5/26/08

Shared Memory
Consistency Models

Shared-memory abstraction

Programmers expect latest Several real systems would
data written by P1

return old value of data!

Initially all pointers = null, all integers = 0.
Pl p2, P3, ..., Pn

while (there are more tasks) | while (MyTask == null)
Task = GetFromFreeList(); Begin Critical Section
Task — Data = ...; if (Head != null) {
insert Task in task queue MyTask = Head;

} Head = Head Next;

Head = head of task queue;

End Critical Section

= MyTask Data;

LSRR S R O DU

{
1

Memory consistency

* Formal specification of how updates of memory
locations appear to the programmer

* Read returns value of last write

— Easy in uniprocessors: program order

— Harder on multiprocessors: what is the last write?
* Sequential consistency

— All memory operations atomic (although they are not
in reality)

— All operations from the same processor in program
order

Memory consistency model

* Enables programmers to reason about
correctness in their programs

* Affects performance since it enables (or
disables) several compiler and hardware
optimizations

» Affects portability, since it defines what
changes (or not) need to be performed to
preserve correctness across platforms

5/26/08

Sequential consistency

* Close to programmer intuition

* Restricts many compiler and hardware
optimizations

* Relaxed consistency models

— Allow reordering of certain sequences of memory

operations

— Improve performance compared to sequential
consistency

Uniprocessor consistency

* Memory operation ordering should preserve
true data and control dependencies

* Enables optimizations such as:
— Register allocation
— Code motion
— Loop transformations
— Pipelining, multiple instruction issue
— Write buffer bypassing, forwarding
— Lockup-free (non-blocking) caches

Sequential consistency view

Memory seen as a global
memory with a single
switch enabling access to

processors Pl) ,,,G\
—, N~
P Q

MEMORY

Figure 3: Programmer’s view of sequential consistency.

Example: Dekker’s Algorithm

If P1 sees Flag2=0, this Sequential consistency guarantees that
implies that the update of both processors can not see both Flags
Flagl has happened before equal to 0 at the same time

the update of Flag2

Imtia@; Flag2 =0 Initially A=B =0
P1 P2 3

P1 P2 P3
Flagl =1 Flag2 =T A=1
if (Flag2==0) i (Flagl == 0) if (A ==1)
critical section critical section B=
if (B==1)

registerl = A
(@) o

Figure 4: Examples for sequential consistency.

If p3 sees P2’s write, then it also sees P1’s
write.

5/26/08

Violations of SC (no caches)

Need to block reads while
writes are pending. Writes
can wait for an

M Write buffers acknowledgement from

— Reads can bypass pending writes ™ destination

Read | | |

R Read | | | PL P2

lag2 | [lag. - N

e |Wiite Fragt 3] 2 | Wiite Frag2 4] Flagl = 1 Flag2 =1
— Shared Bus] if (Flag2 ==0) if (Flagl ==0)

critical section critical section

Memory

(a) write buffer

Violations of SC (no caches)

* Bypassing in interconnection network

ReadData 13
4 ReadHead 2

General Interconnect

{ P i
‘Write Head ‘Write Data
\ Data = 2000 while (Head == 0) {:}
Head=1 =Data

tl \ “ \
] 1

(b) overlapped writes

Violations of SC (no caches)

* Non-blocking reads

o

Wiite Head 13

Write Data 12 General Interconnect
—7

—) P1 P2
~Read Head Read Data Pl 2z
7 Data = 2000 while (Head == 0) {:}
Head=1 ...=Data

/ 2

Figure 5: Canonical optimizations that may violate sequential consistency.

/1
I
L]

(¢) non-blocking reads

Violation of SC (with caches)

» Similar violations with systems without caches
* Read by a processor that hits in the cache

— May not allow completion to prevent bypassing!
* Otherissues

— Cache coherence protocol required to propagate
writes

— Detecting when a write is complete requires more
transactions in the presence of caching

— Propagating changes to multiple copies of data is
inherently non-atomic

5/26/08

Cache consistency = SC?

* Cache consistency requires that a write is
eventually seen by all processors

* Cache consistency requires that writes by all
processors to the same memory location are
seen in the same order by all processors

* Sequential consistency requires that writes to
all memory locations are seen in the same
order by all processors

Detecting completion of writes

Possible for P2 to read
the new value of

Assume P2 has “Data” in its cache. P1
writes head before write to data is
propagated to P2 (memory commit Head, but the old
happens before invalidation) value of Data (from its

cache), violation of
sc!

ReadData 13

General Interconnect | Read Head 12

{ P i
‘Wiite Hea ‘Write Data
Data = 2000 while (Head == 0) {:}
Head=1 =Data

Need a mechanism to
confirm completion of
invalidations before
proceeding with the
second write in P1!

tl \ “ \
] 1

(b) overlapped writes

Illusion of write atomicity

Writes to A may arrive out of order to
P3 and P4, therefore violating
sequential consistency

May happen in interconnection
networks with no guarantees in the
order of delivery

InitiallyA=B=C=0

P1 P2 P3 P4
A=1 A=2 while (B !=1) {:} while B !=1) {:}
B=1 C=1 while (C !=1) {:} while (C !=1) {3}

register]l = A register2 = A

Figure 6: Example for serialization of writes.

Need to ensure that writes to the
same memory location are strictly
serialized (write atomicity)

[llusion of write atomicity

P2 reads A before A’s update reaches
P3, B’s update from P2 reaches P3, P3
sees old value of A (from cache).

All variables in caches, all memory
operations by the same processor in
order and atomic

2] =Flag2 =0 Initially A=B =0

Initially

Pl P2 P2 P3
Flagl = Flag2 A=1
if (Flag2 == 0) if (Flagl == 0) if (A ==1)
critical section critical section B=
if (B==1)
register] = A
(@) (b)

Figure 4: Examples for sequential consistency.
Violation of SC because P2 sees and
uses the write to A before the write is
propagated to P3

5/26/08

lllusion of write atomicity

* Prevent read to return a newly written value
before all invalidations have been
acknowledged

* Easy in invalidate-based protocols
* Harder in update-based protocols
— Two-phase update
— Send updates to all caching processors
— Receive acknowledgment
— Send acknowledgement to all caching processors

Similarity between compilers and
hardware

Consistency prevents reordering of
instructions

Register allocation can be hazardous
(equivalent to caching)

* Software pipelining can be hazardous (recall
midterm!)

* Code motion can be hazardous (recall dynamic
scheduling processors)

Compiler example: Register allocation

Register allocation of Head by P2 may prevent P2 from seeing the update
From P1. Sequential consistency violation!

Read Data 13
General Interconnect Re: 2
[PL P2
Wiite Head Wiite Data
i o Data =2000 while (Head == 0) {:}
1 Head =1 =Data

L L

(b) overlapped writes

SC explained

* Program order

— A processor must ensure that a memory operation is
complete before proceeding to the next. Detecting
completion for writes requires ack from memory and
invalidations or updates in cache-based systems

* Write atomicity

— Writes to a single location are serialized, no read
returns a new value of a write until all invalidations/
updates are finished and acknowledged

5/26/08

Hardware optimizations for SC

* Prefetching ownership on a write

— Prefetch exclusive requests for any writes pending
in the write buffer

— Applicable only in invalidation-based systems
* Speculative service of reads
— Rollback if SC is violated due to a write

— Good for superscalar processors that already have
rollback machinery (e.g. to handle branch
mispredictions)

Relaxed consistency

* Characterization
— How do we relax program order?
* From write to read
* From write to write
* From read to read or write
— How do we relax write atomicity?
« Do we allow reads to return another processor’s write
before all updates/invalidations are sent?
* Processor allowed to see its own write before the write is
made visible to other processors
* Mechanisms for overriding relaxations to
programmers

RC summary

Relaxation || W—R | W— W | R— RW || Read Others' | Read Own || Safety net
Order | Order | Order || Write Early | Write Early
SC 6] v
TBM 370 [14] 7 serialization istructions
TS0 (201 i i RMW
PCI13.12] i N v RMW
PSO [20] i v v RMW, STBAR
WO [3] v v i v synchronization
RCse[13,12] v v v v release, acquire, nsyne,
W
RCpe (13, 12] v v v v y release, acquire, nsyne,
RMW
Alpha [19] v v v v MB, WMB
RMO [21] i i N v various MEMBAR's
PowerPC [17, 4] v v N 7 v SYNC

Figure 8: Simple categorization of relaxed models. A +/ indicates that the corresponding relaxation is allowed by

i ard i ions of the ding model. It also indicates that the relaxation can be detected
by the programmer (by affecting the results of the program) except for the following cases. The “Read Own Write
Early” relaxation is not detectable with the SC, WO, Alpha, and PowerPC models. The “Read Others’ Write Early”
relaxation is possible and detectable with complex implementations of RCsc

RC in commercial systems

Relaxation Example Commercial Systems Providing the Relaxation

W — R Order AlphaServer 8200/8400, Cray T3D. Sequent Balance, SpareCenter1000/2000
W — W Order AlphaServer 8200/8400, Cray T3D

R — RW Order AlphaServer 8200/8400, Cray T3D

Read Others” Write Early

Cray 3D

Read Own Write Early

AlphaServer 8200/8400, Cray T3D, SparcCenter1000/2000

Figure 9

Some commercial systems that relax sequential consistency.

5/26/08

Relaxing Write-to-Read

* Relax ordering of write followed by read to
different memory location (performance)

* |BM 370, SPARC V8 Violation of SC

e T

Read Read P 2

if (Flag2 == 0) if (Flag

=0)

critical section eritical section

Shared Bus

Memory

(a) write buffer

Relaxing Write-to-Read

P2 No violation of SC

Read Data 13
General Interconnect 4 Read Head 12
— PL 524
‘Wite Head ‘Write Data
i \ "o~ Data = 200 while (Head == 0) {:}
Head=1 =Data
ﬁ
Moo

(b) overlapped writes

Relaxing Write-to-Read

No violation of SC

ﬂ
i3

Wite Head 13
Wite Data 12 General Interconnect

p— P P2
-Read Head Read Data - -
/il Data = 2000 while (Head == 0) {;}
! Head= 1 ..=Data
Head: 0 Data: 0

(¢) non-blocking reads

Figure 5: Canonical optimizations that may violate sequential consistency.

Relaxing W=>»R implementations

* IBM 370

— Prohibits a read to return before a write to the
same location is visible to all processors

* TSO

— Allows a read to return before a write from the
same processor, before the write from the
processor becomes visible to other processors

e PC
— Relaxes both conditions on read

5/26/08

Example

Initially A = Flagl =Flag2 =0 InitiallyA=B =0

P1 P2 PL P2 P3

Flagl =1 Flag2=1 A=1

A=1 A=2 if(A==1)

registerl =A register3=A B=1

register2 = Flag2 registerd = Flagl #B==1)

registerl = A

Result: register] = 1, register3 =2,
register2 = registerd = 0

Result: B = 1, register] =0

@ ()

Figure 10: Differences between 370, TSO, and PC. The result for the program in part (a) is possible with TSO and
PC because both models allow the reads of the flags to occur before the writes of the flags on each processor. The
result is not possible with IBM 370 because the read of A on each processor is not issued until the write of A on
that processor is done. Consequently, the read of the flag on each processor is not issued until the write of the flag
on that processor is done. The program in part (b) is the same as in Figure 4(b). The result shown is possible with
PC because it allows P2 to return the value of P1’s write before the write is visible to P3. The result is not possible
with IBM 370 or TSO.

Safety nets

* IBM 370, none
* TSO

— Safety net required from write to read to the same
location on the same processor

— Solved with an atomic RMW (read-modify-write)
instruction (at extra cost, can be significant)

Performance implications

* Write-to-read relaxation improves
substantially the performance of hardware
implementations

* Little benefit for compilers, typically because
writes are closely followed by reads to the
same memory location, therefore no huge
opportunities for reorderings

* Compilers typically benefit from full
independence in large windows of instructions

Write-to-write, write-to-read

* Eliminate ordering between writes to different
locations

* SPARV V8, PSO (partial store ordering)

— Writes from the same processor can be pipelined,
overlapped and reach destination caches out-of-
order

5/26/08

Write-to-write relaxation

Inconsistency allowed

Reac
Flag2

(a) write buffer

Write-to-write relaxation

Inconsistency allowed

R= dData 13
_ General Intercomnnect, Read Head 12

— P =)
Wit (t He'\d W m Dala
Data = 2000 while (Head == 0) {:}
Head=1 =Data

(b) overlapped writes

Write-to-write relaxation

» Safety net
— Store barrier
— Inserted in the write buffer
— Delays writes following the STBAR in the write

buffer
[Empmd
Pl P2
Data = 2000 while (Head == 0) {:}
Head =1 .=Data

e ot
iy -
1
Memory

(b) overlapped writes

Relaxing all orders

* Any read or write may be reordered with
respect to any following read or write

* Memory operations following a read may be
reordered with respect to the read (including
writes)

* Hardware can hide latency of read operations

(true non-blocking read implementation)

All relaxed models allow processor to read its

write early

5/26/08

Weak Ordering

* Data operations distinguished from
synchronization operations

* To enforce ordering between two operations
programmer needs to specify at least one as a
synchronization operation

* Intuition: reordering operations outside

synchronization regions typically does not
affect performance (think mutual exclusion)

Weak Ordering

* Hardware implementation using counters
— Processor increments counter when issuing
operation, decrements when operation completes
— Synchronization operation not issued until counter
reaches zero (all operations complete)

— Processor does not issue operations until after
synchronization operation completes

— Synchronization instructions serve as “fences” or
“barriers”

Release Consistency

shared

N

special ordinary

sync nsync

acquire release

Figure 11: Distinguishing operations for release consistency.

Release Consistency

* Ordinary and Special operations: roughly
correspond to data and synchronization
operations in WO

* Special operations are either sync or nsync
— Sync operations correspond to “real” synchronizations
— “nsync” operations correspond to asynchronous

operations that may be subject to races
— Sync operations are further classified into acquire and
release

10

5/26/08

Release Consistency

* Ordinary and Special operations: roughly
correspond to data and synchronization
operations in WO

* Special operations are either sync or nsync

— Sync operations correspond to “real” synchronizations
— “nsync” operations correspond to asynchronous
operations that may be subject to races

— Sync operations are further classified into acquire and
release

* Acquire and release correspond to locks used to grant
exclusive access to a set of shared memory locations

Release consistency

First implementation (RCsc): sequential
consistency between special operations

Second implementation (RCpc): processor
consistency between special operations
RCsc constraints:

— Acquire to all, all to release, special to special
RCpc constraints:

— Acquire to all, all to release, special to special
except from special write followed by special read

RC: imposing program order

* From a write to a read, we use an RMW
instruction

* Write in RMW needs to be a release if the
write being ordered is ordinary, otherwise it
can be any special write

* Other primitives: write barrier, memory
barrier

1

