Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

RSA Cryptosystem

Bits	PCs	Memory
430	1	128MB
760	215,000	4GB
1,020	342×10^6	170GB
1,620	1.6×10 ¹⁵	120TB

Euler's Theorem

- \bullet The multiplicative group for Z_n , denoted with Z^*_n , is the subset of elements of Z_n relatively prime with n
- The totient function of n, denoted with $\phi(n)$, is the size of Z^*_n
- Example

$$Z^*_{10} = \{ 1, 3, 7, 9 \}$$
 $\phi(10) = 4$

$$\phi(10) = 4$$

 \bullet If p is prime, we have

$$Z^*_p = \{1, 2, ..., (p-1)\}$$
 $\phi(p) = p-1$

$$\phi(\boldsymbol{p}) = \boldsymbol{p} - 1$$

Euler's Theorem

For each element x of Z^*_n , we have $x^{\phi(n)} \mod n = 1$

 \bullet Example (n = 10)

$$3^{\phi(10)} \mod 10 = 3^4 \mod 10 = 81 \mod 10 = 1$$

$$7^{\phi(10)} \mod 10 = 7^4 \mod 10 = 2401 \mod 10 = 1$$

$$9^{\phi(10)} \mod 10 = 9^4 \mod 10 = 6561 \mod 10 = 1$$

RSA Cryptosystem

Setup:

- n = pq, with p and q primes
- e relatively prime to $\phi(n) = (p-1)(q-1)$
- d inverse of e in $Z_{\phi(n)}$

♦ Keys:

- Public key: $K_E = (n, e)$
- Private key: $K_D = d$

Encryption:

- Plaintext M in Z_n
- $C = M^e \mod n$

Decryption:

$$\blacksquare M = C^d \bmod n$$

◆Example

- Setup:
 - p = 7, q = 17
 - n = 7.17 = 119
 - $\phi(n) = 6.16 = 96$
 - e=5
 - **•** *d* = 77

Keys:

- public key: (119, 5)
- private key: 77
- Encryption:
 - **M** = 19
 - $C = 19^5 \mod 119 = 66$
- Decryption:
 - $C = 66^{77} \mod 119 = 19$

Complete RSA Example

Setup:

■
$$p = 5$$
, $q = 11$

$$n = 5.11 = 55$$

$$\mathbf{d} = 27 (3.27 = 81 = 2.40 + 1)$$

Encryption

$$C = M^3 \mod 55$$

■
$$M = C^{27} \mod 55$$

M	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
\boldsymbol{C}	1	8	27	9	15	51	13	17	14	10	11	23	52	49	20	26	18	2
M	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
\boldsymbol{C}	39	25	21	33	12	19	5	31	48	7	24	50	36	43	22	34	30	16
M	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
C	53	37	29	35	6	3	32	44	45	41	38	42	4	40	46	28	47	54

Security

- The security of the RSA cryptosystem is based on the widely believed difficulty of factoring large numbers
 - The best known factoring algorithm (general number field sieve) takes time exponential in the number of bits of the number to be factored
- The RSA challenge, sponsored by RSA Security, offers cash prizes for the factorization of given large numbers
- In April 2002, prizes ranged from \$10,000 (576 bits) to \$200,000 (2048 bits)

- ◆ In 1999, a 512-bit number was factored in 4 months using the following computers:
 - ■160 175-400 MHz SGI and Sun
 - 8 250 MHz SGI Origin
 - 120 300-450 MHz Pentium II
 - 4 500 MHz Digital/Compaq
- Estimated resources needed to factor a number within one year

Bits	PCs	Memory
430	1	128MB
760	215,000	4GB
1,020	342×10 ⁶	170GB
1,620	1.6×10 ¹⁵	120TB

Correctness

- We show the correctness of the RSA cryptosystem for the case when the plaintext M does not divide n
- Namely, we show that $(M^e)^d \mod n = M$
- Since $ed \mod \phi(n) = 1$, there is an integer k such that

$$ed = k\phi(n) + 1$$

Since M does not divide n, by Euler's theorem we have $M^{\phi(n)} \mod n = 1$

```
Thus, we obtain
(M^e)^d \mod n = M^{ed} \mod n = M^{k\phi(n)+1} \mod n = MM^{k\phi(n)} \mod n = M (M^{\phi(n)})^k \mod n = M (M^{\phi(n)})^k \mod n = M (1)^k \mod n = M \mod n = M \mod n = M \mod n = M
```

See the book for the proof of correctness in the case when the plaintext M divides n

Algorithmic Issues

- The implementation of the RSA cryptosystem requires various algorithms
- Overall
 - Representation of integers of arbitrarily large size and arithmetic operations on them
- Encryption
 - ■Modular power
- Decryption
 - Modular power

- ◆Setup
 - ■Generation of random numbers with a given number of bits (to generate candidates *p* and *q*)
 - Primality testing (to check that candidates p and q are prime)
 - ■Computation of the GCD (to verify that e and $\phi(n)$ are relatively prime)
 - ■Computation of the multiplicative inverse (to compute *d* from *e*)

Modular Power

- The repeated squaring algorithm speeds up the computation of a modular power $a^p \mod n$
- Write the exponent p in binary

$$p = p_{b-1}p_{b-2} \dots p_1p_0$$

Start with

$$Q_1 = a^{p_{b-1}} \bmod n$$

Repeatedly compute

$$\mathbf{Q}_i = ((\mathbf{Q}_{i-1})^2 \bmod n) a^{p_b - i} \bmod n$$

We obtain

$$Q_b = a^p \mod n$$

The repeated squaring algorithm performs $O(\log p)$ arithmetic operations

Example

- $-3^{18} \mod 19 (18 = 10010)$
- $\mathbf{Q}_1 = 3^1 \mod 19 = 3$
- $\mathbf{Q}_2 = (3^2 \mod 19)3^0 \mod 19 = 9$
- $\mathbf{Q}_3 = (9^2 \mod 19)3^0 \mod 19 = 81 \mod 19 = 5$
- $\mathbf{Q}_4 = (5^2 \mod 19)3^1 \mod 19 =$ $(25 \mod 19)3 \mod 19 =$ $18 \mod 19 = 18$
- ■ Q_5 = (18² mod 19)3⁰ mod 19 = (324 mod 19) mod 19 = 17·19 + 1 mod 19 = 1

p_{5-1}	1	0	0	1	0
$2p_{5-i}$	3	1	1	3	1
Q_i	3	9	5	18	1

Modular Inverse

Theorem

Given positive integers a and b, let d be the smallest positive integer such that

$$d = ia + jb$$

for some integers i and j. We have

$$d = \gcd(a,b)$$

- Example
 - a = 21
 - **b** = 15
 - d=3
 - i = 3, j = -4
 - $3 = 3 \cdot 21 + (-4) \cdot 15 = 63 60 = 3$

- Given positive integers a and b, the extended Euclid's algorithm computes a triplet (d,i,j) such that
 - $d = \gcd(a,b)$
 - d = ia + jb
- To test the existence of and compute the inverse of $x \in \mathbb{Z}_n$, we execute the extended Euclid's algorithm on the input pair (x,n)
- Let (d,i,j) be the triplet returned

$$d=ix+jn$$

Case 1:
$$d = 1$$

i is the inverse of x in Z_n

Case 2: d > 1

x has no inverse in Z_n

Pseudoprimality Testing

- lacktriangle The number of primes less than or equal to n is about $n / \ln n$
- Thus, we expect to find a prime among, O(b) randomly generated numbers with b bits each
- Testing whether a number is prime (primality testing) is believed to be a hard problem
- \bullet An integer $n \ge 2$ is said to be a base-x pseudoprime if
 - $x^{n-1} \mod n = 1$ (Fermat's little theorem)
- Composite base-x pseudoprimes are rare:
 - A random 100-bit integer is a composite base-2 pseudoprime with probability less than 10⁻¹³
 - The smallest composite base-2 pseudoprime is 341
- \bullet Base-x pseudoprimality testing for an integer n:
 - Check whether $x^{n-1} \mod n = 1$
 - Can be performed efficiently with the repeated squaring algorithm

Randomized Primality Testing

 \bullet Compositeness witness function witness(x, n) with error probability q for a random variable x

Case 1: *n* is prime

witness w(x, n) = false

Case 2: *n* is composite

witness w(x, n) = false with probability q < 1

- lacktrianglet Algorithm RandPrimeTest tests whether n is prime by repeatedly evaluating witness(x, n)
- A variation of base- x pseudoprimality provides a suitable compositeness witness function for randomized primality testing (Rabin-Miller algorithm)

Algorithm *RandPrimeTest(n, k)*

Input integer n, confidence parameter k and composite witness function witness(x,n) with error probability q

Output an indication of whether n is composite or prime with probability 2^{-k}

```
t \leftarrow k/\log_2(1/q)

for i \leftarrow 1 to t

x \leftarrow random()

if witness(x,n) = true

return "n is composite"

return "n is prime"
```