HY425 Homework 2

HY425
Homework Problem Set 2
Assignment: 17/3/2008
Due Date: 31/3/2008

Instructions: Solve all problems in a .pdf file and send them via e-mail to
Stamatis Kavadias (kavadias@ics.forth.gr), with a copy to the instructor
(dsn@ics.forth.gr). Use the following subject in your e-mail: HY425: Homework
2 Submission. Please the aforementioned subject only, so that your homework
is read and graded.

Problem 1 (50 points)

The following figure shows a microarchitecture with support for dynamic
scheduling:

& ALU O
———————————
Instructions -
from decoder
1 ——— ————— |
Reservation ALU 1
station
2 > I
B3
———————
LD/ST —— Mem
B S—

£ 2007 Elsavier, Inc. All rights reserved.

Assume that the ALUS can execute the arithmetic operations MULTD,
DIVD, ADDD, ADDI, SUB and the branches, and that the Reservation Station (RS)
can dispatch at most one operation to each functional unit per cycle (one op to
each ALU plus one memory op to the LD/ST unit). In other words, in each cycle,
the architecture can start executing two ALU and one LD/ST operation. Assume
the following code sequence:

HY425 Homework 2

Loop: LD F2,0(Rx)
10: MULTD F2,F0,F2
I1: DIVD F8,F2,F0
12: LD F4,0(Ry)
[3: ADDD F4,F0,F4
14: ADDD F10,F8,F2
I5: SD F4,0(Ry)
I6: ADDI Rx,Rx,#8
17: ADDI Ry,Ry,#8
18: SUB R20,R4,Rx
19: BNZ R20,Loop

The instructions have the following execution times:

Memory LD 4 cycles
Memory SD 2 cycles
Integer ADD, SUB 1 cycle
Branches 2 cycles
ADDD 3 cycles
MULTD 5 cycles
DIVD 11 cycles

The execution times include one cycle for dispatching the instruction from the RS
to an execution unit, and the instruction execution latency. For example, the
ADDD instruction takes 1+2 cycles to dispatch+execute.

a. Suppose all of the instructions from the sequence above are already
present in the RS, i.e. their registers have been renamed appropriately.
List again the instructions in the code (with their original register names)
and highlight (e.g. circle, or mark in red) those instructions that can
execute out-of-order and improve performance by overlapping otherwise
idle cycles. To answer this question, you need to look for RAW and WAW
hazards and find the instructions that can be reordered without violating
dependencies. [9 points]

b. Suppose the register-renamed version of the code from part a. is again
resident in the RS. Show how the RS should dispatch these instructions
out-of-order, clock cycle by clock cycle, to obtain optimal performance.
Assume the same RS restrictions and instruction latencies as in part a.
Also assume that if two instructions are dependent, the first instruction
must complete execution before the dependent instruction begins in the
next clock cycle. In other words, there is no forwarding of values between
dependent instructions, the source of the dependence must instead write
its result first to the register file. How many clock cycles does the code
sequence take in this case? [12 points]

c. Inpartb. we assumed that the whole instruction sequence is already in
the RS, and the RS can apply dynamic scheduling to optimize
performance. Unfortunately, it is not always possible to have all the
instructions that we need to apply optimal dynamic scheduling available
in the RS. As new instructions come in the RS from the instruction
decoder, the RS must choose what instructions to dispatch for execution,

HY425 Homework 2

from the set of instructions available in the RS. Suppose that the RS is
initially empty. In cycle 0, the first two register-renamed instructions of
this sequence appear in the RS. Assume it takes 1 clock cycle to dispatch
any instruction, and assume functional unit latencies are as they were for
parts a. and b. Further assume that the decoder of the processor will keep
supplying the RS with 2 instructions per clock cycle. Show the new cycle-
by-cycle order of dispatch of instructions to the RS. How many cycles does
this code sequence require now? It will be extremely helpful if you create
a separate table showing cycle by cycle the instructions available for
execution in the RS. [12 points]

d. If you wanted to improve the microarchitecture of part c. of this exercise
which of the following options would have helped the most? A. another
ALU, B. Another LD/ST unit, C. forwarding of ALU results to subsequent
operations, more specifically, during the last cycle of execution of each
ALU instruction forward the value to any dependent instructions, while
simultaneously writing the result to the register file (this effectively
reduces the latency between dependent instructions by one cycle), D.
Cutting the longest instruction latency in half. What is the speedup
attained in each case? [15points]

e. Letus assume that we can apply speculation in this microarchitecture.
More specifically, assume that we can fetch, decode and execute
instructions beyond one or more conditional branches. Suppose that you
can speculate across one branch and fetch instructions from an additional
loop iteration. Suppose also that you have all the instructions of two
iterations readily available in the RS. How many clock cycles would the
new microarchitecture need to execute the two loop iterations? [12
points]

Problem 2 (50 points)

The following C code implements a well-known computational pattern, called a
“reduction”. Assume that sum and A are integer variable and vector respectively
and you are working with a 32-bit processor.

for (i=0;i<96;i++)
sum += A[i];

You are given the following translation of the code:

LA R1, sum # LA loads the address of a variable to a register
LI R2, 384 # LI loads an immediate constant to a register
LA R3,A #assume R3 holds the memory location of “A[0]”
LI R4,0

Loop: LW R5,0(R3)
ADD R4,R4,R5 #sum += A[i]

ADDI R3,R3,4 #move pointer to A[i++]
SUBI R2,R2,4
BNZ R2,Loop

SW R4,0(R1)

HY425 Homework 2

a. Assume a standard pipelined processor where between a LW and a
dependent arithmetic instruction, there is a load-use hazard, which
causes the processor to stall for 2 cycles. How many clock cycles does the
code require to execute, assuming that the processor provides forwarding
in all other cases and the branch has a one-cycle delay slot? [6 points]

b. Your task is to optimize the code and eliminate stall cycles by using loop
unrolling. Assume that you have 16 general purpose registers available on
the processor (R1-R16). While thinking of the problem, you will discover
that loop unrolling is not straightforward. You will first need to do a
transformation of the original code so that you can apply unrolling
effectively. It is helpful, albeit not required by the exercise, to think of the
code transformation that you need to do to enable unrolling, in terms of
the original C code. Show the unrolled code and count how many cycles
the unrolled code requires, and what is the speedup over the original
code of part a. [16 points]

c. Take a deep breath! Assume that you execute the same code on a VLIW
machine where each long instruction can pack 2 integer arithmetic
operations and/or branches, 2 memory (load/store) operations and these
4 operations can be dispatched simultaneously to different execution
units. Using loop unrolling and based on the scheme you developed for
part b. show the optimized VLIW code. How many cycles does the VLIW
code require to execute the loop? What is the speedup compared to the
original non-optimized code and compared to the optimized code in part
b.? [22 points]

d. How many registers does your optimized VLIW code require? If each
instruction of the code in parts a. and b. is 32-bits, whereas the VLIW
instruction packet is 128 bits, calculate the VLIW “code blowup” factor.
This is the ratio of the optimized code size in the VLIW microarchitecture
to the non-optimized code size on the conventional pipelined
microarchitecture. [6 points]

