Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

## RSA Cryptosystem

| Bits | PCs | Memory |
| :---: | :---: | :---: |
| 430 | 1 | 128 MB |
| 760 | 215,000 | 4 GB |
| 1,020 | $342 \times 10^{6}$ | 170 GB |
| 1,620 | $1.6 \times 10^{15}$ | 120 TB |

## Euler's Theorem

- The multiplicative group for $Z_{n^{\prime}}$ denoted with $Z^{*}{ }_{n}$, is the subset of elements of $Z_{n}$ relatively prime with $n$
- The totient function of $n$, denoted with $\phi(n)$, is the size of $Z^{*}{ }_{n}$
- Example

$$
Z^{*}{ }_{10}=\{1,3,7,9\} \quad \phi(10)=4
$$

- If $p$ is prime, we have

$$
Z_{p}^{*}=\{1,2, \ldots,(p-1)\} \quad \phi(p)=p-1
$$

Euler's Theorem
For each element $x$ of $Z^{*}{ }_{n}$, we have $x^{\phi(n)} \bmod n=1$

- Example ( $\boldsymbol{n}=10$ )

$$
\begin{aligned}
& 3^{\phi(10)} \bmod 10=3^{4} \bmod 10=81 \bmod 10=1 \\
& 7 \phi(10) \bmod 10=7^{4} \bmod 10=2401 \bmod 10=1 \\
& 9 \phi(10) \bmod 10=9^{4} \bmod 10=6561 \bmod 10=1
\end{aligned}
$$

## 

-Setup:

- $\boldsymbol{n}=\boldsymbol{p} \boldsymbol{q}$, with $\boldsymbol{p}$ and $\boldsymbol{q}$ primes
-e relatively prime to $\phi(n)=(\boldsymbol{p}-1)(\boldsymbol{q}-1)$
- $d$ inverse of $e$ in $Z_{\phi(n)}$
*Keys:
- Public key: $\boldsymbol{K}_{\boldsymbol{E}}=(\boldsymbol{n}, \boldsymbol{e})$
- Private key: $\boldsymbol{K}_{\boldsymbol{D}}=\boldsymbol{d}$
*Encryption:
- Plaintext $M$ in $Z_{n}$
- $C=M^{e} \bmod n$
- Decryption:
- $M=C^{d} \bmod n$
*Example
- Setup:
$p=7, q=17$
- $\boldsymbol{n}=7 \cdot 17=119$
- $\phi(n)=6 \cdot 16=96$
- $e=5$
- $d=77$
- Keys:
- public key: $(119,5)$
- private key: 77
- Encryption:
- $\boldsymbol{M}=19$
- $C=19^{5} \bmod 119=66$
- Decryption:
- $C=66^{77} \bmod 119=19$


## Complete RSA Example

-Setup:

$$
\begin{aligned}
& \boldsymbol{p}=5, \boldsymbol{q}=11 \\
& \boldsymbol{n}=5 \cdot 11=55 \\
& \boldsymbol{\phi}(\boldsymbol{n})=4 \cdot 10=40 \\
& \boldsymbol{e}=3 \\
& \boldsymbol{d}=27(3 \cdot 27=81=2 \cdot 40+1)
\end{aligned}
$$

- Encryption
- $\boldsymbol{C}=\boldsymbol{M}^{3} \bmod 55$
- Decryption
- $\boldsymbol{M}=\boldsymbol{C}^{27} \bmod 55$

| $\boldsymbol{M}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\boldsymbol{C}$ | 1 | 8 | 27 | 9 | 15 | 51 | 13 | 17 | 14 | 10 | 11 | 23 | 52 | 49 | 20 | 26 | 18 | 2 |
| $\boldsymbol{M}$ | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
| $\boldsymbol{C}$ | 39 | 25 | 21 | 33 | 12 | 19 | 5 | 31 | 48 | 7 | 24 | 50 | 36 | 43 | 22 | 34 | 30 | 16 |
| $\boldsymbol{M}$ | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |
| $\boldsymbol{C}$ | 53 | 37 | 29 | 35 | 6 | 3 | 32 | 44 | 45 | 41 | 38 | 42 | 4 | 40 | 46 | 28 | 47 | 54 |

## Security

- The security of the RSA cryptosystem is based on the widely believed difficulty of factoring large numbers
-The best known factoring algorithm (general number field sieve) takes time exponential in the number of bits of the number to be factored
- The RSA challenge, sponsored by RSA Security, offers cash prizes for the factorization of given large numbers
- In April 2002, prizes ranged from \$10,000 (576 bits) to \$200,000 (2048 bits)
- In 1999, a 512-bit number was factored in 4 months using the following computers:
- 160 175-400 MHz SGI and Sun
- 8250 MHz SGI Origin
- 120 300-450 MHz Pentium II
- 4500 MHz Digital/Compaq
- Estimated resources needed to factor a number within one year

| Bits | PCs | Memory |
| :---: | :---: | :---: |
| 430 | 1 | 128 MB |
| 760 | 215,000 | 4 GB |
| 1,020 | $342 \times 10^{6}$ | 170 GB |
| 1,620 | $1.6 \times 10^{15}$ | 120 TB |

## Correctness

We show the correctness of the RSA cryptosystem for the case when the plaintext $M$ does not divide $n$

- Namely, we show that

$$
\left(\boldsymbol{M}^{e}\right)^{d} \bmod \boldsymbol{n}=\boldsymbol{M}
$$

- Since $e d \bmod \phi(n)=1$, there is an integer $k$ such that

$$
e d=k \phi(n)+1
$$

- Since $M$ does not divide $n$, by Euler's theorem we have

$$
\boldsymbol{M}^{\phi(n)} \bmod \boldsymbol{n}=1
$$

- Thus, we obtain

$$
\left(\boldsymbol{M}^{e}\right)^{d} \bmod \boldsymbol{n}=
$$

$M^{e d} \bmod \boldsymbol{n}=$
$\boldsymbol{M}^{k \phi(n)+1} \bmod \boldsymbol{n}=$
$\boldsymbol{M} \boldsymbol{M}^{\boldsymbol{k} \phi(n)} \bmod \boldsymbol{n}=$
$\boldsymbol{M}\left(\boldsymbol{M}^{\phi(n)}\right)^{k} \bmod \boldsymbol{n}=$
$\boldsymbol{M}\left(\boldsymbol{M}^{\phi(n)} \bmod \boldsymbol{n}\right)^{k} \bmod \boldsymbol{n}=$
$\boldsymbol{M}(1)^{k} \bmod \boldsymbol{n}=$
$M \bmod \boldsymbol{n}=$
M

- See the book for the proof of correctness in the case when the plaintext $M$ divides $n$


## Algorithmic Issues

-The implementation of the RSA cryptosystem requires various algorithms
-Overall
-Representation of integers of arbitrarily large size and arithmetic operations on them

- Encryption
-Modular power
- Decryption
-Modular power
- Setup
-Generation of random numbers with a given number of bits (to generate candidates $p$ and $q$ )
.Primality testing (to check that candidates $p$ and $q$ are prime)
-Computation of the GCD (to verify that $e$ and $\phi(n)$ are relatively prime)
-Computation of the multiplicative inverse (to compute $d$ from $e$ )


## Modular Power

-The repeated squaring algorithm speeds up the computation of a modular power $a^{p} \bmod n$

- Write the exponent $p$ in binary

$$
p=p_{b-1} p_{b-2} \ldots p_{1} p_{0}
$$

Start with
$Q_{1}=a^{p_{b-1}} \bmod n$
Repeatedly compute
$Q_{i}=\left(\left(\boldsymbol{Q}_{i-1}\right)^{2} \bmod \boldsymbol{n}\right) a^{p_{b-i}} \bmod \boldsymbol{n}$

- We obtain
$Q_{b}=a^{p} \bmod n$
-The repeated squaring algorithm performs $\boldsymbol{O}(\log \boldsymbol{p})$ arithmetic operations

| $\boldsymbol{p}_{5-1}$ | 1 | 0 | 0 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2^{p_{5-i}}$ | 3 | 1 | 1 | 3 | 1 |
| $Q_{i}$ | 3 | 9 | 5 | 18 | 1 |

## Modular Inverse

Theorem
Given positive integers a and $b$, let $d$ be the smallest positive integer such that

$$
d=i a+j b
$$

for some integers $i$ and $j$. We have

$$
\boldsymbol{d}=\operatorname{gcd}(\boldsymbol{a}, \boldsymbol{b})
$$

- Example
- $\boldsymbol{a}=21$
- $\boldsymbol{b}=15$
- $\boldsymbol{d}=3$
- $\boldsymbol{i}=3, \boldsymbol{j}=-4$
- $3=3 \cdot 21+(-4) \cdot 15=$

$$
63-60=3
$$

- Given positive integers $a$ and $b$, the extended Euclid's algorithm computes a triplet ( $d, i, j$ ) such that
- $\boldsymbol{d}=\operatorname{gcd}(\boldsymbol{a}, \boldsymbol{b})$
- $d=\boldsymbol{i} a+j b$
- To test the existence of and compute the inverse of $x \in Z_{n}$, we execute the extended Euclid's algorithm on the input pair $(\boldsymbol{x}, \boldsymbol{n})$
- Let $(d, i, j)$ be the triplet returned
- $d=i x+j n$

Case 1: $\boldsymbol{d}=1$
$i$ is the inverse of $x$ in $Z_{n}$
Case 2: $\boldsymbol{d}>1$
$x$ has no inverse in $Z_{n}$

## Pseudoprimality Testing

- The number of primes less than or equal to $n$ is about $n / \ln n$
- Thus, we expect to find a prime among, $\boldsymbol{O}(\boldsymbol{b})$ randomly generated numbers with $b$ bits each
- Testing whether a number is prime (primality testing) is believed to be a hard problem
- An integer $n \geq 2$ is said to be a base- $\boldsymbol{x}$ pseudoprime if
- $\boldsymbol{x}^{n-1} \bmod n=1$ (Fermat's little theorem)
- Composite base-x pseudoprimes are rare:
- A random 100 -bit integer is a composite base-2 pseudoprime with probability less than $10^{-13}$
- The smallest composite base-2 pseudoprime is 341
- Base-x pseudoprimality testing for an integer $n$ :
- Check whether $x^{n-1} \bmod \boldsymbol{n}=1$
- Can be performed efficiently with the repeated squaring algorithm


## Randomized Primality Testing

- Compositeness witness function witness $(x, n)$ with error probability $q$ for a random variable $x$
Case 1: $\boldsymbol{n}$ is prime witness $w(x, n)=$ false
Case 2: $n$ is composite witness $w(x, n)=$ false with probability $\boldsymbol{q}<1$
Algorithm RandPrimeTest tests whether $n$ is prime by repeatedly evaluating witness $(\boldsymbol{x}, \boldsymbol{n})$
A variation of base- $\boldsymbol{x}$ pseudoprimality provides a suitable compositeness witness function for randomized primality testing (Rabin-Miller algorithm)

Algorithm RandPrimeTest(n, k)
Input integer $\boldsymbol{n}$, confidence parameter $\boldsymbol{k}$ and composite witness function witness $(\boldsymbol{x}, \boldsymbol{n})$ with error probability $q$
Output an indication of
whether $\boldsymbol{n}$ is composite or prime with probability $2^{-k}$
$\boldsymbol{t} \leftarrow \boldsymbol{k} / \log _{2}(1 / \boldsymbol{q})$
for $i \leftarrow 1$ to $t$
$x \leftarrow$ random ()
if witness $(x, n)=$ true return " $n$ is composite"
return " $\boldsymbol{n}$ is prime"

