
Lecture 3 notes

• Review of the classic 5-stage pipeline of MIPS. We outlined two pipeline
representations (single instance, multiple instances) and the five stages (IF, ID, EX,
MEM, WB).

• Concept of hazards: Conflicts between instructions that may cause a pipeline to stall
for one or more cycles

o Structural hazards: Hazards introduced due to concurrent accesses
from multiple instructions to the same hardware resource (e.g.
single-ported memory)

o Data hazards: Hazards introduced due to data dependences
between instructions, more specifically, when an instruction I
produces a result in a register, which is consumed by a following
instruction J.

 We described three types of data hazards, RAW, WAW,
and WAR. RAW is a true data hazard in the sense that it
occurs due to true communication of values between
instructions. We discussed forwarding to avoid RAW
hazards, using feedback from the execution stage, the
memory stage and the writeback stage to the execution
stage. We also discussed that while WAW and WAR
hazards do not happen in the simple MIPS pipeline, they
are possible if the processor allows some form of out-of-
order execution. The presence of hazards prevents certain
instruction reorderings, which could otherwise be used to
improve performance.

 Among the hazards we discussed, hazards between integer
arithmetic/logic RR or RI instructions issued in 2, 3, or 4
consecutive cycles can be resolved with forwarding, or by
writing and reading the register file in the same clock cycle,
taking advantage of edge-triggered logic. Load-store
hazards can also be resolved with forwarding from the
memory read/write stage back to the same stage. Load-use
hazards though can not be resolved with forwarding.

 We gave an example of how software can be used to
resolve load-use hazards. If we can insert at least one
instruction between the load and the use, we can fill the
otherwise idle slot with useful computation. This
optimization is feasible provided we can find enough non-
dependent instructions to move around in the execution
sequence. Never forget that moving instructions should be
done so that the execution does not violate the original
program order, which was also the intention of the
programmer!

o Control hazards occur because of conditional branches. The
processor can not know whether the branch is taken or not taken
until the 3rd stage of execution of the branch. Notice that the

conditional branch requires two arithmetic operations, one to
compute the target address, and one to perform the comparison and
decide whether the branch is taken or not taken. We can do the
target address calculation as soon as the ID stage, regardless of
whether the current instruction in the ID stage is a branch. Still, if
we have to wait to do the comparison in the EX stage, then each
branch will necessarily require 3 stall cycles: First stall cycle,
branch is in the ID stage, second stall cycle, branch is in the EX
stage, third stall cycle we know the outcome of the comparison
(taken/not-taken) from the branch’s EX stage, but we also need to
update the program counter with the new target address. We will
discuss static solutions to this problem in the next lecture.

• Exceptions:
o We discussed exceptions and interrupts, as seen from the perspective

of the processor’s pipeline. The key idea we elaborated on is to
prevent instructions that trigger exceptions from updating the state of
the processor (i.e. avoid commits of results to the register file or
memory). We discussed how exceptions can be triggered in the ID
stage (e.g. illegal instruction), the EX stage (e.g. overflow), and the
MEM stage (e.g. bad memory address). We discussed how the
hardware can “kill” instructions to prevent them from writing back any
results (by zeroing out control bits and results in the latches).
Exceptions can happen at almost any stage in the pipeline. The term
“precise exceptions” implies the ability of the processor to recover
from exceptions by restarting the execution at a specific interrupted
instruction X, and the processor state is such that the program
continues as if all instructions before X have completed and no
instruction after X has issued.

