
Lecture 3 notes 

• Review of the classic 5-stage pipeline of MIPS. We outlined two pipeline 
representations (single instance, multiple instances) and the five stages (IF, ID, EX, 
MEM, WB). 

• Concept of hazards: Conflicts between instructions that may cause a pipeline to stall 
for one or more cycles 

o Structural hazards: Hazards introduced due to concurrent accesses 
from multiple instructions to  the same hardware resource (e.g. 
single-ported memory) 

o Data hazards: Hazards introduced due to data dependences 
between instructions, more specifically, when an instruction I 
produces a result in a register, which is consumed by a following 
instruction J.  

 We described three types of data hazards, RAW, WAW, 
and WAR. RAW is a true data hazard in the sense that it 
occurs due to true communication of values between 
instructions. We discussed forwarding to avoid RAW 
hazards, using feedback from the execution stage, the 
memory stage and the writeback stage to the execution 
stage. We also discussed that while WAW and WAR 
hazards do not happen in the simple MIPS pipeline, they 
are possible if the processor allows some form of out-of-
order execution. The presence of hazards prevents certain 
instruction reorderings, which could otherwise be used to 
improve performance.  

 Among the hazards we discussed, hazards between integer 
arithmetic/logic RR or RI instructions issued in 2, 3, or 4 
consecutive cycles can be resolved with forwarding, or by 
writing and reading the register file in the same clock cycle, 
taking advantage of edge-triggered logic. Load-store 
hazards can also be resolved with forwarding from the 
memory read/write stage back to the same stage. Load-use 
hazards though can not be resolved with forwarding. 

 We gave an example of how software can be used to 
resolve load-use hazards. If we can insert at least one 
instruction between the load and the use, we can fill the 
otherwise idle slot with useful computation. This 
optimization is feasible provided we can find enough non-
dependent instructions to move around in the execution 
sequence. Never forget that moving instructions should be 
done so that the execution does not violate the original 
program order, which was also the intention of the 
programmer! 

o Control hazards occur because of conditional branches. The 
processor can not know whether the branch is taken or not taken 
until the 3rd stage of execution of the branch. Notice that the 



conditional branch requires two arithmetic operations, one to 
compute the target address, and one to perform the comparison and 
decide whether the branch is taken or not taken. We can do the 
target address calculation as soon as the ID stage, regardless of 
whether the current instruction in the ID stage is a branch. Still, if 
we have to wait to do the comparison in the EX stage, then each 
branch will necessarily require 3 stall cycles: First stall cycle, 
branch is in the ID stage, second stall cycle, branch is in the EX 
stage, third stall cycle we know the outcome of the comparison 
(taken/not-taken) from the branch’s EX stage, but we also need to 
update the program counter with the new target address. We will 
discuss static solutions to this problem in the next lecture. 

• Exceptions:  
o We discussed exceptions and interrupts, as seen from the perspective 

of the processor’s pipeline. The key idea we elaborated on is to 
prevent instructions that trigger exceptions from updating the state of 
the processor (i.e. avoid commits of results to the register file or 
memory). We discussed how exceptions can be triggered in the ID 
stage (e.g. illegal instruction), the EX stage (e.g. overflow), and the 
MEM stage (e.g. bad memory address). We discussed how the 
hardware can “kill” instructions to prevent them from writing back any 
results (by zeroing out control bits and results in the latches). 
Exceptions can happen at almost any stage in the pipeline. The term 
“precise exceptions” implies the ability of the processor to recover 
from exceptions by restarting the execution at a specific interrupted 
instruction X, and the processor state is such that the program 
continues as if all instructions before X have completed and no 
instruction after X has issued.  


