Why memory-hierarchy ?

2000 F

Performance

10 F —n—0—0
g—a—o—o " Hn
o - g—a—0
o—o—"

Q]) I 1 1 1 L —)) I 1 1 1 L —)
L FFF IS F P T STF T F S

Year

| o Memory @ CPL I

HY-425

Why memory-hierarchy ?

Principle of locality
*Temporal locality

*Spatial locality

The slower the memory the cheaper(Basic hw rule!)

HY-425 2

Memory hierarchy measures

Memory stall cycles = IC x MRP x MR x MP

Where :
IC = Instruction Count
MRP = Memory References per Instruction
MR = Miss Rate
MP = Miss Penalty

Cache = Buffers/small memories that are applied to reuse
commonly occurring items

HY-425

4 Basic questions about caches

*Block placement
Where can a block be placed in the upper level?

*Block identification
How 1s a block found 1f 1t is 1n the upper level?

*Block replacement
Which block should be replaced on a miss?

*Write Strategy
What happens on a write?

HY-425

Where can a block be placed?

*Direct Mapped

In only one specific place.

*Fully Associative
Anywhere !

*Set Associative
In a restricted set of places (in a set).

HY-425

Where can a block be placed?

Fu lly associative: Direct mapped: Set associative:

block 12 can go block 12 can go block 12 can go

anywheara only into block 4 anywhera in set
(12 mod &) (12 mod 4)

Block 01234567 Block 01234567 Block 01234567

jl= jl= no.
Cache
[T T [[[| [T T T [| .
Set Set Set Set
[2 3
EBlxck frame addrass
Block 11111111 112z2z222222223 3
no. 0123456878901 2345B7892012345678901

HY-425

How 1s a block found?

Block address | Block
Tag Indax aiffset

Tag : Which block 1n a set.
Index : Which set.

Block Offset : Address of data within the block.

When Associativity increases -> Tag increases and Index decreases

index
2 = (Cache size) / (Block size * Set associativity)

HY-425

Which block should be replaced?

Random: In practice it is pseudorandom

LLRU: Least recently used (i.e. unused for a long time)

Associativity
Two-way Four-way Eight-way
Size LRU Random LRU Random LRU Random
16 KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%
64 KB 1.88% 201% 1.54% 1.66% 1.39% 1.53%
256 KB 1.15% L.17% 1.13% 1.13% 1.12% 1.12%

HY-425

What happens on a Write ?

Reads much more common than writes so :
Amdahl’s law:

“Make common case fast” -> Make reads fast

So: Writes are (much) slower and much more complicated

*Write through

Info 1s written to both cache and memory
*Write back

Info 1s written only to the cache. Modified block i1s
written to the memory only when replaced

HY-425

What happens on a Write ?

*Write through
+Easier.
+Never delay a read.
+Memory has always an up-to-date copy
- More memory bandwidth
*Write back
+Less Bandwidth
-Complicated

HY-425

10

What about write misses ?

*Write allocate

Block 1s loaded to the cache and then written
*No-write allocate

Block 1s not loaded, it 1s modified only in the memory

HY-425 11

An example:Alpha AXP 21064

Block
Block addess offset @
== 28s <hs

TEE | Indax I

Walid Tag Data
1> <21= <256> y

- J 32-byte
bocks) (&) HﬁHﬁH Block

::;; @ 41 Mux [|=

SKB
Cache

HY-425 12

21064 2-way Set Associative

HY-425

13

Cache performance

MemAccTime = HitTime + Miss rate x Miss Penalty

Size Instruction cache Data cache Unified cache
I KB 3.06% 24.61% 13.34%
2KB 2.26% 20.57% 9.78%

4 KB 1.78% 15.94% 7.24%
8 KB 1.10% 10.19% 4.57%

16 KB 0.64% 6.47% 2.87%

32KB 0.39% 4.82% 1.99%

64 KB 0.15% 3.77% 1.35%

128 KB 0.02% 2.88% 0.95%

HY-425

14

Example 1

Which has the lower miss rate: A 16-KB 1nstruction
cache with a 16-KB data cache or a 32-KB unified
cache ? Assume a hit takes 1 clock cycle on the
separate caches and miss costs 50 clock-cycles. On
the unified cache the hit takes 2 clock cycles since
the memory 1s single ported. What 1s the Average
Memory Access time ? (Ignore write stalls)

HY-425

15

Cache Performance (2)

CPU time = (CPC + MSC) x CP

CPC = CPU execution clock cycles
MSC = Memory stall clock cycles
CP = Clock period

MR= Miss Rate MP = Miss Penalty

MSC = MemAcc x MR x MP =>
CPI time = IC x CP
(CPI + (MemAcc/Instr) x MR x MP)

HY-425

16

Example 2

Impact of different cache organizations

Assume 2 caches a Direct Mapped and a 2-way Set
Associative :

Assume a CPI with a perfect Cache 1s 2.0, a CP of 2ns,
there are 1.3 MemRefs per instuction and the size of both
caches is 64KB (32 bytes blocks). In the 2-way S.A. CP

1s 1.1 times larger due to the additional hardware. Miss
penalties are the same 1n both cases (70ns). The Miss Rate
of the Direct-Mapped is 1.4% and of the 2-way S.A. 1s 1%

HY-425

17

Improving Cache Performance

MemAccTime = HitTime + Miss rate X Miss Penalty

*Reducing the miss rate
*Reducing the miss penalty

*Reducing the hit time

HY-425 18

Cache Misses

Types of misses :

Compulsory
First access to a block

Capacity
Not enough space

*Conflict (only on set associative or direct mapped)
Too many blocks map to the same set

HY-425

19

Cache Misses

Miss rate components (relative percemnt)
(Srume = I00% of total mriss rate)

Degree Total
Cache size assoeciative miss rate Compulsory Capacity Conflict
1 KB L-way Q133 Q.002 1% Q.080 00 % Q.Q52 39%
1 KB Z-way Q. 105 Q.002 2% Q.080 To% Q.023 22%
1 KB A -wweay D.095 Q.002 2% Q.080 B49% 0.013 l4%%
1 KB B-way Q.087T Q.00z 2% Q.080 92 % Q.205 6%
Z KB 1-way D.098 Q.002 2% Q.044 45% Q.Q52 53%
Z KB 2 -way D076 Q.002 2% Q.044 S58% Q.Q30 30%%
Z KB A -weay 0.064 Q.002 3% 0.044 69% Q.018 28T
Z KB B -way 0,054 Q.002 4% 0.044 82% Q.00 8 14 %%
4 KB 1 -way D.072 Q.002 3% D.031 439% Q.Q39 S54%
4 KB 2 -way Q.057 Q.002 3% Q.031 55% Q.02 42%
4 KB d-wweay D.049 Q.00z 4% 0.031 64% Q.01e 32
4 KB B -way Q.039 Q.002 5% Q.031 80 % Q.206 15%
B KB 1 -way Q.04 6 Q.002 4% D.023 51% Q.02 1 45%
B KB 2 -way D038 Q.002 5% Q.023 61% Q.013 3%
8 KB d-way D.035 Q.00z 5% 0.023 6o % Q.010]
8 KB B-way Q.0zZ9 Q.002 0% Q.023 T9% Q.00 5%
16 KB 1-way D.029 Q.002 T Q015 529% Q.012 42%
le KB 2 -way 0.022 Q.002 9% Q.015 G6E% Q.005 23%
lo KB d-way 2,020 Q.00z 1% Q.015 T4 % Q.03 17 %
16 KB B-way D018 Q.002 10% Q015 B0 % Q.02 9%
IZHEB 1 -way D020 Q.002 1% Q.010 52% Q.08 3BT
IZ KB 2 -way 0.014 Q.002 149 Q.010 T4% Q.002 12%
IZHB 4 -way D.013 Q.00z 15% Q.010 T9% Q.00 1 6%
3IZEB B -way D.013 Q.002 15% Q.010 81% Q.00 1 4%
64 KB 1 -way D.014 Q.002 149 Q.007 50% Q.05 36 %
64 KB Z-way D.010 Q.00z ZQ% Q.007 Ta% Q.00 1 1O %%
o4 KB d-way Q.009 Q.002 Z1% Q.007 T5% Q.20 3%
64 KB B -way D.009 Q.002 22% Q.007 TE%% Q.00 Q%%
128 KB L-wwvay D010 Q.002 20% Q.004 40 % Q.00 40 %
128 KB Z-way D.007 Q.00z Z29% 0.004 S58% Q.00 1 l4%%
128 KB d-way Q000 Q.002 31% Q.004 ol% Q.00 1 8%
128 KB B-way D.006 Q.002 31% Q.004 62% Q.00 T %%

HY-425

Cache Misses

Miss rate pertyps

Miss rate partyps

006

0.0

002

a 16 az B4 'ﬁ\ 128

Cache size (KB) Compulsory

Cache size (KEB)

a 16

HY-425

21

Make Blocks Larger

Good due to spatial locality; Bad due to less blocks

-0~ Bdk - 256k

rate
—_— - . o
%ﬂ_-_-_-_'_'_'—"@' @ = ®
— s — -
- i o e 2
16 az B4 128 256
Block size
- 1k -~ 4k - 1Bk

HY-425

22

Make Blocks Larger(2)

Cache size
Block size 1K 4K 16K 6dK 256K
16 15.05% 8.57% 3.M4% 2.04% 1.09%
32 13.34% 7.24% 2.87% 1.35% 0.70%
64 13.76% 7.00% 2.64% 1.06% 0.51%
128 16.64% 7.78% 2.77% 1.02% 0.49%
256 22.01% 9.51% 3.29% 1.15% 0.49%
But increases Miss Penalty !!!!
Cache size

Block size Miss penalty 1K 4K 16K 64K 256K

16 42 7.321 4.599 2.655 1.857 1.458

32 44 6.870 4.186 2.263 1.594 1.308

64 48 7.605 4.360 2.267 1.509 1.245

128 56 10.318 5.357 2.551 1.571 1.274

256 72 16.847 T.847 3.369 1.828 1.353

HY-425 23

Increase Associativity

*An 8-Way set associative cache 1s as effective as a
fully-associative one.

o2:1 cache rule of thumb : A direct-mapped cache of
size N has about the same rate as a 2-way Set
Associative of size N/2.

*BUT: Increases the hit time... By 2% when going from
Direct Mapped to 2-way Set Associative.

HY-425 24

Increase Associativity(2)

SO :
Associativity
Cache size (KB) One-way Two-way Four-way Eight-way

1 7.65 6.60 6.22 5.44

Z 5.90 4.90 4.62 4.09

4 4.60 3.95 3.57 3.19

g 3.30 3.00 2.87 2.59

16 245 2.20 2.12 204

32 2.00 1.80 .77 1.79

64 1.70 1.60 1.57 1.59

128 1.50 1.45 1.42 1.44

HY-425

Victim Caches

A 4 entry one can remove 20%-95% of the conflict
misses 1n a 4-KB direct-Mapped cache!!!!

HY-425

26

Pseudo-Associative Caches

After a read miss and before going to the next level,
another cache entry 1s checked (I.e. invert the most
significant bit of the index).

As a result we have two hit times : A fast (regular) hit
time and a slow (pseudo) hit time.

-Many of the fast hit times become slow.

Hit time
B

Fseudo hit time Miss panalty

HY-425 27

Hardware Prefetching

On a read Instruction miss the next consecutive block 1s
prefetched and put 1n the mstruction stream buffer(ISB).
The ISB is searched on read a miss and if the item 1s
there then a new prefetch 1s 1ssued.

*A 1-block ISB reduces misses 15%-25%

*A 4-block ISB reduces misses 50% (!!)

*A 16-block ISB reduces misses 72%

The same with Data Caches can reduce misses by
25%-70% depending on sizes of the stream buffer.

HY-425 28

Compiler-Control Prefetching

*Register Prefetch: Loads value into a register.

*Cache Prefetch: Loads data only into the cache.
It makes sense only 1f the cache 1s non-blocking :
It can supply data while prefetching other things.

They are used mainly in loops and depending on
The miss penalty the compiler unrolls the loop either
a couple of times or a larger number of times.

HY-425 29

Compiler Optimizations: Merging Arrays

Improve spatial locality :

/* Before */
int val[SIZE];
int key[SIZE];
/* After */
struct merge {

int val;

int key;
}i

struct merge mergedarray[SIZE];

HY-425 30

Compiler Optimizations: Loop Interchange

Improve spatial locality :
/* Before */

for (3 = 0; jJ < 100; j++)
for (k = 0; k < 5000; k++)
x[k][3] = 2 * x[k][]J]:

/* After */
for (k = 0; k < 5000; k++)
for (3 = 0; 3 < 100; j++)
x[k]l[J] = 2 * x[k][]J];

HY-425 31

Compiler Optimizations: Loop Fusion

Improve temporal locality :

/* Before */
for (k = 0
for (

; k < N; k++)
37 = 0; 3 < N; J++)
a

[k][3] = blk][3] * clk][3J];

for (k = 0; k < N; k++)
for (3 = 0; 7 < N; J++)

0;
dik][3] = alk]l[3] + cl[k][J];

HY-425

32

Compiler Optimizations: Loop Fusion(2)

/* After */
for (k = 0; k < N; k++)
for (3 = 0; 7 < N; Jj++)

The original code takes all the misses to access a and
¢ twice (once 1n every loop).

HY-425 33

Compiler Optimizations:Blocking(Before)

/* Before */
for (k = 0; k < N; k++)
for (j = 0; jJ < N; J++)

r = 0;
for (1 = 0; 1 < N; 1++) {
r =r + y[k][1] * z[1][]]:

HY-425 34

Compiler Optimizations:Blocking(After)

* After */
or (3] = 0; JJ < N; Jj+=B)

for (kk = 0; kk < N; kk+=B)

for (1 = 0; 1 < N; i++)

for (7

73, J < min(jj+B-1,N);]+-

r = 0;
for (k = kk;
k < min (kk+B-1,N) ; k++)
r=r+y[i] [k]1*z[k][7];
x[1]1[]] = x[1]1[]] + =z

HY-425 35

Compiler Optimizations: General Results

wpenta (nasay)

gmty (nasa’)

tomcaty

btrix (nasa’)

mxm (nasa’)
spice
cholesky (nasa?)

COMmpress

2 25 a

Performance improvems nt

—
—
in

.ru'largadarrays |:|Lc:n::p .]me Dﬁlmking

interchange fusion

HY-425 36

Compiler Optimizations: Blocking (Comparison)

HY-425 37

Reducing Miss Penalty: Priorities

Give priority to read misses over Writes
Problem: (when there 1s a write buffer):

SW 512(R0),R3

LW RI,1024(R0)

LW R2,512(R0)

If not careful R2 and R3 will NOT be equal!!

So either wait until buffer 1s empty (1.5 times larger
Miss penalty on real programs!)

Or check contents of buffer!

HY-425

38

Reducing Miss Penalty: Sub-blocks

Sub-block placement:
A valid bit 1s added to sub-blocks and only one sub-

block should be read on a read miss.
Advantage : Need less tags !

HY-425 39

Reducing Miss Penalty: Early starts

*Early restart:

As soon as the requested word arrives send
it to the CPU

Critical Word First(wrapped fetch):
Request the missed word first and send 1t to
the CPU; then fill the block while CPU 1s
working.

HY-425 40

Reducing Miss Penalty: Non-blocking caches

When used with sophisticated machines the caches
should not stall on a miss. That’s called “hit under miss”

(e.g. A Pipelined machine with out-of-order execution
using scoreboard or Tomasulo algorithm)
These are the non-blocking or lockup-free caches

HY-425 41

Reducing Miss Penalty: Non-blocking caches

Performance

@

é}ﬁ@l} &“’:ﬁ":}ﬁﬁ’*ﬁ' {“rﬁ ﬁ?ﬁ§§$
Banchmarks

Hitunder1 miss O Hitunder 2 misses @ Hit under B4 misses I

HY-425 42

Reducing Miss Penalty: Second level caches

The only method which concentrates on the
to cache interface.

M

Q: Should I make the cache faster to keep pace with the
speed of CPUs or make the cache larger to overcome

the widening gap between the CPU and the

M ?

A: Both ! Add a second level cache ! This will make the
1st level one small and fast and the 2"d level one large.

HY-425

43

Second level caches

AMAT=Hit L1+MR L1xMP L1 And

MP L1=Hit L2+MR L2xMP L2 SO :

AMAT =Hit L1+ MR L1 x (Hit L2+ MR L2 x MP L2
Where MR L2 and MR L1 are the 2 Local Miss Rates:

I.e. The number of misses in that cache divided by the
total number of accesses to THAT cache only

MR L1 x MR L2 1s the Global Miss Rate: 1.e. The number
of misses in the cache hierarchy divided by the total
number of accesses generated by the CPU.

HY-425 44

Second level caches

80.0%
=?52% 7% 719
TO.0%
BO.0%
5%
50.0%
Miss 40.0% F 83,
rate
A0.0% 28%
1836
20.0% 1E%15% 15%
——0——0——o Local miss rate
8% pgog
10.0%
A% e 2 19, 1% 1% 1% 1% 1% Single cache miss mte
IEE he %, = #———n Global miss rate
4 a 1B az B4 123 256 512 1024 2048 4086
Cache size (KB)
100.0%
oo
-“\Q\
O——0 00 Local miss rate
10.0%;
Miss \\.\
rate "-__'"_‘—--\\1
1.0% © %.;._
.—-—.____‘_
=1 Single cache miss mte
Global miss rate
0.1% . L)
4 a 1B az B4 123 256 512 1024 2048 4086
Cache size (KE)

32KB
15t level

HY-425

45

Second level caches’ characteristics

1. The global miss rate 1s very similar to the single
cache miss rate of the second level cache, provided
that the 2d level cache is much larger than the 15t

level one.So we have the miss rate of the large 2nd

level cache and the speed of the small 15t level one.

2. Local cache rate is NOT a good measure for 2nd

level caches since it 1s a function of the Miss rate of

the 15t level cache.

HY-425 46

Second level caches’ associativity

Example :

» 2-way S.A. increases hit-time by 10% of CPU clock cycle
*Hit L2 for direct mapped = 10 clock cycles

*Local MR L2 for direct mapped= 25%

*Local MR L2 for 2-way S.A. =20%

MP L2 =50 clock cycles

What’s one 1s better ?

HY-425 47

Improving 2" [evel caches

Higher associativity or pseudo-associativity are good
candidates since they slightly increase the hit-time of L2.
Although the large L2 eliminates the conflict misses by
having more blocks, it also eliminates the capacity misses
so the percentage of conflict misses 1s still significant.

HY-425 48

Improving 2" [evel caches

If everything in L1 are also in L2 then L2 has :
Multilevel inclusion property. (Good in DMA and
MultiProcessors) :

The problem with this property 1s that the two caches
may have different block sizes so what about an L2 miss?

The L2 should invalidate all the block in L1 that are
contained 1n the large L2 block which is fetched from MEM

So this can cause higher L1 miss rate and higher L1 miss
Penalty.

HY-425 49

Improving 2" [evel caches

Also we can increase the blocks since L2s are large and
can hold a lot of blocks anyway.

200

1.75 ¢

R elative CPU exacution timea 1.50
1 35

12& 12?
1.25 1

1.00 —

128 256 5z
k size of second-level cache (bytes)

HY-425 50

Improving 2" level caches - Summary

Since in L2 there are many fewer accesses than in L1
we are trying to have fewer misses even 1f that
increases slightly the hit time.

As a result for L2s we have :

e Large Caches
* High Associative
 Large blocks

HY-425 51

Reducing Hit Time: Small & Simple

Direct Mapped Caches are simpler and thus faster. They

can overlap the tag check with the transmission of the
data

Small caches can be put on chip (even large ones can
now ©) and ... the smaller the faster .

HY-425 52

Reducing Hit Time: Avoid addr translation

CPU generates Virtual addresses so we should translate them
in order to get the physical addresses used in main memory.
This adds delay so why not use Virtual Caches (use Virtual

Addresses only !) :

1. When a process changes we should flush the Cache

2. 2 virtual addresses may refer to the same physical one
(One by the OS and one by the User), so the 2
synonyms or aliases will both be in the cache so if we
modify one the other will get the wrong value!

3. 1/O 1s using only physical address so it needs mapping to
virtual Address in order to talk to a Virtual cache

HY-425 53

Reducing Hit Time: Avoid addr translation

In order to avoid the process switching problem we can
use a new field called Process-identifier tag (PID)

HY-425 54

Reducing Hit Time: Avoid addr translation

Pipelining !
15t stage : Address Translation
2nd stage : Cache Access

This gives a fast clock cycle but you need 2 pipeline

stages for the memory accesses. It complicates the
hazards.

HY-425 55

Reducing Hit Time: Avoid addr translation

Use page offset (which is the same for Physical and
Virtual addresses) for indexing the cache and do 1n
parallel the tag reading and the address translation.
BUT : In a direct-Mapped cache the maximum size of it
1s the size of the page. The size can be increased by
increasing the Associativity : IBM 3033 uses 16-way
S.A so as to have 64KB caches and 4-KB virtual pages!

HY-425 56

Reducing Hit Time: Avoid addr translation

SOLUTIONS :

1. OS can guarantee that the last few bits of the the
Virtual and Physical Addresses are always the same

2. Have a small piece of hardware that tries to guess the
last bits of the physical address given the Virtual
Address. If the guess 1s wrong we assume a pseudo
Miss and then we do the actual translation and we
retry .

HY-425 57

Reducing Hit Time: Pipelining Writes

’1pelines are slower since we should first check the tag and
hen do the actual writing. So use a two stage pipelining :

st stage : Compare tag with write address

nd stage : Do the PREVIOUS writing (so 2 writes can be done
vack to back)

HY-425

Cache Optimization Summary

Miss Miss Hit Hardware

Technique rate penalty time complexity Comment

Larger block size + - 0 Trivial; RS/6000 550 uses 128

Higher associativity + - 1 e.g., MIPS R10000is 4-way

Victim caches + 2 Similar technique in HP 7200

Pseudo-associative caches + 2 Used in L2 of MIPS R 10000

Hardware prefetching of + 2 Data are harder to prefetch:triedina

instructions and data few machines; Alpha 21064

Compiler-controlled prefetching + 3 Needs nonblocking cache too;
several machines support it

Compiler techniques to reduce + 0 Software is challenge; some ma-

cache misses chines give compiler option

Giving priority to read misses + 1 Trivial for uniprocessor, and widely

over writes used

Subblock placement + 1 Used primarily to reduce tags

Early restart and critical + 2 Used in MIPS R10000, TBM 620

word first

Nonblocking caches + 3 Used in Alpha 21064, R10000

Second-level caches + 2 Costly hardware; harder if block size
L1+L2; widely used

Small and simple caches - + 0 Trivial; widely used

Avoiding address translation + 2 Trivial if small cache:used in Alpha

during indexing of the cache 21064

Pipelining writes for fast write + 1 Used in Alpha 21064

hits

HY-425

59

Main Memory

Memory latency 1s expressed 1n terms of :
1. Access time : Time between a read 1s requested and a
word arrives.

2. Cycle time : Minimum time between requests.
Cycle time > Access time since the Address lines should

be stable between accesses

HY-425 60

DRAMSs and SRAMs

n DRAM we have Row (Row Address Strobe or RAS) and

Column Addresses (Column Address Strobe or CAS) so as
0 save some pins.

Also DRAM needs refresh every some time (I.e. 8ms)
And when reading them, the data should be written back
fter the read otherwise they are destroyed ! Thus

Cycle Time > Access Time

SRAMSs don’t need refreshing or writing back of data read so
_ycle Time = Access Time

HY-425 61

DRAMSs and SRAMs

Capacity of DRAMs 1s 4 to 8 times larger that of SRAM
And SRAMs is 8 to 16 times faster than DRAM and
8 to 16 times more expensive ... So we use DRAMs !

Row access strobe (RAS)
Column

Year of Slowest F astest access strobe Cycle

introduction Chip size DRAM DRAM (CAS) time
1980 64 Kbit 180 ns 150 ns 75 ns 250 ns
1983 256 Kbit 150 ns 120 ns 50 ns 220 ns
1986 1 Mbit 120 ns 100 ns 25 ns 190 ns
1989 4 Mbit 100 ns 80 ns 20 ns 165 ns
1992 16 Mbit 80 ns 60 ns 15 ns 120 ns
1995 64 Mbit 65 ns 50 ns 10 ns 90 ns

HY-425 62

Improving Main Memory Performance

{a) One-woid-wids (b} Wide memory oganization {c) Interleaved
memary organization Memary organization

CPU CPU

} Cycles for address,24 Cycles access time,4 Cycles for sending a word

HY-425 63

Wider Main Memory

You get much more bandwidth BUT :

|. CPUs access a word at a time so we need a multiplexor
between the cache and the CPU which 1s on the critical
path. 2"d level caches help with that.

). The minimum increment in custom expandable Memories
1s multiplied by the width of the memory.

3. Memories with error correction have some problems
when you write only a part of the line since they have
to read the rest of the line and calculate the new CRC.

HY-425 64

Simple Interleaved Memory

send the address to all the banks but read just one at a time.
['he interleaving factor refers to the mapping of addresses to

he banks. Most commonly these memories are word-
nterleaved so bank 0 has all the words whose

1ddress modulo Number-of-banks 1s 0 etc.

[his interleaving optimizes sequential accesses.

On a cache read miss words are read sequentially.

On write back caches we also read/write blocks sequentially.

Number-of-banks >= Number of Cycles to access a word

HY-425 65

Independent Memory Banks

Independent banks with own address lines are useful
When the memory is access by more than one devices
(1.e. multiprocessors) or when 1t wants to satisfy more
than one read misses at the same time (1.e. non-blocking
caches).

It’s expensive and thus not used in everyday machines.

HY-425 66

Avoiding Memory Bank Conflicts

If we have sequential accesses everything 1s easy. BUT
what 1f the consecutive addresses differ by an even number?
Even with 128 banks (like the NEC SX/3 machine) we
will have a problem with the following code :
int x[256][128];
for (3 = 0; 3 < 512; J++)
for (k = 0; k < 256; k++)

x[k][J] = 2 * x[k][J];
Since 512 1s an even multiple of 128 all the elements of a
column will be in the same bank.

HY-425 67

Avoiding Memory Bank Conflicts

SOLUTIONS :
|. Loop interchange
). Use Prime number of banks, Since:
Bank number = Address MOD Number of Banks
(2) Address within bank = Address / Number of Banks
And according to the Chinese Remainder Theorem
if the number of banks 1s one less a power of two and
the number of words in a bank a power of two (always!),

(2) can be written as :

Address within bank = Address MOD Number of Banks
MOD is fast in hardware!

HY-425 68

DRAM-Specific Interleaving

DRAMSs have rows and columns and different columns
vithin the same row can be accessed quickly(We buffer a
vhole row every time in a fast buffer . The row size

s the square root of the DRAM size so :

|6Kb for a 64Mb DRAM and 64Kb for a 256Mb DRAM
Nibble mode: DRAM can supply 3 extra bits from
sequential locations for every RAS.

Page mode: But changing column address we can access

iny bit of the row until a new row access(or refresh) arrives
Static column: Page mode but without strobing the CAS

HY-425 69

DRAM-Specific Interleaving (2)

Row access
Optimized time
Slowest Fastest Column Cycle nibble, page, static

Chip size DRAM DRAM ACCess time column
64 Kbits 180 ns 150 ns 75 ns 250 ns 150 ns
256 Kbits 150 ns 120 ns 50 ns 220 ns 100 ns
1 Mbits 120 ns 100 ns 25ns 190 ns 50 ns

4 Mbits 100 ns 80 ns 20 ns 165 ns 40 ns
16 Mbits 80 ns 60 ns 15 ns 120 ns 30 ns
64 Mbits 65 ns 50 ns 10 ns 90 ns 25 ns

Optimized time 1s the same no matter which of the 3
optimized modes 1s selected.

So with nibble mode for example we can get 4 bits
externally in the time of 4 optimized cycles, very useful
for a 4-way interleaved memory.

HY-425 70

RAMBUS/VRAMs interfaces

nstead of RAS/CAS we have a bus that allows other
1ccesses over 1t between the sending of the address and the

ecerving of the data. A chip can return a variable amount of
Data from a single request, it has a byte-wide interface and a
_lock so as to be synchronized with the CPU. Once the

wddress pipeline is full a chip can deliver 1 byte every 2nS!
t costs 20% more per megabyte over a standard DRAM.

VRAM 1s optimized so as to get more bandwidth when you
1ave serial access (used 1n video cards)

HY-425 71

Virtual Memory

Used for :
1. Sharing memory between processes

2. Extending the useful memory (instead of using overiay)

HY-425 72

Virtual Memory and Cache

Page or Segment

Replacement by OS

Size 1s defined by CPU vs

vs Block
Page or Address fault vs Miss

vs Replacement by HW

Size 1s arbitrary

Parameter

First-level cache

Virtual memory

Block (page) size

16—128 bytes

4096-65,536 bytes

Hit time

1-2 clock cycles

40-100 clock cycles

Miss penalty
{Access time)

(Transter time)

8—100 clock cycles
(6—60 clock cvcles)
(2—40 clock cycles)

700,000-6,000,000 clock cycles
(500,000—4,000,000 clock cycles)
(200,000-2,000,000 clock cycles)

Miss rate

0.5-10%

0.00001-0.001%

Data memory size

0.016-1MB

16-8192 MB

HY-425

73

Pages and Segments

Pages are fixed length while Segments are variable length.

Code Data

Paging

Segme ntation |j [

Page Segment
Words per address One Two (segment and offset)
Programmer visible? Invisible to application programmer May be visible to application programmer
Replacing a block Trivial (all blocks are the same size) Hard (must find contiguous, variable-size,
unused portion of main memory)
Memory use Internal fragmentation (unusedportion External fragmentation (unused pieces of main
inefficiency of page) mermory
Efficient disk traffic Yes (adjustpage size to balance access Notalways (small segments may transfer justa
tfime and transfer time) few bytes)

HY-425 74

Virtual Memory questions

*Block placement
-Where can a block be placed ?

-Anywhere since miss penalty is huge so miss rate
should be minimal (fully associative).

*Block identification

-How 1s a block found if it 1s in the Main memory?

-Using a page table which 1s indexed by the virtual addr
*Block replacement

-Which block should be replaced on a miss?

-LRU algorithm by OS. The OS is using a reference bit
*Write Strategy

-What happens on a write?
- Write back since it takes ages to write to the hard disk

HY-425

Address Translation

Page tables are large so they are stored in Main Memory
So each access takes at least twice as long :
1 cycle to take the physical address and 1 to get the data

Virtual addmess

Virtual page number ‘ Page offset I

Physical address

HY-425 76

Fast Address Translation, TLBs

If accesses have locality so should addresses :

So we use a memory address special cache where we put
the most recently used address translations, and as a
result we rarely have to do two memory accesses.

This is called a Translation look-aside buffer or TLB .

In the TLB we store the Virtual - Physical Address pairs
and some control bits like valid/dirty/use/read/write.

HY-425 77

Alpha 21064’s TLB

Fage-fame Page
address ciffset

Ak =13
LA
2lmafrafs A0 =21
@ VMR W Tag Physical address

P

v

{Low-order 12 bits
<G of addrass)
ra . .
y 24-hit
J hysical
<21 Py
= - . Address
(High-crder 21 bits of acddress)

Tag 1s the Virtual Address
No need to translate the page offset since it is the same in both addresses.

HY-425 78

TLB with Caches

['he CPU generates virtual addresses so :

|. If cache 1s small we use only the page offset so the cache
can be accessed without address translation. We need the
physical address only for comparison with the cache tag

). If cache 1s large then the TLB is on the critical path so 1t
should be fast. So 1t 1s always small (32 block 1s typical),
and 1n sometimes is it even pipelined.

HY-425 79

Selecting a page size
_arge pages are preferable since
|. The size of the page table is inversely proportional to the

page size, so larger pages result in smaller page tables.

| 4

. A large page can simplify the cache accesses (no
translation needed 1if size of the cache < page size).

3. Transferring larger pages 1s more efficient.

}. The TLB misses are smaller when the pages are larger
and thus fewer.

HY-425 80

Selecting a page size (2)

Small pages are not that bad either when storage 1s limited

When we have small pages less storage 1s wasted when a
continuous region of virtual | memory 1s not equal 1n size to
a multiple of the page size. This 1s called

internal fragmentation . The average wasted storage per
process 1s 1.5 times the page size so this is negligible for
machines with 4KB or 8KB pages. It may be important for
machines with small main memory and pages of 64KB or
more.

Also large pages would increase the time for starting-up
a small process since a large page should be read and
only a small part of it needed.

HY-425 81

Crosscutting Issues 1n Designing Mem Systems

Instruction Level Parallelism versus Reducing Cache Misses

for (k = 0; k < 512; k++)

for (3 = 1; 3 < 512; j++)
kl1[3] = 2 * x[k][J-1];
JR :
for (k = 0; k < 512; k++)

for (3 = 1; 7 < 512; J+=4) {
x[k][J] = 2 * x[k][J-1];
x[k][J+1] = 2 * x[k][J];
x[k][J+2] = 2 * x[k][J+1];
x[k][J+3] = 2 * x[k][J+2];}

We have low cache miss rate (access data the way they are stored) BU']

we have RAW dependencies.

HY-425 82

Crosscutting Issues 1n Designing Mem Systems

By interchanging the two loops and unrolling we get :
for (j = 1; J < 512; j++)
for (k = 0; k < 512; k++)
x[k]l[J] = 2 * x[k][J-11];
OR:
for (3 = 1; 7 < 512; J++)
for (k = 0; k < 512; k+=4) {
[k = 2 * x[k][J-1];
x[k+1]1[3] = 2 * x[k+1][J];
[k] =2 * x[k+2][§+1];
x[k+3]1[7] = 2 * x[k+3]1[F+2]; }

We have no RAW (all statements are independent) BUT possibly
a much higher miss rate !

HY-425 83

Cache coherency problem

CRU CPU CRU
Cache Cache Cache
A 100 A 550 A 100
B 200 B 200 B 200
Wemory Memory Mermory
A 100 A 100 A 100
B 200 B 200 B 440
[i{e] [i{e] 10
output A input
gives 100 440 t0 B
(b) Cache and (%) Cache and
memory coherent: memory incoherent: memaory incoherent:
A'A (A stale) B' B (B stale)

HY-425

Crosscutting Issues 1n Designing Mem Systems

*]/O and Consistency of Cached Data (Cache-coherency)

Where does the 1/0O occur ?

Between the 1/0 and the cache OR the memory ?
If the 1/0 talk directly to the cache the CPU and the I/O see the same
data BUT the CPU should wait when the I/O downloads data, we put
useless data in the small cache and we put more h/w in the critical

cache access path.

If the I/O talks to the memory and we have a write-through

cache there 1s no problem for outputs. For inputs, no blocks written by
the I/O should be in the cache. So either a page should be defined as
non-cachable or all the blocks to be written by the 1/O should be
Flushed from the cache after the input occurs.

HY-425 85

Alpha 21064 Memory Hierarc

Page-frame
addiess <30

FC

Page CPU

offsste13=

Imstruction <64> Data Qut <64 >

o -

mIO»0-—

Dala page-frame Page

address

<30 offsste13=

(v e
\ ©) Bm G, | |©
s) SN € TN clezxzNP ez "Dezin
VR W~ Tag Physical address o VR W Tag Phsical addiess
. B4 T J i
L
0] S i @I -
Lt e
=L] | I
T-
{High-order 21 bits of @ 12:1 Mux {High-order 21 bits of
physical address) .oy physical sddress)f,:zb
: ol |ol™= ol®
B>y <>
)
o | Index ISWIZC: Dels)edwrihebuﬂerl
c
{256 Vald Tag pan 3 A {25 Valid Tag Data ! @
blocks) <1> <21> O] @ ﬁ blocks) <1> <21> 654>
O — | : ® I
S .]
1_4 O] 1 e @
LI_(L-h —_— | o A
<2a= " Instruction prefetch stream buffer 1
<29> [
I@@‘ Tag <29 Data <2565 = 1 ®; | 12922 Data <206e
1 @}I @ E
Write buffer 1 1
® €} : [=]
4:1 Mux
- Alpha AXP 21064
VD T D.
<13 § <l8> el <ioe czasi‘f;-@ (L)
Tag Index 11
2 |
< @ r——4! e Main
c (5,53 | | memary
" blocks)
E T b
-
T @

%m — G

HY-425

86

Alpha 21064 Performance

CPI Miss rates
Total Instr. Other Total

Program Icache Dvcache L2 cache issue stalls CPI Icache D cache L2

TRC-B (dbl) 0.57 0.53 0.74 1.84 0.79 1.67 430 8.10% 41.00% 7.40%
TPC-B (db2) 0.58 0.48 0.75 1.81 0.76 1.73 430 8.30% 34.00% 6.20%
AlphaSort 0.09 0.24 050 0.83 0.70 1.28 2.81 1.30% 22.00% 17.40%
Avg comm 041 042 0.66 1.49 0.75 1.56 3.80 5.90% 3233% 1033%
espresso 0.06 0.13 001 020 0.74 0.57 1.51 0.84% 9.00% 0.33%
li 0.14 0.17 000 031 0.75 0.96 2.02 2.04% 9.00% 0.21%
eqntott 0.02 0.16 001 019 0.79 041 1.39 0.22% 11.00% 0.55%
COMpLess 0.03 0.30 004 037 0.97 0.52 1.66 0.48% 20.00% 1.19%
H 0.20 0.18 004 042 0.78 0.85 2.05 2.19% 12.00% 0.93%
gec 0.33 0.25 002 0.60 0.7 1.14 251 4.67% 17.00% 0.46%
Avg SPECint92 0.13 0.20 002 035 0.7 0.74 1.86 1.84% 13.00% 0.61%
spice 0.01 0.68 002 071 0.83 0.99 2.53 021% 36.00% 0.43%
doduc 0.16 0.26 000 042 097 1.58 277 2.30% 14.00% 0.11%
mdljdp2 0.00 0.31 001 032 0.83 2.18 333 0.06% 28.00% 0.21%
waves 0.04 0.39 004 047 0.68 0.84 1.99 0.57% 24.00% 0.89%
tomeaty 0.00 042 004 046 0.67 0.79 1.92 0.06% 20.00% 0.89%
ora 0.00 0.10 000 0.10 0.2 1.25 2.07 0.05% 7.00% 0.10%
alvinn 0.03 0.49 000 052 0.62 025 1.39 0.38% 18.00% 0.01%
ear 0.01 0.15 000 0.16 0.65 0.24 1.05 0.11% 9.00% 0.01%
mdljsp2 0.00 0.09 000 009 0.80 1.67 2.56 0.05% 5.00% 0.11%
swm256 0.00 0.24 001 025 0.68 0.37 1.30 0.02% 13.00% 0.32%
su2cor 0.03 0.74 001 078 0.66 0.71 2.15 041% 43.00% 0.16%
hydro2d 0.01 0.54 0.01 056 0.69 1.23 2.48 0.09% 32.00% 0.32%
nasa’ 0.01 0.68 002 071 0.68 0.64 2.03 0.19% 37.00% 0.25%
fpppp 0.52 0.17 000 0.69 0.70 0.97 2.36 7.42% 7.00% 0.01%
Avg SPECfp92 0.06 0.38 001 045 0.71 0.98 2.14 0.85% 20.93% 0.27%

HY-425

87

Memory hierarchies Summary

TLB First-level cache Second-level cache Virtual memory
Block size 4-8 bytes 4-32 bytes 32-256 bytes 4096-16,384 bytes
(1 PTE)
Hit time 1 clock cycle 1-2 clock cycles 6—15 clock cycles 10—100 clock
cycles
Miss penalty 10-30 clock cycles 8-66 clock cycles 30-200 clock cycles 700,000-6,000,000
clock cycles
Miss rate (local) 0.1-2% 0.5-20% 15-30% 0.00001-0.001%
Size 2-8192 bytes 1-128 KB 256 KB-16 MB 16-8192 MB
(8—-1024 PTEs)
Backing store First-level cache Second-level cache Page-mode DRAM Disks

Q1: block placement Fully associative Direct mapped Direct mapped or Fully associative
or set associative set associative
Q2: block Tag/block Tag/block Tag/block Table
identification
Q3: block replacement Random MN.A. (direct Random =LRU
mapped)
Q4: write strate gy Flush on a writeto ~ Write through Write back Write back

page table

or write back

HY-425

88

Fallacies and Pitfalls

Pitfall: Too small an address space.

PDP-11, 8080, 8086, 80186, 80286, Zilog Z80, Cray 1 all died of
few address bits. It’s too difficult to add address bits since it

determines the minimum length of Program Counter, memory
accesses, address arithmetic.

Fallacy:Predicting cache performance of one program from another.

o
3 ST
o ?%:%h

HY-425 89

Fallacies and Pitfalls

Pitfall: Ignoring the impact of the OS on the performance of the

Memory hierarchy.

Misses

Time

% time due to appl.
MISses

% time due directly to OS misses

HY-425

% time OS
Inherent 05 0s Data Data misses Rest misses &
%Sin % In appl. conflicts instr misses for in block of OS appl
Workload appl OS misses w.appl. misses migration operations misses conflicts
Pmake 47% 53% 14.1% 4 R% 10.9% 1.0% 65.2% 2.9% 25.8%
Multipgm 53% 47% 21.6% 3.4% Q2% 4 2% 4 7% 34% 24 9%
Oracle T3% 27% 25.7% 10.2% 10.6% 2.6% 0.6% 2.8% 26.8%
90

Fallacies and Pitfalls

Pitfall: Simulating enough instructions to get accurate performance
measures of the memory hierarchy.
1) Use a small trace for predicting the behavior of a large cacl
2) Locality 1s not constant over the run of the entire program

Q 1 2 3 4 o B 7 a a 10 N 12

Instructions executad (billions)

HY-425 91

