Presentation for use with the textbook, Algorithm Design and

RSA Cryptosystem

Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Bits PCs Memory

430 1 128MB

760 215,000 4GB
1,020 342x106 170GB
1,620 1.6x10%° 120TB

/4

© 2015 Goodrich and Tamassia RSA Cryptosystem

Euler’ s Theorem

The multiplicative group for Z., denoted with Z*,, is the subset of
elements of Z, relatively prime with n

The totient function of n, denoted with ¢(n), is the size of Z*,
#® Example
Z*,=9{1,3,7,9} #(10) =4
If p is prime, we have
2%, ={1,2,...,(p-1)} o¢(p)=p-1
Euler’ s Theorem
For each element x of Z*,, we have x¥" modn=1
#® Example (n=10)
3919 mod 10 =3*mod 10 =81 mod 10 =1
7919 mod 10 = 74 mod 10 = 2401 mod 10 =1
9¢(10) mod 10 = 9* mod 10 = 6561 mod 10 =1

N

© 2015 Goodrich and Tamassia RSA Cryptosystem 2

RSA Cryptosystem

.
V
#Setup: #Example
= N =g, with p and q = Setup:
Primes *p=7,q=17
= ¢ relatively prime to *n=717=119
o(n)=(p-1)(q-1) + o(n) = 6:16 = 96
= d inverse of e in Z,, +e=5
#Keys: a7

= Keys:
+ public key: (119, 5)
+ private key: 77

= Public key: K =(n, e)
= Private key: K, =d

@Encryption: = Encryption:
= Plaintext M in Zn +M=19
x C=Meémodn +C=19"mod 119 =66
#Decryption: = Decryption:
aM=Cmodn +C=66"mod 119=19

© 2015 Goodrich and Tamassia RSA Cryptosystem

Complete RSA Example

;
#Setup: #Encryption
sp=50=11 = C=M3mod 55
an=511=55 #Decryption
= ¢(n) = 4-10 = 40 = M = C?” mod 55
me=3
nd=27(327=81=240+1)

1 2 3 4 5 6 7 8 91011 12 13 14 15 16
1 8 27 9 15 51 13 17 14 10 11 23 52 49 20 26

17
18

18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
39 25 21 33 12 19 5 31 48 7 24 50 36 43 22 34

35
30

36
16

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
53 3729 35 6 3 32 44 45 41 38 42 4 40 46 28

OO IO

53
47

54
54

© 2015 Goodrich and Tamassia RSA Cryptosystem

Security

g
T #®The security of the RSA
cryptosystem is based on the
widely believed difficulty of
factoring large numbers
= The best known factoring
algorithm (general number
field sieve) takes time
exponential in the number of
bits of the number to be
factored

The RSA challenge, sponsored
by RSA Security, offers cash
prizes for the factorization of
given large numbers

In April 2002, prizes ranged
from $10,000 (576 bits) to
$200,000 (2048 bits)

#1n 1999, a 512-bit number was
factored in 4 months using the
following computers:

=160 175-400 MHz SGI and Sun
= 8 250 MHz SGI Origin

= 120 300-450 MHz Pentium II
= 4 500 MHz Digital/Compaq

Estimated resources needed to
factor a number within one year

Bits PCs Memory
430 1 128MB
760 215,000 4GB
1,020 342x10° 170GB
1,620 1.6x10% 120TB

© 2015 Goodrich and Tamassia RSA Cryptosystem 5

© 2015 Goodrich and Tamassia

Correctness

We show the correctness of
the RSA cryptosystem for the
case when the plaintext M
does not divide n

Namely, we show that
(M&)¥d mod n=M
Since ed mod ¢(n) = 1, there is
an integer k such that
ed = k¢(n) + 1
Since M does not divide n, by
Euler’ s theorem we have
MM mod n=1

N

Thus, we obtain
(M€)d mod n =
Med mod n =

Mké() +1 mod n =
MMPKe(") mod n =

M (MéM)k mod n =

M (MéM™ mod n)kmod n =
M (1)*mod n =

M mod n =

M

See the book for the proof of
correctness in the case when
the plaintext M divides n

RSA Cryptosystem 6

Algorithmic Issues

#The implementation of #Setup

N

the RSA cryptosystem sGeneration of random
requires various numbers with a given
algorithms number of bits (to generate
& I candidates p and q)
Overa _ _ sPrimality testing (to check
sRepresentation of integers that candidates p and q are
of arbitrarily large size and prime)
arithmetic operations on =Computation of the GCD (to
them : verify that e and ¢(n) are
#Encryption relatively prime)
sModular power =Computation of the
#Decryption multiplicative inverse (to

compute d from e)
sModular power

© 2015 Goodrich and Tamassia RSA Cryptosystem 7

Modular Power

L/

The repeated squaring
algorithm speeds up the
computation of a modular
power aP mod n

Write the exponent p in binary
P=Pp_1Pp-_2--- P1Po
Start with
Q,=af-1mod n
Repeatedly compute
Q; = ((Q;_,)? mod n)aPo-i mod n
We obtain
Q,=aP mod n

The repeated squaring
algorithm performs O (log p)
arithmetic operations

N

© 2015 Goodrich and Tamassia RSA Cryptosystem

Example

=318 mod 19 (18 = 10010)

=Q;=3'mod 19 =3

=Q, =(3°mod 19)3° mod 19 =9

= Q; = (92 mod 19)3° mod 19 =
81 mod 19 =5

mQ, =(5°mod 19)3' mod 19 =
(25 mod 19)3 mod 19 =
18 mod 19 =18

=Q: = (182mod 19)3° mod 19 =
(324 mod 19) mod 19 =
17.19+1mod 19=1

ps_,|1]0l0[1]0

2P%-i | 311] 1|3

Q |3|9|5|18]1

Modular Inverse

i
4
Theorem # Given positive integers a and b,
Given positive integers a the extended Euclid’ s algorithm
and b, let d be the smallest computes a triplet (d,i,j) such that
positive integer such that = d=gcd(a,b)
d=ia+jb m d=ia+]jb
for some integers i and J # To test the e)_(iStence of and
We have compute the inverse of x € Z,, we
execute the extended Euclid’ s
d = gcd(a,b) algorithm on the input pair (x,n)
@ Example @ Let (d,i,j) be the triplet returned
" a=2l « d=ix+jn
= b=15 Case 1: d=1
= g=3 i is the inverse of x in Z,
= 1=3)=-4 Case 2: d>1
s 3=321+(-4)15= . .
63 — 60 = 3 X has no inverse in Z,

© 2015 Goodrich and Tamassia RSA Cryptosystem 9

Pseudoprimality Testing

The number of primes less than or equal to n is about n/Inn

Thus, we expect to find a prime among, O(b) randomly generated
numbers with b bits each

Testing whether a number is prime (primality testing) is believed
to be a hard problem
An integer n> 2 is said to be a base-x pseudoprime if
= X"~Imodn=1 (Fermat’s little theorem)
Composite base-x pseudoprimes are rare:

= A random 100-bit integer is a composite base-2 pseudoprime with
probability less than 1013

= The smallest composite base-2 pseudoprime is 341
Base-x pseudoprimality testing for an integer n:
s Check whether x"-1modn=1
= Can be performed efficiently with the repeated squaring algorithm

N

© 2015 Goodrich and Tamassia RSA Cryptosystem 10

N

Compositeness witness function

Randomized Primality Testing

q for a random variable x
Case 1: nis prime
witness w(x, n) = false
Case 2: nis composite
witness w(x, n) = false with
probability q < 1
Algorithm RandPrimeTest tests
whether n is prime by repeatedly
evaluating witness(x, n)

A variation of base- x
pseudoprimality provides a
suitable compositeness witness
function for randomized primality

witness(x, n) with error probability | Algorithm RandPrimeTest(n, k)

Input integer n,confidence
parameter k and composite
witness function witness(x,n)
with error probability g

Output an indication of
whether n is composite or prime
with probability 27«

t « k/log,(1/q)
fori< 1tot
X <~ random()
If witness(x,n)= true
return “n is composite”
return “n is prime”

testing (Rabin-Miller algorithm)

© 2015 Goodrich and Tamassia RSA Cryptosystem

11

