Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Numerical Algorithms

© 2015 Goodrich and Tamassia

Numerical Algorithms

Outline

Divisibility and primes Modular arithmetic Euclid's GCD algorithm Multiplicative inverses Powers Fermat's little theorem Euler's theorem

Facts About Numbers

- Prime number p:
 - *p* is an integer
 - *p* ≥ 2
 - The only divisors of p are 1 and p
- Examples
 - 2, 7, 19 are primes
 - -3, 1, 6 are not primes
- Prime decomposition of a positive integer n:

 $\boldsymbol{n} = \boldsymbol{p}_1^{\boldsymbol{e}_1} \times \ldots \times \boldsymbol{p}_k^{\boldsymbol{e}_k}$

Example:

• $200 = 2^3 \times 5^2$

Fundamental Theorem of Arithmetic

The prime decomposition of a positive integer is unique

Greatest Common Divisor

- The greatest common divisor (GCD) of two positive integers a and b, denoted gcd(a, b), is the largest positive integer that divides both a and b
- The above definition is extended to arbitrary integers
- Examples:
 - gcd(0, 20) = 20gcd(18, 30) = 6gcd(-21, 49) = 7

Two integers a and b are said to be relatively prime if $gcd(\boldsymbol{a}, \boldsymbol{b}) = 1$

Integers 15 and 28 are relatively prime

Modular Arithmetic

• Modulo operator for a positive integer n

 $r = a \mod n$

equivalent to

$$a = r + kn$$

$$r = a - \lfloor a/n \rfloor n$$

Example:

29 mod 13 = 313 mod 13 = 0 $-1 \mod 13 = 12$ 29 = 3 + 2 \times 13 $13 = 0 + 1 \times 13$ $12 = -1 + 1 \times 13$

Modulo and GCD:

 $gcd(a, b) = gcd(b, a \mod b)$

Example:

gcd(21, 12) = 3 $gcd(12, 21 \mod 12) = gcd(6, 9) = 3$

© 2015 Goodrich and Tamassia

Numerical Algorithms

Euclid's GCD Algorithm

 Euclid's algorithm for computing the GCD repeatedly applies the formula

 $gcd(a, b) = gcd(b, a \mod b)$

Example

 \blacksquare gcd(412, 260) = 4

Algorithm *EuclidGCD(a, b)* Input integers *a* and *b* Output gcd(*a, b*)

if $\boldsymbol{b} = 0$

return a

else

return *EuclidGCD*(*b*, *a* mod *b*)

~~~	a	412	260	152	108	44	20	4
	b	260	152	108	44	20	4	0

© 2015 Goodrich and Tamassia

### Analysis

- Let  $a_i$  and  $b_i$  be the arguments of the *i*-th recursive call of algorithm *EuclidGCD*
- We have

$$a_{i+2} = b_{i+1} = a_i \mod a_{i+1} < a_{i+1}$$

- Sequence  $a_1, a_2, ..., a_n$  decreases exponentially, namely
  - $a_{i+2} \le \frac{1}{2} a_i$  for i > 1

Case 1 
$$a_{i+1} \le \frac{1}{2} a_i$$
  $a_{i+2} < a_{i+1} \le \frac{1}{2} a_i$ 

Case 2  $a_{i+1} > \frac{1}{2} a_i$   $a_{i+2} = a_i \mod a_{i+1} = a_i - a_{i+1} \le \frac{1}{2} a_i$ 

Thus, the maximum number of recursive calls of algorithm *EuclidGCD(a. b)* is

 $1 + 2 \log \max(a. b)$ 

Algorithm *EuclidGCD(a, b)* executes *O*(log max(*a, b*)) arithmetic operations

## Multiplicative Inverses (1)

◆ The residues modulo a positive integer *n* are the set Z_n = {0, 1, 2, ..., (n − 1)}
◆ Let x and y be two elements of Z_n such that xy mod n = 1
We say that y is the multiplicative inverse of x in Z_n and we write y = x⁻¹

Example:

Multiplicative inverses of the residues modulo 11

~~~~	x	0	1	2	3	4	5	6	7	8	9	10
	x^{-1}		1	6	4	3	9	2	8	7	5	10

Multiplicative Inverses (2)

Theorem

- An element x of Z_n has a multiplicative inverse if and only if x and n are relatively prime
- Example
 - The elements of Z_{10} with a multiplicative inverse are 1, 3, 5, 7
- Corollary
 - If is p is prime, every nonzero residue in Z_p has a multiplicative inverse
- Theorem
 - A variation of Euclid's GCD algorithm computes the multiplicative inverse of an element x of Z_n or determines that it does not exist

Powers

- Let p be a prime
- * The sequences of successive powers of the elements of Z_p exhibit repeating subsequences
- ♦ The sizes of the repeating subsequences and the number of their repetitions are the divisors of p 1
- Example (p = 7)

x	x ²	x ³	x ⁴	x ⁵	x ⁶
1	1	1	1	1	1
2	4	1	2	4	1
3	2	6	4	5	1
4	2	1	4	2	1
5	4	6	2	3	1
6	1	6	1	6	1

© 2015 Goodrich and Tamassia

Numerical Algorithms

Fermat's Little Theorem

Theorem

Let *p* be a prime. For each nonzero residue *x* of $Z_{p'}$ we have $x^{p-1} \mod p = 1$

• Example (p = 5):

 $1^4 \mod 5 = 1$ $2^4 \mod 1 = 16 \mod 5 = 1$

 $3^4 \mod 1 = 81 \mod 5 = 1$ $4^4 \mod 1 = 256 \mod 5 = 1$

Corollary

Let p be a prime. For each nonzero residue x of Z_p , the multiplicative inverse of x is $x^{p-2} \mod p$ Proof

 $x(x^{p-2} \operatorname{mod} p) \operatorname{mod} p = xx^{p-2} \operatorname{mod} p = x^{p-1} \operatorname{mod} p = 1$

Euler's Theorem

- The multiplicative group for Z_n , denoted with Z^*_n , is the subset of elements of Z_n relatively prime with n
- The totient function of n, denoted with $\phi(n)$, is the size of Z_n^*
- Example

 $\mathbf{Z}^{*}_{10} = \{ 1, 3, 7, 9 \}$ $\phi(10) = 4$

• If p is prime, we have

$$Z_{p}^{*} = \{1, 2, ..., (p-1)\}$$
 $\phi(p) = p - 1$

Theorem

For each element x of $Z_{n'}^*$ we have $x^{\phi(n)} \mod n = 1$

Example (*n* = 10)

 $3^{\phi(10)} \mod 10 = 3^4 \mod 10 = 81 \mod 10 = 1$

 $7^{\phi(10)} \mod 10 = 7^4 \mod 10 = 2401 \mod 10 = 1$

 $9^{\phi(10)} \mod 10 = 9^4 \mod 10 = 6561 \mod 10 = 1$