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Euler’ s Theorem

# The multiplicative group for Z., denoted with Z*,, is the subset of
elements of Z, relatively prime with n

# The totient function of n, denoted with ¢(n), is the size of Z*,
#® Example
Z*,=9{1,3,7,9} #(10) =4
# If p is prime, we have
2%, ={1,2,...,(p-1)} o¢(p)=p-1
Euler’ s Theorem
For each element x of Z*,, we have x¥" modn=1
#® Example (n=10)
3919 mod 10 =3*mod 10 =81 mod 10 =1
7919 mod 10 = 74 mod 10 = 2401 mod 10 =1
9¢(10) mod 10 = 9* mod 10 = 6561 mod 10 =1

N

© 2015 Goodrich and Tamassia RSA Cryptosystem 2




RSA Cryptosystem

.
V
#Setup: #Example
= N =g, with p and q = Setup:
Primes *p=7,q=17
= ¢ relatively prime to *n=717=119
o(n)=(p-1)(q-1) + o(n) = 6:16 = 96
= d inverse of e in Z,, +e=5
#Keys: a7

= Keys:
+ public key: (119, 5)
+ private key: 77

= Public key: K =(n, e)
= Private key: K, =d

@Encryption: = Encryption:
= Plaintext M in Zn +M=19
x C=Meémodn +C=19"mod 119 =66
#Decryption: = Decryption:
aM=Cmodn +C=66"mod 119=19
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Complete RSA Example

;
#Setup: #Encryption
sp=50=11 = C=M3mod 55
an=511=55 #Decryption
= ¢(n) = 4-10 = 40 = M = C?” mod 55
me=3
nd=27(327=81=240+1)
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Security

g
T #®The security of the RSA
cryptosystem is based on the
widely believed difficulty of
factoring large numbers
= The best known factoring
algorithm (general number
field sieve) takes time
exponential in the number of
bits of the number to be
factored

# The RSA challenge, sponsored
by RSA Security, offers cash
prizes for the factorization of
given large numbers

# In April 2002, prizes ranged
from $10,000 (576 bits) to
$200,000 (2048 bits)

#1n 1999, a 512-bit number was
factored in 4 months using the
following computers:

=160 175-400 MHz SGI and Sun
= 8 250 MHz SGI Origin

= 120 300-450 MHz Pentium II
= 4 500 MHz Digital/Compaq

# Estimated resources needed to
factor a number within one year
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Correctness

# We show the correctness of
the RSA cryptosystem for the
case when the plaintext M
does not divide n

# Namely, we show that
(M&)¥d mod n=M
# Since ed mod ¢(n) = 1, there is
an integer k such that
ed = k¢(n) + 1
# Since M does not divide n, by
Euler’ s theorem we have
MM mod n=1

N

# Thus, we obtain
(M€)d mod n =
Med mod n =

Mké() +1 mod n =
MMPKe(") mod n =

M (MéM)k mod n =

M (MéM™ mod n)kmod n =
M (1)*mod n =

M mod n =

M

# See the book for the proof of
correctness in the case when
the plaintext M divides n
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Algorithmic Issues

#The implementation of #Setup

N

the RSA cryptosystem sGeneration of random
requires various numbers with a given
algorithms number of bits (to generate
& I candidates p and q)
Overa _ _ sPrimality testing (to check
sRepresentation of integers that candidates p and q are
of arbitrarily large size and prime)
arithmetic operations on =Computation of the GCD (to
them : verify that e and ¢(n) are
#Encryption relatively prime)
sModular power =Computation of the
#Decryption multiplicative inverse (to

compute d from e)
sModular power
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Modular Power

L/

# The repeated squaring
algorithm speeds up the
computation of a modular
power aP mod n

# Write the exponent p in binary
P=Pp_1Pp-_2--- P1Po
# Start with
Q,=af-1mod n
# Repeatedly compute
Q; = ((Q;_,)? mod n)aPo-i mod n
# We obtain
Q,=aP mod n

# The repeated squaring
algorithm performs O (log p)
arithmetic operations

N
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# Example

=318 mod 19 (18 = 10010)

=Q;=3'mod 19 =3

=Q, =(3°mod 19)3° mod 19 =9

= Q; = (92 mod 19)3° mod 19 =
81 mod 19 =5

mQ, =(5°mod 19)3' mod 19 =
(25 mod 19)3 mod 19 =
18 mod 19 =18

=Q: = (182mod 19)3° mod 19 =
(324 mod 19) mod 19 =
17.19+1mod 19=1

ps_,|1]0l0[1]0

2P%-i | 311] 1|3

Q |3|9|5|18]1




Modular Inverse

i
4
Theorem # Given positive integers a and b,
Given positive integers a the extended Euclid’ s algorithm
and b, let d be the smallest computes a triplet (d,i,j) such that
positive integer such that = d=gcd(a,b)
d=ia+jb m d=ia+]jb
for some integers i and J # To test the e)_(iStence of and
We have compute the inverse of x € Z,, we
execute the extended Euclid’ s
d = gcd(a,b) algorithm on the input pair (x,n)
@ Example @ Let (d,i,j) be the triplet returned
" a=2l « d=ix+jn
= b=15 Case 1: d=1
= g=3 i is the inverse of x in Z,
= 1=3)=-4 Case 2: d>1
s 3=321+(-4)15= . .
63 — 60 = 3 X has no inverse in Z,
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Pseudoprimality Testing

# The number of primes less than or equal to n is about n/Inn

# Thus, we expect to find a prime among, O(b) randomly generated
numbers with b bits each

# Testing whether a number is prime (primality testing) is believed
to be a hard problem
# An integer n> 2 is said to be a base-x pseudoprime if
= X"~Imodn=1 (Fermat’s little theorem)
# Composite base-x pseudoprimes are rare:

= A random 100-bit integer is a composite base-2 pseudoprime with
probability less than 1013

= The smallest composite base-2 pseudoprime is 341
# Base-x pseudoprimality testing for an integer n:
s Check whether x"-1modn=1
= Can be performed efficiently with the repeated squaring algorithm

N
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# Compositeness witness function

Randomized Primality Testing

q for a random variable x
Case 1: nis prime
witness w(x, n) = false
Case 2: nis composite
witness w(x, n) = false with
probability q < 1
# Algorithm RandPrimeTest tests
whether n is prime by repeatedly
evaluating witness(x, n)

# A variation of base- x
pseudoprimality provides a
suitable compositeness witness
function for randomized primality

witness(x, n) with error probability | Algorithm RandPrimeTest(n, k)

Input integer n,confidence
parameter k and composite
witness function witness(x,n)
with error probability g

Output an indication of
whether n is composite or prime
with probability 27«

t « k/log,(1/q)
fori< 1tot
X <~ random()
If witness(x,n)= true
return “n is composite”
return “n is prime”

testing (Rabin-Miller algorithm)
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