
Lecture 1 notes

Computer science at an inflection point:

• Billion-transistor processors possible but…
o Power and thermal problems prevent us from just using 1 billion

active transistors on a chip
• Instruction-level parallelism has driven processor design for many years

but…
o Techniques for extracting more ILP from programs show

diminishing returns in performance
• Memory latency has been improving at a much slower rate than

instruction execution latency
o This trend has not changed in many years…

• Computer system designers are turning their interest to multi-processors,
or more specifically, processors with multiple cores

o This has been attempted before in the 80’s but not with great
success. Uni-processor performance improved rapidly (2X every
1.5 years), while multi-processor designers faced serious
challenges while attempting to scale their systems to achieve high
performance at low cost

o Now things may be different: Multi-processing appears to be the
only viable alternative to achieve higher performance in next-
generation computer systems

o Multi-processing is also now embraced by all major
microprocessor vendors

• Why is this an inflection point?
o In the 80’s and 90’s microprocessor performance improved at an

exponential rate (2X per 1.5 years) thanks to both technology and
architectural innovation and techniques for extracting more
instruction-level parallelism out of programs (both hardware-based
and software-based, e.g. compilers)

 Clock speed was very strongly correlated with processor
performance

 Instruction sets remain stable (almost unchanged) across
processor generations

 Improvements in technology and architecture were
available at “no cost” for software developers, e.g. you
would buy a processor every other year and you would
have a guarantee that the processor will be almost twice as
fast as the previous one you had

o With multi-processors, transparent performance scaling is no
longer possible

 Multi-processors can improve performance only if software
can be “parallelized” so that the workload is “distributed”
between multiple processors

 Hardware and compilers can not parallelize software
automatically (at least not yet)

 Parallelizing software is tedious, even for the best
programmers (e.g. a PhD student at a Top Computer
Science Program)

 Parallelization is a hard process: Changes required in
algorithms, programming languages, compilers, operating
systems, and runtime libraries in order to get a program (eg.
Sort) to run efficiently on a multi-processor

The role of instruction sets:

• Instruction sets are the interface between high-level programming
languages and processors.

• Instruction sets provide convenient “abstractions” of the low-level
functions implemented in the hardware

• Instruction sets (like any abstraction) need to be both convenient and
amenable to an efficient implementation

• These days the arguments regarding instruction sets are more or less
settled: most processors implement a small (reduced) instruction set,
including three fundamental classes of simple instructions:
arithmetic/logical, memory access (load/store) and control (branches,
jumps). Instructions are of fixed length, have on of few (e.g. 2-3) formats,
offer a few ways to address memory (e.g. based and offset, direct,…) and
have specific semantics for detecting and handling exceptions

• In the old days of CS, “instruction set” was synonyms to computer
architecture. These days instruction sets have converged to a common
paradigm (RISC), and computer architecture carries the responsibility of
implementing this paradigm more efficiently, across processor
generations. Computer architecture evolves a lot faster than instruction
sets.

• Computer architecture is now an end-to-end design process. Architects are
concerned about the functionality of the entire system (processor,
memory, disks, network, other external devices…), and customize their
designs to the needs of applications

Computer architecture is a creative process

• Architects combine intuition with rigorous experimental work.
Experimental computer architecture involves:

o Searching the design space of a computer system (components,
parameters, capacities), to find the optimal design (or more
typically, a good compromise that serves the target application
domain of the computer system well)

o Running and characterizing workloads (applications), in order to
understand where the cycles go, what are the bottlenecks in the

system and how the system can be modified to execute the same
task in less time

Basic principles of modern computer architecture:

• Parallelism
• Locality
• Making the common case fast
• Amdahl’s law, focusing optimizations on the major bottlenecks (the big

challenges)
• Processor performance equation: seconds/program = instructions/program

X cycles/instruction X seconds/cycle

Parallelism in computer architecture stems from:

• Multiple components (e.g. multiple cores on a single processor)
• Pipelining of activities
• Both have limits
• Pipelining is limited by: structural hazards (instructions requiring the same

resource during the same cycle), data hazards (instructions dependent on
data produced by earlier instructions and not available), and control
hazards (instructions the execution of which is dependent on earlier
control instructions that have not yet completed their execution)

Locality in computer architecture stems from program behavior:

• Spatial locality: Programs access words in adjacent memory locations, or,
more formally, a program accesses a memory location X, shortly after it
accesses a memory location X-d (d = small, architecture-dependent)

• Temporal locality: A program accesses a word in memory location X
many times during a short time interval

Processor performance equation:

• #instructions in a program can be reduced by: algorithms, compilers (via
optimizations, such as dead code elimination), and architecture (e.g. by
using a string instruction that copies bytes from string a to string b, as
opposed to individual loads and stores)

• cycles per instruction can be reduced by the instruction set (e.g. by using
very simple instructions), by the architecture (e.g. by using pipelining of
instruction execution), and by the compiler (e.g. by scheduling instructions
to reduce delays between them)

• clock cycle can be reduced by the architecture (e.g. by using very simple
instructions that can be implemented fast in hardware), and by technology
(e.g. speed vs. power constraints)

Making the common case fast:

• What components of the system are used more frequently than others?

• What instructions are executed more frequently than others?
• What components of the system have the highest failure rate?

Amdahl’s law:

• Given an optimization (e.g. improved system design), speedup is always
bound by 1/(1-f), where f is the fraction of the program affected
(accelerated) by the optimization

