
Lecture 2 notes 

Moore’s law suggests that the number of transistors per IC doubles every year or so. 

Moore’s law has been used to characterize the evolution and performance of most 
components in modern computer systems, including processors, memories, disks, etc. 

Today’s lecture discussion shows that while Moore’s law has been correct in predicting 
exponential performance improvements in computer system components, these 
performance improvements are not uniform 

• In particular, while bandwidth has improved at much faster rates than 
latency in networks, disks, processors and memories 

 

Why does latency lag bandwidth? 

• First, more and faster transistors help improve bandwidth but do not help 
as much improving latency. Transistors become smaller and faster. 
However, the distance (relative to the size of the transistor) between 
transistors that communicate grows. The size of the dies on which we etch 
microprocessors also grows 

• Distance limits latency and signals can not travel faster than the speed of 
light 

• Bandwidth sounds cooler when it comes to marketing, and the industry 
seems to eager to throw more resources at improving bandwidth but not 
latency 

• When we improve latency, we often improve bandwidth: For example, 
multiplying rotational speed in disks by a factor of X improves also 
bandwidth by a factor of X. Or, lowering DRAM latency by a factor of X, 
improves bandwidth by a factor of X by allowing more accesses per 
second 

• On the contrary, some techniques that improve bandwidth, hurt latency: 
For example, putting queues in an interconnection network allows the 
network to process more requests per unit of time by queuing some 
requests. However, queuing waiting time increases overall latency. 
Another example: adding banks to widen a memory module helps 
bandwidth, but the increases fan-out hurts latency. Yet another example: 
Software overhead hurts latency more than bandwidth, when processors 
communicate. The rule of thumb here is that sending/receiving long 
messages makes communication bandwidth-bound, whereas 
sending/receiving short messages makes communication latency-bound. 
Most of this latency is attributed to software initiating and processing 
message transfers 

How do we measure power? 



• Power is proportional to capacitive load, voltage (squared) and frequency 
of switching 

• Slowing the clock rate reduces power consumption, but does not reduce 
energy! 

o Energy is the integral of power over time. Slowing the clock rate 
increases time. 

• Capacitive load depends on number and technology of transistors 
• Dropping voltage clearly helps power, but typically voltage and frequency 

need to be adjusted together to stabilize the processor 
• Further reductions in power are possible through dynamically turning off 

(or throttling) components of the microprocessor (e.g. execution units, 
cores in a multi-core processor) 

• Unfortunately, most of the well known and easily applicable power 
reduction techniques attack dynamic power consumption. Transistors leak 
current and this leakage contributes static power consumption, which is a 
significant part of overall power consumption (can be 40% in current 
designs). Designers use techniques such as voltage gating (using 
additional logic to prevent activation signals and the clock signal from 
reaching inactive components), to control the loss of leakage. 
Nevertheless, even inactive components leak 

 

Dependability and reliability 

• Systems now typically operate under Service-Level Agreements, 
specifying quantitative guarantees for continuous services, resource 
availability, etc. and what happens if service is interrupted 

• The reliability of hardware modules is characterized by the Mean Time to 
Failure (MTTF), or failures in time (1/MTTF=FIT) 

• Given a failure, the modules are also characterized by mean time to repair 
(MTTR) and Mean Time Between Failures (MTBF=MTTF+MTTR) 

• Module availability is MTTF/MTTF+MTTR=MTTF/MTBF 
• With exponentially distributed lifetimes of modules, system failure rate is 

the sum of the failure rates of the components 

 

Performance 

• Performance has been the one and only metric that we were concerned 
with in this course for the past several years 

• Power and reliability are now as important as performance in most 
domains of computing 

• Execution time is the absolute performance metric 
• We usually rely on benchmarks for measuring the performance of a 

system. Benchmarks need to evolve over time to reflect changes in: 



applications and the ways we are using computing systems; technology 
and the capabilities/capacities of computing systems 

• Current standards for measuring performance (SPEC) use a ratio of time 
on a reference (does not really matter what reference) computer over time 
on the computer being rated 

• Since computers are compared in ratios, the choice of the reference 
computer does not really matter 

• Summarizing performance measured in ratios is done best with a 
geometric mean. We discuss in class whether the geometric mean is a 
good or bad indicator of “average” performance of a computing system 


