
ΗΥ-425 1

Why memory-hierarchy ?

ΗΥ-425 2

Why memory-hierarchy ?

Principle of locality

•Temporal locality

•Spatial locality

The slower the memory the cheaper(Basic hw rule!)

ΗΥ-425 3

Memory hierarchy measures

Memory stall cycles = IC x MRP x MR x MP

Where :
IC = Instruction Count
MRP = Memory References per Instruction
MR = Miss Rate
MP = Miss Penalty

Cache = Buffers/small memories that are applied to reuse
commonly occurring items

ΗΥ-425 4

4 Basic questions about caches

•Block placement
Where can a block be placed in the upper level?

•Block identification
How is a block found if it is in the upper level?

•Block replacement
Which block should be replaced on a miss?

•Write Strategy
What happens on a write?

ΗΥ-425 5

Where can a block be placed?
•Direct Mapped

In only one specific place.
•Fully Associative

Anywhere !
•Set Associative

In a restricted set of places (in a set).

ΗΥ-425 6

Where can a block be placed?

ΗΥ-425 7

How is a block found?

Tag : Which block in a set.

Index : Which set.

Block Offset : Address of data within the block.

When Associativity increases -> Tag increases and Index decreases

index
2 = (Cache size) / (Block size * Set associativity)

ΗΥ-425 8

Which block should be replaced?

Random: In practice it is pseudorandom

LRU: Least recently used (i.e. unused for a long time)

ΗΥ-425 9

What happens on a Write ?
Reads much more common than writes so :
Amdahl’s law:
“Make common case fast” -> Make reads fast

So: Writes are (much) slower and much more complicated

•Write through
Info is written to both cache and memory

•Write back
Info is written only to the cache. Modified block is
written to the memory only when replaced

ΗΥ-425 10

What happens on a Write ?
•Write through

+Easier.
+Never delay a read.
+Memory has always an up-to-date copy
- More memory bandwidth

•Write back
+Less Bandwidth
-Complicated

ΗΥ-425 11

What about write misses ?
•Write allocate

Block is loaded to the cache and then written
•No-write allocate

Block is not loaded, it is modified only in the memory

ΗΥ-425 12

An example:Alpha AXP 21064

8KB
Cache

32-byte
Block

ΗΥ-425 13

21064 2-way Set Associative

ΗΥ-425 14

Cache performance

MemAccTime = HitTime + Miss rate x Miss Penalty

ΗΥ-425 15

Example 1

Which has the lower miss rate: A 16-KB instruction
cache with a 16-KB data cache or a 32-KB unified
cache ? Assume a hit takes 1 clock cycle on the
separate caches and miss costs 50 clock-cycles. On
the unified cache the hit takes 2 clock cycles since
the memory is single ported. What is the Average
Memory Access time ? (Ignore write stalls)

ΗΥ-425 16

Cache Performance (2)
CPU time = (CPC + MSC) x CP

CPC = CPU execution clock cycles
MSC = Memory stall clock cycles
CP = Clock period
MR= Miss Rate MP = Miss Penalty

MSC = MemAcc x MR x MP =>
CPI time = IC x CP

(CPI + (MemAcc/Instr) x MR x MP)

ΗΥ-425 17

Example 2
Impact of different cache organizations

Assume 2 caches a Direct Mapped and a 2-way Set
Associative :

Assume a CPI with a perfect Cache is 2.0, a CP of 2ns,
there are 1.3 MemRefs per instuction and the size of both
caches is 64KB (32 bytes blocks). In the 2-way S.A. CP
is 1.1 times larger due to the additional hardware. Miss
penalties are the same in both cases (70ns). The Miss Rate
of the Direct-Mapped is 1.4% and of the 2-way S.A. is 1%

ΗΥ-425 18

Improving Cache Performance

MemAccTime = HitTime + Miss rate x Miss Penalty

•Reducing the miss rate

•Reducing the miss penalty

•Reducing the hit time

ΗΥ-425 19

Cache Misses

Types of misses :

•Compulsory
First access to a block

•Capacity
Not enough space

•Conflict (only on set associative or direct mapped)
Too many blocks map to the same set

ΗΥ-425 20

Cache Misses

ΗΥ-425 21

Cache Misses

ΗΥ-425 22

Make Blocks Larger
Good due to spatial locality; Bad due to less blocks

ΗΥ-425 23

Make Blocks Larger(2)

But increases Miss Penalty !!!!

ΗΥ-425 24

Increase Associativity
•An 8-Way set associative cache is as effective as a
fully-associative one.

•2:1 cache rule of thumb : A direct-mapped cache of
size N has about the same rate as a 2-way Set
Associative of size N/2.

•BUT: Increases the hit time… By 2% when going from
Direct Mapped to 2-way Set Associative.

ΗΥ-425 25

Increase Associativity(2)
SO :

ΗΥ-425 26

Victim Caches

A 4 entry one can remove 20%-95% of the conflict
misses in a 4-KB direct-Mapped cache!!!!

ΗΥ-425 27

Pseudo-Associative Caches
After a read miss and before going to the next level,
another cache entry is checked (I.e. invert the most
significant bit of the index).
As a result we have two hit times : A fast (regular) hit
time and a slow (pseudo) hit time.
Danger: Many of the fast hit times become slow.

ΗΥ-425 28

Hardware Prefetching
On a read Instruction miss the next consecutive block is
prefetched and put in the instruction stream buffer(ISB).
The ISB is searched on read a miss and if the item is
there then a new prefetch is issued.
•A 1-block ISB reduces misses 15%-25%
•A 4-block ISB reduces misses 50% (!!)
•A 16-block ISB reduces misses 72%

The same with Data Caches can reduce misses by
25%-70% depending on sizes of the stream buffer.

ΗΥ-425 29

Compiler-Control Prefetching
•Register Prefetch: Loads value into a register.

•Cache Prefetch: Loads data only into the cache.
It makes sense only if the cache is non-blocking :
It can supply data while prefetching other things.

They are used mainly in loops and depending on
The miss penalty the compiler unrolls the loop either
a couple of times or a larger number of times.

ΗΥ-425 30

Compiler Optimizations: Merging Arrays

Improve spatial locality :
/* Before *//* Before */
int valint val[SIZE];[SIZE];
intint key[SIZE];key[SIZE];
--
/* After *//* After */
structstruct merge {merge {

int valint val;;
int int key;key;

}; };
structstruct merge merge mergedarraymergedarray[SIZE];_[SIZE];_

ΗΥ-425 31

Compiler Optimizations: Loop Interchange
Improve spatial locality :

/* Before *//* Before */
for (j = 0; j < 100; j++)for (j = 0; j < 100; j++)

for (k = 0; k < 5000; k++)for (k = 0; k < 5000; k++)
x[k][j] = 2 * x[k][j]; x[k][j] = 2 * x[k][j];

--
/* After *//* After */
for (k = 0; k < 5000; k++)for (k = 0; k < 5000; k++)

for (j = 0; j < 100; j++)for (j = 0; j < 100; j++)
x[k][j] = 2 * x[k][j];x[k][j] = 2 * x[k][j];

ΗΥ-425 32

Compiler Optimizations: Loop Fusion
Improve temporal locality :

/* Before *//* Before */
for (k = 0; k < N; k++)for (k = 0; k < N; k++)

for (j = 0; j < N; j++)for (j = 0; j < N; j++)
a[k][j] = b[k][j] * c[k][j];a[k][j] = b[k][j] * c[k][j];

for (k = 0; k < N; k++)for (k = 0; k < N; k++)
for (j = 0; j < N; j++)for (j = 0; j < N; j++)

d[k][j] = a[k][j] + c[k][j];d[k][j] = a[k][j] + c[k][j];

ΗΥ-425 33

Compiler Optimizations: Loop Fusion(2)

/* After */ /* After */
for (k = 0; k < N; k++)for (k = 0; k < N; k++)

for (j = 0; j < N; j++)for (j = 0; j < N; j++)
{{

a[k][j] = b[k][j] * c[k][j];a[k][j] = b[k][j] * c[k][j];
d[k][j] = a[k][j] + c[k][j];d[k][j] = a[k][j] + c[k][j];

}}
The original code takes all the misses to access a and
c twice (once in every loop).

ΗΥ-425 34

Compiler Optimizations:Blocking(Before)

/* Before */ /* Before */
for (k = 0; k < N; k++)for (k = 0; k < N; k++)

for (j = 0; j < N; j++)for (j = 0; j < N; j++)
{{

r = 0;r = 0;
for (l = 0; l < N; l++) {for (l = 0; l < N; l++) {

r = r + y[k][l] * z[l][j];r = r + y[k][l] * z[l][j];
x[k][j] = r;x[k][j] = r;

}}

ΗΥ-425 35

Compiler Optimizations:Blocking(After)
/* After */ /* After */
for (for (jjjj = 0; = 0; jjjj < N; < N; jjjj+=B)+=B)

for (for (kkkk = 0; = 0; kkkk < N; < N; kkkk+=B)+=B)
for (i = 0; i < N; i++)for (i = 0; i < N; i++)

for (j = for (j = jjjj; j < min(; j < min(jjjj+B+B--1,N);j++)1,N);j++)
{{

r = 0;r = 0;
for (k = for (k = kkkk; ;

k < min(k < min(kkkk+B+B--1,N);k++)1,N);k++)
r=r+y[i][k]*z[k][j];r=r+y[i][k]*z[k][j];

x[i][j] = x[i][j] + r;x[i][j] = x[i][j] + r;
}}

ΗΥ-425 36

Compiler Optimizations: General Results

ΗΥ-425 37

Compiler Optimizations: Blocking (Comparison)

ΗΥ-425 38

Reducing Miss Penalty: Priorities
Give priority to read misses over Writes
Problem: (when there is a write buffer):

SW 512(R0),R3
LW R1,1024(R0)
LW R2,512(R0)
If not careful R2 and R3 will NOT be equal!!
So either wait until buffer is empty (1.5 times larger
Miss penalty on real programs!)
Or check contents of buffer!

ΗΥ-425 39

Reducing Miss Penalty: Sub-blocks
Sub-block placement:
A valid bit is added to sub-blocks and only one sub-
block should be read on a read miss.
Advantage : Need less tags !

ΗΥ-425 40

Reducing Miss Penalty: Early starts

•Early restart:
As soon as the requested word arrives send
it to the CPU

•Critical Word First(wrapped fetch):
Request the missed word first and send it to
the CPU; then fill the block while CPU is
working.

ΗΥ-425 41

Reducing Miss Penalty: Non-blocking caches

When used with sophisticated machines the caches
should not stall on a miss. That’s called “hit under miss”
(e.g. A Pipelined machine with out-of-order execution
using scoreboard or Tomasulo algorithm)
These are the non-blocking or lockup-free caches

ΗΥ-425 42

Reducing Miss Penalty: Non-blocking caches

ΗΥ-425 43

Reducing Miss Penalty: Second level caches

The only method which concentrates on the MEM
to cache interface.

Q: Should I make the cache faster to keep pace with the
speed of CPUs or make the cache larger to overcome
the widening gap between the CPU and the MEM ?

A: Both ! Add a second level cache ! This will make the
1st level one small and fast and the 2nd level one large.

ΗΥ-425 44

Second level caches
AMAT = Hit_L1 + MR__L1 x MP_L1 And

MP_L1 = Hit_L2 + MR_L2 x MP_L2 SO :

AMAT = Hit_L1 + MR_L1 x (Hit_L2 + MR_L2 x MP_L2)

Where MR_L2 and MR_L1 are the 2 Local Miss Rates:
I.e. The number of misses in that cache divided by the
total number of accesses to THAT cache only

MR_L1 x MR_L2 is the Global Miss Rate: I.e. The number
of misses in the cache hierarchy divided by the total
number of accesses generated by the CPU.

ΗΥ-425 45

Second level caches

32KB
1st level

ΗΥ-425 46

Second level caches’ characteristics
1. The global miss rate is very similar to the single

cache miss rate of the second level cache, provided
that the 2nd level cache is much larger than the 1st

level one.So we have the miss rate of the large 2nd

level cache and the speed of the small 1st level one.
2. Local cache rate is NOT a good measure for 2nd

level caches since it is a function of the Miss rate of
the 1st level cache.

ΗΥ-425 47

Second level caches’ associativity
Example :
• 2-way S.A. increases hit-time by 10% of CPU clock cycle
•Hit_L2 for direct mapped = 10 clock cycles
•Local MR_L2 for direct mapped= 25%
•Local MR_L2 for 2-way S.A. = 20%
•MP_L2 = 50 clock cycles

What’s one is better ?

ΗΥ-425 48

Improving 2nd level caches

Higher associativity or pseudo-associativity are good
candidates since they slightly increase the hit-time of L2.
Although the large L2 eliminates the conflict misses by
having more blocks, it also eliminates the capacity misses
so the percentage of conflict misses is still significant.

ΗΥ-425 49

Improving 2nd level caches

The problem with this property is that the two caches
may have different block sizes so what about an L2 miss?

The L2 should invalidate all the block in L1 that are
contained in the large L2 block which is fetched from MEM.
So this can cause higher L1 miss rate and higher L1 miss
Penalty.

If everything in L1 are also in L2 then L2 has :
Multilevel inclusion property. (Good in DMA and
MultiProcessors) :

ΗΥ-425 50

Improving 2nd level caches
Also we can increase the blocks since L2s are large and
can hold a lot of blocks anyway.

ΗΥ-425 51

Improving 2nd level caches - Summary

Since in L2 there are many fewer accesses than in L1
we are trying to have fewer misses even if that
increases slightly the hit time.
As a result for L2s we have :

• Large Caches
• High Associative
• Large blocks

ΗΥ-425 52

Reducing Hit Time: Small & Simple

Direct Mapped Caches are simpler and thus faster. They
can overlap the tag check with the transmission of the
data

Small caches can be put on chip (even large ones can
now ☺) and … the smaller the faster .

ΗΥ-425 53

Reducing Hit Time: Avoid addr translation

CPU generates Virtual addresses so we should translate them
in order to get the physical addresses used in main memory.
This adds delay so why not use Virtual Caches (use Virtual
Addresses only !) :

1. When a process changes we should flush the Cache
2. 2 virtual addresses may refer to the same physical one

(One by the OS and one by the User), so the 2
synonyms or aliases will both be in the cache so if we
modify one the other will get the wrong value!

3. I/O is using only physical address so it needs mapping to
virtual Address in order to talk to a Virtual cache

ΗΥ-425 54

Reducing Hit Time: Avoid addr translation

In order to avoid the process switching problem we can
use a new field called Process-identifier tag (PID)

ΗΥ-425 55

Reducing Hit Time: Avoid addr translation

Pipelining !
1st stage : Address Translation
2nd stage : Cache Access

This gives a fast clock cycle but you need 2 pipeline
stages for the memory accesses. It complicates the
hazards.

ΗΥ-425 56

Reducing Hit Time: Avoid addr translation

Use page offset (which is the same for Physical and
Virtual addresses) for indexing the cache and do in
parallel the tag reading and the address translation.
BUT : In a direct-Mapped cache the maximum size of it
is the size of the page. The size can be increased by
increasing the Associativity : IBM 3033 uses 16-way
S.A so as to have 64KB caches and 4-KB virtual pages!

ΗΥ-425 57

Reducing Hit Time: Avoid addr translation

SOLUTIONS :
1. OS can guarantee that the last few bits of the the

Virtual and Physical Addresses are always the same
2. Have a small piece of hardware that tries to guess the

last bits of the physical address given the Virtual
Address. If the guess is wrong we assume a pseudo
Miss and then we do the actual translation and we
retry .

ΗΥ-425 58

Reducing Hit Time: Pipelining Writes
Pipelines are slower since we should first check the tag and
then do the actual writing. So use a two stage pipelining :
1st stage : Compare tag with write address
2nd stage : Do the PREVIOUS writing (so 2 writes can be done
back to back)

ΗΥ-425 59

Cache Optimization Summary

ΗΥ-425 60

Main Memory
Memory latency is expressed in terms of :
1. Access time : Time between a read is requested and a

word arrives.
2. Cycle time : Minimum time between requests.
Cycle time > Access time since the Address lines should

be stable between accesses

ΗΥ-425 61

DRAMs and SRAMs
In DRAM we have Row (Row Address Strobe or RAS) and
Column Addresses (Column Address Strobe or CAS) so as
to save some pins.
Also DRAM needs refresh every some time (I.e. 8ms)
And when reading them, the data should be written back
after the read otherwise they are destroyed ! Thus
Cycle Time > Access Time

SRAMs don’t need refreshing or writing back of data read so
Cycle Time = Access Time

ΗΥ-425 62

DRAMs and SRAMs
Capacity of DRAMs is 4 to 8 times larger that of SRAM
And SRAMs is 8 to 16 times faster than DRAM and
8 to 16 times more expensive … So we use DRAMs !

ΗΥ-425 63

Improving Main Memory Performance

4 Cycles for address,24 Cycles access time,4 Cycles for sending a word

ΗΥ-425 64

Wider Main Memory
You get much more bandwidth BUT :
1. CPUs access a word at a time so we need a multiplexor

between the cache and the CPU which is on the critical
path. 2nd level caches help with that.

2. The minimum increment in custom expandable Memories
is multiplied by the width of the memory.

3. Memories with error correction have some problems
when you write only a part of the line since they have
to read the rest of the line and calculate the new CRC.

ΗΥ-425 65

Simple Interleaved Memory
Send the address to all the banks but read just one at a time.
The interleaving factor refers to the mapping of addresses to
the banks. Most commonly these memories are word-
Interleaved so bank 0 has all the words whose
address modulo Number-of-banks is 0 etc.
This interleaving optimizes sequential accesses.
On a cache read miss words are read sequentially.
On write back caches we also read/write blocks sequentially.

Number-of-banks >= Number of Cycles to access a word

ΗΥ-425 66

Independent Memory Banks
Independent banks with own address lines are useful
When the memory is access by more than one devices
(i.e. multiprocessors) or when it wants to satisfy more
than one read misses at the same time (i.e. non-blocking
caches).

It’s expensive and thus not used in everyday machines.

ΗΥ-425 67

Avoiding Memory Bank Conflicts
If we have sequential accesses everything is easy. BUT
what if the consecutive addresses differ by an even number?
Even with 128 banks (like the NEC SX/3 machine) we
will have a problem with the following code :

int x[256][128];
for (j = 0; j < 512; j++)

for (k = 0; k < 256; k++)
x[k][j] = 2 * x[k][j];

Since 512 is an even multiple of 128 all the elements of a
column will be in the same bank.

ΗΥ-425 68

Avoiding Memory Bank Conflicts
SOLUTIONS :
1. Loop interchange
2. Use Prime number of banks, Since:

Bank number = Address MOD Number of Banks
(2) Address within bank = Address / Number of Banks
And according to the Chinese Remainder Theorem
if the number of banks is one less a power of two and
the number of words in a bank a power of two (always!),
(2)_can be written as :
Address within bank = Address MOD Number of Banks

MOD is fast in hardware!

ΗΥ-425 69

DRAM-Specific Interleaving
DRAMs have rows and columns and different columns
within the same row can be accessed quickly(We buffer a
whole row every time in a fast buffer . The row size
is the square root of the DRAM size so :
16Kb for a 64Mb DRAM and 64Kb for a 256Mb DRAM
•Nibble mode: DRAM can supply 3 extra bits from
sequential locations for every RAS.
•Page mode: But changing column address we can access
any bit of the row until a new row access(or refresh) arrives
•Static column: Page mode but without strobing the CAS

ΗΥ-425 70

DRAM-Specific Interleaving (2)

Optimized time is the same no matter which of the 3
optimized modes is selected.
So with nibble mode for example we can get 4 bits
externally in the time of 4 optimized cycles, very useful
for a 4-way interleaved memory.

ΗΥ-425 71

RAMBUS/VRAMs interfaces
Instead of RAS/CAS we have a bus that allows other
accesses over it between the sending of the address and the
receiving of the data. A chip can return a variable amount of
Data from a single request, it has a byte-wide interface and a
Clock so as to be synchronized with the CPU. Once the

address pipeline is full a chip can deliver 1 byte every 2ns!
It costs 20% more per megabyte over a standard DRAM.

VRAM is optimized so as to get more bandwidth when you
have serial access (used in video cards)

ΗΥ-425 72

Virtual Memory
Used for :

1. Sharing memory between processes
2. Extending the useful memory (instead of using overlay)

ΗΥ-425 73

Virtual Memory and Cache
Page or Segment vs Block
Page or Address fault vs Miss
Replacement by OS vs Replacement by HW
Size is defined by CPU vs Size is arbitrary

ΗΥ-425 74

Pages and Segments
Pages are fixed length while Segments are variable length.

ΗΥ-425 75

Virtual Memory questions
•Block placement

-Where can a block be placed ?
-Anywhere since miss penalty is huge so miss rate
should be minimal (fully associative).

•Block identification
-How is a block found if it is in the Main memory?
-Using a page table which is indexed by the virtual addr

•Block replacement
-Which block should be replaced on a miss?
-LRU algorithm by OS. The OS is using a reference bit

•Write Strategy
-What happens on a write?
- Write back since it takes ages to write to the hard disk

ΗΥ-425 76

Address Translation
Page tables are large so they are stored in Main Memory
So each access takes at least twice as long :
1 cycle to take the physical address and 1 to get the data

ΗΥ-425 77

Fast Address Translation, TLBs
If accesses have locality so should addresses :
So we use a memory address special cache where we put
the most recently used address translations, and as a
result we rarely have to do two memory accesses.
This is called a Translation look-aside buffer or TLB .

In the TLB we store the Virtual - Physical Address pairs
and some control bits like valid/dirty/use/read/write.

ΗΥ-425 78

Alpha 21064’s TLB

Tag is the Virtual Address
No need to translate the page offset since it is the same in both addresses.

ΗΥ-425 79

TLB with Caches

The CPU generates virtual addresses so :
1. If cache is small we use only the page offset so the cache

can be accessed without address translation. We need the
physical address only for comparison with the cache tag

2. If cache is large then the TLB is on the critical path so it
should be fast. So it is always small (32 block is typical),
and in sometimes is it even pipelined.

ΗΥ-425 80

Selecting a page size
Large pages are preferable since :
1. The size of the page table is inversely proportional to the

page size, so larger pages result in smaller page tables.

2. A large page can simplify the cache accesses (no
translation needed if size of the cache < page size).

3. Transferring larger pages is more efficient.

4. The TLB misses are smaller when the pages are larger
and thus fewer.

ΗΥ-425 81

Selecting a page size (2)
Small pages are not that bad either when storage is limited:

When we have small pages less storage is wasted when a
continuous region of virtual memory is not equal in size to
a multiple of the page size. This is called
internal fragmentation . The average wasted storage per
process is 1.5 times the page size so this is negligible for
machines with 4KB or 8KB pages. It may be important for
machines with small main memory and pages of 64KB or
more.

Also large pages would increase the time for starting-up
a small process since a large page should be read and
only a small part of it needed.

ΗΥ-425 82

Crosscutting Issues in Designing Mem Systems
•Instruction Level Parallelism versus Reducing Cache Misses

for (k = 0; k < 512; k++)
for (j = 1; j < 512; j++)

x[k][j] = 2 * x[k][j-1];
OR :

for (k = 0; k < 512; k++)
for (j = 1; j < 512; j+=4){

x[k][j] = 2 * x[k][j-1];
x[k][j+1] = 2 * x[k][j];
x[k][j+2] = 2 * x[k][j+1];
x[k][j+3] = 2 * x[k][j+2];}

We have low cache miss rate (access data the way they are stored) BUT
we have RAW dependencies.

ΗΥ-425 83

Crosscutting Issues in Designing Mem Systems

By interchanging the two loops and unrolling we get :
for (j = 1; j < 512; j++)

for (k = 0; k < 512; k++)
x[k][j] = 2 * x[k][j-1];

OR :
for (j = 1; j < 512; j++)

for (k = 0; k < 512; k+=4){
x[k][j] = 2 * x[k][j-1];
x[k+1][j] = 2 * x[k+1][j];
x[k+2][j] = 2 * x[k+2][j+1];
x[k+3][j] = 2 * x[k+3][j+2]; }

We have no RAW (all statements are independent) BUT possibly
a much higher miss rate !

ΗΥ-425 84

Cache coherency problem

ΗΥ-425 85

Crosscutting Issues in Designing Mem Systems
•I/O and Consistency of Cached Data (Cache-coherency)

Where does the I/O occur ?
Between the I/O and the cache OR the memory ?

If the I/O talk directly to the cache the CPU and the I/O see the same
data BUT the CPU should wait when the I/O downloads data, we put
useless data in the small cache and we put more h/w in the critical
cache access path.
If the I/O talks to the memory and we have a write-through
cache there is no problem for outputs. For inputs, no blocks written by
the I/O should be in the cache. So either a page should be defined as
non-cachable or all the blocks to be written by the I/O should be
Flushed from the cache after the input occurs.

ΗΥ-425 86

Alpha 21064 Memory Hierarchy

ΗΥ-425 87

Alpha 21064 Performance

ΗΥ-425 88

Memory hierarchies Summary

ΗΥ-425 89

Fallacies and Pitfalls
Pitfall: Too small an address space.
PDP-11, 8080, 8086, 80186, 80286, Zilog Z80, Cray 1 all died of
few address bits. It’s too difficult to add address bits since it
determines the minimum length of Program Counter, memory
accesses, address arithmetic.
Fallacy:Predicting cache performance of one program from another.

ΗΥ-425 90

Fallacies and Pitfalls
Pitfall: Ignoring the impact of the OS on the performance of the

Memory hierarchy.

ΗΥ-425 91

Fallacies and Pitfalls
Pitfall: Simulating enough instructions to get accurate performance

measures of the memory hierarchy.
1) Use a small trace for predicting the behavior of a large cache
2) Locality is not constant over the run of the entire program

