HY425 Homework 3

HY425
Homework Problem Set 3
Assignment: 9/4/2008
Due Date: 18/4/2008

Instructions: Solve all problems in a .pdf file and send them via e-mail to
Stamatis Kavadias (kavadias@ics.forth.gr), with a copy to the instructor
(dsn@ics.forth.gr). Use the following subject in your e-mail: HY425: Homework
3 Submission. Please the aforementioned subject only, so that your homework
is read and graded.

Problem 1 (40 points)

Loops are often dominating the execution time of applications. Vector processors
and multithreaded /multi-core processors can accelerate the execution of loops
via vectorization or parallelization. The key idea is to distribute the iterations of
a loop between threads, cores, or vector execution lanes. In order for this
distribution to be valid, either the compiler, or the user, needs to prove that the
iterations of a loop are independent. In particular, the compiler or the user needs
to prove that there is no loop-carried dependence between loop iterations. More
specifically: The iterations of a loop are “lexicographically” ordered. The
lexicographical order corresponds to the order of execution of the loop iterations
on a sequential processor. Generally speaking, a loop carried dependence exists
if a loop iteration I which lexicographically precedes another loop iteration J,
produces a result which is used (read or written) by iteration J. Note that this
generalizes to nested loops, therefore I and J may actually be linear
combinations of the actual loop indices (for example I=2xi+j,

J=2x (i+1)+k, where i, j, and k are positive integers) The theory of data
dependence analysis attempts to prove the existence or non-existence of
dependences in loops, thereby enabling parallelization or vectorization.

You are given the following loop in C:
for (i=2;i<n;i++)
for (j=2;j<i;j++)
afi,jl=a[i,j-2]*a[i,j-1]+b[i,]];

a. Show the loop-carried dependences for the aforementioned loop.

b. Rewrite the loop so that it can be vectorize. You don’t need to actually
provide the vector implementation in assembly, but you must show how the
C code needs to be transformed for enabling vectorization.

c. The code that you derive in b. has a performance limitation, if implemented
in a vector processor with an interleaved memory system. Find what it is,
describe it in detail and propose a solution.



HY425 Homework 3

Problem 2 (30 points)

a. Vectorize the following loop, using exactly two vector instructions. You may
use the VMIPS instruction set, described in detail in Appendix F of your
textbook, or use a C-like notation for the vector operations, for example
A[0:10]=B[11:20],

for (i=1;i<n;i++)
a[i] = b;
c[i] = a[i-1];

Problem 3 (30 points)
Here is another unusual loop in C.

for (i=1;i<100;i++) {
afi] = b[i] + c[i];
b[i] = a[i] + d[[i];
a[i+l] = a[i] + e[i];
}
a. Rewrite the loop so that the loop can be perfectly vectorized.
b. Assume a vector processor which supports chaining. The processor users
4-element vectors and has 5-cycle pipelined execution lanes, organized in
2 lanes, where each lane has 2 vector add units. Assume the processor has
a perfect memory system, which delivers vector elements with 0 latency.
Plot the execution of the sequence above, after vectorization, and
calculate how many cycles the processor needs to complete the sequence.



