Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Numerical Algorithms

\boldsymbol{x}	0	1	2	3	4	5	6	7	8	9
x^{-1}		1		7				3		9

Outline

- Divisibility and primes
- Modular arithmetic

Euclid' s GCD algorithm

- Multiplicative inverses
- Powers
*Fermat' s little theorem
*Euler's theorem

Facts About Numbers

- Prime number p :
- p is an integer
- $p \geq 2$
- The only divisors of p are 1and p
- Examples
- 2, 7, 19 are primes
- -3, 1, 6 are not primes
- Prime decomposition of a positive integer n :

$$
\boldsymbol{n}=\boldsymbol{p}_{1} \boldsymbol{e}_{1} \times \ldots \times \boldsymbol{p}_{\boldsymbol{k}}^{\boldsymbol{e}_{k}}
$$

\bullet Example:

- $200=2^{3} \times 5^{2}$

Fundamental Theorem of Arithmetic
The prime decomposition of a positive integer is unique

Greatest Common Divisor

- The greatest common divisor (GCD) of two positive integers \boldsymbol{a} and \boldsymbol{b}, denoted $\operatorname{gcd}(\boldsymbol{a}, \boldsymbol{b})$, is the largest positive integer that divides both a and b
- The above definition is extended to arbitrary integers
- Examples:

$$
\operatorname{gcd}(18,30)=6 \quad \operatorname{gcd}(0,20)=20
$$

$$
\operatorname{gcd}(-21,49)=7
$$

- Two integers a and b are said to be relatively prime if

$$
\operatorname{gcd}(\boldsymbol{a}, \boldsymbol{b})=1
$$

- Example:
- Integers 15 and 28 are relatively prime

Modular Arithmetic

- Modulo operator for a positive integer n

$$
\boldsymbol{r}=\boldsymbol{a} \bmod \boldsymbol{n}
$$

equivalent to

$$
a=r+k n
$$

and

$$
r=a-\lfloor a / n\rfloor n
$$

- Example:

$$
\begin{array}{lll}
29 \bmod 13=3 & 13 \bmod 13=0 & -1 \bmod 13=12 \\
29=3+2 \times 13 & 13=0+1 \times 13 & 12=-1+1 \times 13
\end{array}
$$

- Modulo and GCD:

$$
\operatorname{gcd}(\boldsymbol{a}, \boldsymbol{b})=\operatorname{gcd}(\boldsymbol{b}, \boldsymbol{a} \bmod \boldsymbol{b})
$$

- Example:

$$
\operatorname{gcd}(21,12)=3 \quad \operatorname{gcd}(12,21 \bmod 12)=\operatorname{gcd}(6,9)=3
$$

Euclid's GCD Algorithm

- Euclid's algorithm for computing the GCD repeatedly applies the formula

$$
\operatorname{gcd}(\boldsymbol{a}, \boldsymbol{b})=\operatorname{gcd}(\boldsymbol{b}, \boldsymbol{a} \bmod \boldsymbol{b})
$$

* Example
- $\operatorname{gcd}(412,260)=4$

```
Algorithm EuclidGCD (a, b)
    Input integers \(\boldsymbol{a}\) and \(\boldsymbol{b}\)
    Output \(\operatorname{gcd}(\boldsymbol{a}, \boldsymbol{b})\)
    if \(b=0\)
        return \(a\)
    else
        return EuclidGCD \((b, a \bmod b)\)
```

\boldsymbol{a}	412	260	152	108	44	20	4
\boldsymbol{b}	260	152	108	44	20	4	0

Analysis

Let a_{i} and b_{i} be the arguments of the i-th recursive call of algorithm EuclidGCD

- We have

$$
a_{i+2}=b_{i+1}=a_{i} \bmod a_{i+1}<a_{i+1}
$$

- Sequence $a_{1}, a_{2}, \ldots, a_{n}$ decreases exponentially, namely

$$
a_{i+2} \leq 1 / 2 a_{i} \text { for } i>1
$$

Case $1 a_{i+1} \leq 1 / 2 a_{i} \quad a_{i+2}<a_{i+1} \leq 1 / 2 a_{i}$
Case $2 a_{i+1}>1 / 2 a_{i} \quad a_{i+2}=a_{i} \bmod a_{i+1}=a_{i}-a_{i+1} \leq 1 / 2 a_{i}$

- Thus, the maximum number of recursive calls of algorithm EuclidGCD (a.b) is

$$
1+2 \log \max (\boldsymbol{a} \cdot \boldsymbol{b})
$$

Algorithm EuclidGCD(a,b) executes $\boldsymbol{O}(\log \max (\boldsymbol{a}, \boldsymbol{b}))$ arithmetic operations

Multiplicative Inverses (1)

- The residues modulo a positive integer \boldsymbol{n} are the set

$$
Z_{n}=\{0,1,2, \ldots,(n-1)\}
$$

Let x and y be two elements of Z_{n} such that

$$
x y \bmod n=1
$$

We say that y is the multiplicative inverse of x in Z_{n} and we write $\boldsymbol{y}=\boldsymbol{x}^{-1}$

- Example:
- Multiplicative inverses of the residues modulo 11

x	0	1	2	3	4	5	6	7	8	9	10
x^{-1}		1	6	4	3	9	2	8	7	5	10

Multiplicative Inverses (2)

Theorem

An element x of Z_{n} has a multiplicative inverse if and only if x and n are relatively prime

- Example
- The elements of \boldsymbol{Z}_{10} with a multiplicative inverse are $1,3,5,7$

Corollary
If is p is prime, every nonzero residue in Z_{p} has a multiplicative inverse
Theorem
A variation of Euclid' s GCD algorithm computes the multiplicative inverse of an element x of Z_{n} or determines that it does not exist

x	0	1	2	3	4	5	6	7	8	9
x^{-1}		1		7				3		9

Powers

- Let p be a prime
- The sequences of successive powers of the elements of Z_{p} exhibit repeating subsequences
- The sizes of the repeating subsequences and the number of their repetitions are the divisors of $p-1$
- Example ($\boldsymbol{p}=7$)

\boldsymbol{x}	\boldsymbol{x}^{2}	\boldsymbol{x}^{3}	\boldsymbol{x}^{4}	\boldsymbol{x}^{5}	\boldsymbol{x}^{6}
1	1	1	1	1	1
2	4	1	2	4	1
3	2	6	4	5	1
4	2	1	4	2	1
5	4	6	2	3	1
6	1	6	1	6	1

Fermat' s Little Theorem

Theorem
Let p be a prime. For each nonzero residue x of Z_{p}, we have $x^{p-1} \bmod p=1$

- Example $(p=5)$:
$1^{4} \mathrm{mod}$
$3^{4} \bmod$
rollary
Let p be a prime. For each nonzero residue x of Z_{p}, the multiplicative inverse of x is $x^{p-2} \bmod p$ Proof

$$
\boldsymbol{x}\left(\boldsymbol{x}^{p-2} \bmod \boldsymbol{p}\right) \bmod \boldsymbol{p}=\boldsymbol{x} \boldsymbol{x}^{p-2} \bmod \boldsymbol{p}=\boldsymbol{x}^{p-1} \bmod \boldsymbol{p}=1
$$

Euler's Theorem

- The multiplicative group for $Z_{n^{\prime}}$ denoted with $Z^{*}{ }_{n}$, is the subset of elements of Z_{n} relatively prime with n
- The totient function of n, denoted with $\phi(n)$, is the size of $Z^{*}{ }_{n}$
- Example

$$
Z^{*}{ }_{10}=\{1,3,7,9\} \quad \phi(10)=4
$$

- If p is prime, we have

$$
Z_{p}^{*}=\{1,2, \ldots,(p-1)\} \quad \phi(p)=p-1
$$

Theorem

For each element x of $Z^{*}{ }_{n}$, we have $x^{\phi(n)} \bmod n=1$

- Example ($n=10$)

$$
\begin{aligned}
& 3^{\phi(10)} \bmod 10=3^{4} \bmod 10=81 \bmod 10=1 \\
& 7 \phi(10) \bmod 10=7^{4} \bmod 10=2401 \bmod 10=1 \\
& 9 \phi(10) \bmod 10=9^{4} \bmod 10=6561 \bmod 10=1
\end{aligned}
$$

