
1

1

1

Appendix A: Short Guide to the SimpleScalar Tool-Set

This text is based on the manual by Ewa Z. Bem, School of Computing and Information Technology,

University of Western Sydney Nepean, which in turn was based on the manual by Todd M. Bezenek,

University of Wisconsin. It contains background material about the SimpleScalar toolset of

simulators. SimpleScalar itself is available for download together with various tools and utilities

including detailed documentation from http://www.simplescalar.com/

A1: SimpleScalar and Simulation in Computer Architecture

When computer architecture researchers work to improve the performance of a computer system, they

often use an existing system to simulate a proposed system. Although the intent is not always to

measure raw performance (estimating power consumption is one alternative), performance estimation

is one of the most important results obtained by simulation. The SimpleScalar tool set is designed to

measure the performance of several parts of a superscalar processor and its memory hierarchy. This

document describes the SimpleScalar simulators. Other simulation systems may be similar or very

different.

Overview of SimpleScalar Simulation

The SimpleScalar tool set includes a compiler that creates binaries for a non-existent processor. The

binaries can be executed on one of several simulators that are included in the tool set. This section

describes the goals of processor simulation.

The execution of a processor can be modelled as a series of known states and the time (or

other costs, ie., power) required to make the transition between each pair of states. The state

information may include all or a subset of:

• The values stored in all memory locations.
• The values stored in and the status of all cache memories.
• The values stored in and the status of the translation-lookaside buffer (TLB).
• The values stored in and the status of the branch prediction table(s) or branch target buffer (BTB).
• All processor state (ie. the pipeline, execution units (integer ALU, load/store unit, etc.), register

file, register update unit (RUU), etc.)

A good way to evaluate the performance of a program on a proposed processor architecture is to

simulate the state of the architecture during the execution of the program. By simulating the states

through which the processor will pass during the execution of a program and estimating the time (or

other measurement) necessary for each state transition, the amount of time that the simulated

processor will need to execute the program can be estimated.

The more state that is simulated, the longer a simulation will take. Complex simulations can

execute 100s of times slower than a real processor. Therefore, simulating the execution of a program

that would take an hour of CPU time on an existing processor can take a week on a complex

simulator. For this reason, it is important to evaluate what measurements are desired and limit the

3

http://www.simplescalar.com/

simulation to only the state that is necessary to properly estimate those measurements. This is the

reason for the inclusion of several different simulators in the SimpleScalar tool set.

Profiling

In addition to estimating the execution time of a program on the simulated processor, profile

information may be of use to computer architects. Profile information is a count of the number or

frequency of events that occur during the execution of a program. One common example of profile

data is a count of how often each type of instruction (ie., branch, load, store, ALU operation, etc.) is

executed during the running of a program.

Profile information can be used to gauge the relative importance of each part of a processor's

implementation in determining its performance when executing the profiled program.

The SimpleScalar Base Processor

The SimpleScalar tool set is based on the MIPS R2000 processor's instruction set architecture (ISA).

The processor is described in MIPS RISC Architecture by Gerry Kane, published by Prentice Hall,

1988. The ISA describes the instructions that the processor is capable of executing - and therefore the

instructions that a compiler can generate - but it does not describe how the instructions are

implemented. The implementation is what computer architects change in order to improve the

performance of a processor.

An existing processor can be chosen as a base processor for several reasons. These may

include:

• The architecture of the processor is well known and documented.
• The architecture of the processor is state-of-the-art and therefore it is likely to be useful as a base

for the study of future processors.
• The architecture of the processor has been implemented as a real processor, allowing simulations

to be compared to executions on a real, physical processor.

An important consideration in the choice of the MIPS architecture for the SimpleScalar tool set was

the fact that the GNU GCC compiler was available in source-code form, and could compile to the

MIPS architecture. This allowed the use of this public-domain software as part of the SimpleScalar

tool set.

Description of the Simulators

The SimpleScalar tool set includes a number of simulators designed for various purposes. They are

described below. For those simulators we are using there are also a description of the important

profiling options available.

sim-bpred

This simulator implements a branch predictor analyser.

sim-cache

This simulator implements a functional cache simulator. Cache statistics are generated for a

user-selected cache and TLB configuration, which may include up to two levels of instruction

4

and data cache (with any levels unified), and one level of instruction and data TLBs. No

timing information is generated.

sim-cheetah

This program implements a functional simulator driver for Cheetah. Cheetah is a cache

simulation package written by Rabin Sugumar and Santosh Abraham which can efficiently

simulate multiple cache configurations in a single run of a program. Specifically, Cheetah can

simulate ranges of single level set-associative and fully-associative caches.

#-option <args> # <default> # description
-refs <string> # data # reference stream to analyze, {none|inst|data|
unified}
-R <string> # lru # replacement policy, i.e., lru or opt
-C <string> # sa # cache configuration, i.e., fa, sa, or dm
-a <int> # 7 # min number of sets (log base 2, line size for DM)
-b <int> # 14 # max number of sets (log base 2, line size for DM)
-l <int> # 4 # line size of the caches (log base 2)
-n <int> # 1 # max degree of associativity to analyze (log base 2)
-in <int> # 512 # cache size intervals at which miss ratio is shown
-M <int> # 524288 # maximum cache size of interest
-c <int> # 16 # size of cache (log base 2) for DM analysis

Note that 'line size' above is the same as block size. Most of the parameters above are give as
log base 2 of the number, ie a line size of 16 bytes is given as '-l 4.

sim-fast

This simulator implements a very fast functional simulator. This functional simulator

implementation is much more difficult to digest than the simpler, cleaner sim-safe functional

simulator. By default, this simulator performs no instruction error checking, as a result, any

instruction errors will manifest as simulator execution errors, possibly causing sim-fast to

execute incorrectly or dump core. Such is the price we pay for speed!!!!

sim-outorder

This simulator implements a very detailed out-of-order issue superscalar processor with a

two-level memory system and speculative execution support. This simulator is a performance

simulator, tracking the latency of all pipeline operations.

-option <args> # <default> # description
-fetch:ifqsize <int> # 4 # instruction fetch queue size (in insts)
-fetch:mplat <int> # 3 # extra branch mis-prediction latency
-bpred <string> # bimod # branch predictor type
 # {nottaken|taken|perfect|bimod|2lev|comb}
-bpred:bimod <int> # 2048 # bimodal predictor config (<table size>)
-decode:width <int> # 4 # instruction decode B/W (insts/cycle)
-issue:width <int> # 4 # instruction issue B/W (insts/cycle)
-issue:inorder <true|false> # false # run pipeline with in-order issue
-issue:wrongpath <true|false> # true # issue instructions down wrong execution
paths
-commit:width <int> # 4 # instruction commit B/W (insts/cycle)
-cache:dl1 <string> # dl1:128:32:4:l # l1 data cache config
-cache:dl1lat <int> # 1 # l1 data cache hit latency (in cycles)
-cache:dl2 <string> # ul2:1024:64:4:l # l2 data cache config
-cache:dl2lat <int> # 6 # l2 data cache hit latency (in cycles)
-cache:il1 <string> # il1:512:32:1:l # l1 inst cache config
-cache:il1lat <int> # 1 # l1 instruction cache hit latency (in
cycles)
-cache:il2 <string> # dl2 # l2 instruction cache config

5

-cache:il2lat <int> # 6 # l2 instruction cache hit latency (in
cycles)
-mem:lat <int list...># 18 2 # memory access latency (<first_chunk>
<inter_chunk>)
-mem:width <int> # 8 # memory access bus width (in bytes)
-tlb:itlb <string> # itlb:16:4096:4:l # instruction TLB config
-tlb:dtlb <string> # dtlb:32:4096:4:l # data TLB config
-tlb:lat <int> # 30 # inst/data TLB miss latency (in cycles)
-res:ialu <int> # 4 # total number of integer ALU's available
-res:imult <int> # 1 # total number of integer
multiplier/dividers available
-res:memport <int> # 2 # total number of memory system ports
available (to CPU)
-res:fpalu <int> # 4 # total number of floating point ALU's
available
-res:fpmult <int> # 1 # total number of floating point
multiplier/dividers available

The cache config parameter <config> has the following format:

 <name>:<nsets>:<bsize>:<assoc>:<repl>

 <name> - name of the cache being defined
 <nsets> - number of sets in the cache
 <bsize> - block size of the cache
 <assoc> - associativity of the cache
 <repl> - block replacement strategy, 'l'-LRU, 'f'-FIFO, 'r'-random

 Examples: -cache:dl1 dl1:4096:32:1:l
 -dtlb dtlb:128:4096:32:r

Cache levels can be unified by pointing a level of the instruction cache
hierarchy at the data cache hiearchy using the "dl1" and "dl2" cache
configuration arguments. Most sensible combinations are supported, e.g.,

 A unified l2 cache (il2 is pointed at dl2):
 -cache:il1 il1:128:64:1:l -cache:il2 dl2
 -cache:dl1 dl1:256:32:1:l -cache:dl2 ul2:1024:64:2:l

 Or, a fully unified cache hierarchy (il1 pointed at dl1):
 -cache:il1 dl1
 -cache:dl1 ul1:256:32:1:l -cache:dl2 ul2:1024:64:2:l

sim-profile

This simulator implements a functional simulator with profiling support.

-option <args> # <default> # description
-nice <int> # 0 # simulator scheduling priority
-max:inst <uint> # 0 # maximum number of inst's to execute
-all <true|false> # false # enable all profile options
-iclass <true|false> # false # enable instruction class profiling
-iprof <true|false> # false # enable instruction profiling
-brprof <true|false> # false # enable branch instruction profiling
-amprof <true|false> # false # enable address mode profiling
-segprof <true|false> # false # enable load/store address segment profiling
-tsymprof <true|false> # false # enable text symbol profiling
-taddrprof <true|false> # false # enable text address profiling
-dsymprof <true|false> # false # enable data symbol profiling
-internal <true|false> # false # include compiler-internal symbols during
 symbol profiling

6

sim-safe

This simulator implements a functional simulator. This functional simulator is the simplest,

most user-friendly simulator in the simplescalar tool set. Unlike sim-fast, this functional

simulator checks for all instruction errors, and the implementation is crafted for clarity rather

than speed.

The sim-cache and sim-cheetah simulators simulate only the state of the memory system-they do not

keep track of the timings of events. The sim-outorder simulator does. In fact, it simulates everything

that happens in a superscalar processor pipeline, including out-of-order instruction issue, the latency

of the different execution units, the effects of using a branch predictor, etc. Because of this, sim-

outorder runs more slowly, but it also generates much more information about what happens in a

processor.

Because sim-outorder keeps track of timing, it can report the number of clock cycles that are

needed to execute the given program for the simulated processor with the given configuration.

A.2: Installing and running simulation experiments with SimpleScalar

The instructions below show how you build and install development tools for SimpleScalar. For the

exercises in this lab you, however, do not need this. The actual simulators are enough.

For Cygwin on Windows/PC platform

If you want to install SimpleScalar on a Windows/PC platform, you need to first install the Cygwin

Unix emulation environment. Download Cygwin from http://www.cygwin.org and install it. Make

sure you include the development tools for gcc in your installation.

Then get the SimpleScalar package from http://www.simplescalar.com. Go to Tools in the

Downloads section to the left and download simplesim-3v0d.tgz. This is a gzipped tar package. To

unpack it, place the file in a directory1 of your choice and do the following command:

gunzip –c simplesim-3v0d.tgz | tar xvf –

This will create a subdirectory simplesim-3.0 with the source code for all simulators described above.

To build the simulators read the README file. Here are the steps (% means the command prompt):

% make config-pisa

% make

% make sim-tests (to verify that the simulators built OK)

The first step will set up the files for building the PISA target. The other alternative is an Alpha target.

For information about the PISA instruction set, please see the SimpleScalar documentation:

http://www.simplescalar.com/docs/users_guide_v2.pdf. It applies to version 2, but works for version

3 as well.

1 The path to the directory must not contain any white spaces.

7

http://www.simplescalar.com/docs/users_guide_v2.pdf
http://www.simplescalar.com/agreement.php3?simplesim-3v0d.tgz
http://www.simplescalar.com/
http://www.cygwin.org/

In order to be able to compile programs to run on the simulator, you need a port of cross-

compiler and libraries for Cygwin. It can be found here:

 http://www.eecg.toronto.edu/~moshovos/ACA05/hw/ss-gcc.usrlocal.tar.bz

• Install with: “bunzip2 –c ss-gcc.usrlocal.tar.bz | tar xvf – “

• Include /usr/local/bin in your path

• Compile programs using “ss-gcc”

For Linux on PC platform

Please refer to the instructions found on the link below for a Linux installation that works:

http://www.comp.nus.edu.sg/~panyu/simplesim.htm

A.3: Available benchmarks

The benchmarks described here are precompiled for SimpleScalar/PISA and can be downloaded from

the link below:

http://www.csd.uoc.gr/~hy425/fall_2006/project/benchmarks.tgz

anagram

A program for finding anagrams for a phrase, based on a dictionary.

compress

(SPEC) Compresses and decompresses a file in memory.

go

(SPEC) Artificial intelligence; plays the game of "Go" agianst itself

perl

Calculates popularity of nodes in a graph based on the PageRank algorithm from Google.

gcc

(SPEC) Limited version of GCC

8

http://www.ict.kth.se/courses/2g1534/ss/benchmarks/
http://www.comp.nus.edu.sg/~panyu/simplesim.htm
http://www.eecg.toronto.edu/~moshovos/ACA05/hw/ss-gcc.usrlocal.tar.bz

	machine_assignment_2.pdf
	exc1.pdf
	1Introduction
	Preparation
	Assignment 1: Program behaviour (Instruction Profiling)
	Assignment 2: Effects of compiler optimizations
	Literature

	Appendix A: Short Guide to the SimpleScalar Tool-Set
	A1: SimpleScalar and Simulation in Computer Architecture
	Overview of SimpleScalar Simulation
	Profiling
	The SimpleScalar Base Processor
	Description of the Simulators

	A.2: Installing and running simulation experiments with SimpleScalar
	For Cygwin on Windows/PC platform
	For Linux on PC platform

	A.3: Available benchmarks

	Appendix B: GCC Optimization options

