the branch
stall from 3 cycles to 1 is to move the comparison of the register values in the
second stage (i.e. during the second cycle of instruction execution, ID) of the
pipeline. Here, the clock cycle needs to be long enough to decode the
instruction, read register contents and compare the two registers for
equality.

* The 1-cycle pipeline stall on branches may still be unacceptable. Can we
avoid it?

o We can predict the outcome of the branch as not taken. If we are right
and we keep fetching instructions without stalling, the program
execution is correct. If we are wrong, we have to undo (squash) the
one instruction we issued during the cycle that would otherwise be a
stall.

o We can predict the outcome of the branch as taken. This does not buy
us anything, since we cannot know the target address of the taken
branch until the second cycle (ID), therefore we do not eliminate the
stall cycle!

o We can use the stall cycles for executing an instruction, which is not
control-dependent on the branch, i.e. neither on the taken, nor on the
non-taken path. This technique is called a branch delay slot. Compilers
are typically very good at eliminating branch stalls, by utilizing branch
delay slots.

Review of caches:

Memories are organized in hierarchies. Using a hierarchy was motivated by
the concepts of locality and working sets. Empirically, programs spend most of their
execution time in a small subset of their instructions, and programs access both
instructions and data in regular patterns. One of this pattern is “spatial”: the loads
and stores issued by programs in program order are to adjacent memory locations.
This is called “spatial locality”. Another pattern is “temporal”: the programs access a
word W and then reaccess (reuse) W many times with short intervals between
consecutive accesses. This is called “temporal locality”. A set of addresses that the



program reuses frequently during a window of its execution time is called the
“working set”.

When we design a memory hierarchy, we look into putting some fast storage on
chip, i.e. close to the processor execution units. On-chip storage is typically provided
by registers (1 cycle latency, extremely expensive), L1 cache (2-3 cycles latency in
modern machines, very expensive), L2 cache (ca. 10 cycles latency, expensive). Off-
chip storage includes oftentimes an L3 cache, off-chip DRAM, the disk, and archival
storage. As we move down the memory hierarchy, the latency increases by orders of
magnitude, the bandwidth decreases linearly, but the cost/bit decreases also,
therefore capacity increases. In the end, we are looking to have a system where all
memory accesses are served in 1 cycle (register or sometimes L1 cache speed), and
the memory capacity is as much as the disk’s.

We defined the following terms: hit, miss, hit rate, miss rate, miss penalty and
average memory access time. Miss penalty involves both the time to access the next
layer of the memory hierarchy (further away from the processor), and the time to
fetch the data to the layer that missed. The latter depends on the data bandwidth
available between the two layers.

When we design a given layer of the memory hierarchy, we need to answer
questions: Where is a block of data coming from the next level of the memory
hierarch placed? When the processor tries to access a block, how do we find the
block in a given layer of the memory hierarchy (or how do we find if the block is
missing from the specific layer)? When a block is brought in a layer and there is no
free space in the layer for the block, how do we select a block to replace (evict)?
Finally, when we write to a block in a given layer of the memory hierarchy, how do
we propagate the updated data to the lower layers?

Virtual memory:

Virtual memory and virtual address spaces are conveniences to simplify memory
management, so that programmers do not have to write code which uses directly
physical addresses and is constantly aware of the memory size. Virtual memory
provides many advantages: The programmer sees a consistent view of memory,
although the actual memory allocated in the system may be scattered; the
programmer does not need to worry about the size of physical memory (especially if
the programmer is not performance-aware...); it becomes easier to write multi-
threaded programs with threads sharing data in a virtual address space than a
physical address space; it simplifies dynamic memory allocation; it protects data
within programs, programs from each other and the operating system from
programs; it enables easy sharing of data between programs,

We discussed the concepts of page translation, page tables, and TLBs. We focused on
the problem of how to achieve a TLB organization which delivers the translation in
time for the cache to be accessed in one cycle. We outlined suboptimal solutions that
limit the cache size, or increase cache associativity (hence complexity, hit time), or



restrict translations using software. We discussed the option of using virtual
addresses to access caches. There is always a heated debate whether virtual
addressing of caches is better than physical addressing. There are merits in both
solutions and the opinions of experts may change over the years, because of
technology changes and/or changes in the applications and usage mode of computer
systems.



