Heaps

Presentation for use with the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Heaps

kG, Witp T Tked comyB35]. Tree.” Used with permission under Creative Commons 2.5 License.

© 2015 Goodrich and Tamassia Heaps

3/13/2023

_’ Recall Priority Queue Operations

a A priority queue stores a o Additional methods
collection of entries = min()
a Each entry is a pair returns, but does not
(key, value) remove, an entry with
llest ke
o Main methods of the Priority Sl est key
Queue ADT = size(), iIsEmpty()
« insert(k, v) a Applications:
inserts an entry with key k = Standby flyers
and value v = Auctions

= removeMin() = Stock market enigines
removes and returns the
entry with smallest key

© 2015 Goodrich and Tamassia Heaps 2

“Recall PQ Sorting

T o Weusea priority queue
B Insert the elements with a series of insert operations
W Remove the elements in sorted order with a series of removeMin
operations

a The running time depends on the priority queue implementation:
= Unsorted sequence gives selection-sort: O(n?) time
= Sorted sequence gives insertion-sort: O(n2) time

a Can we do better?

Algorithm PQ-Sort(C, P):
Input: An n-clement array, C, index from 1 to 1. and a priority queue P that
compares keys, which are elements of €', using a total order relation
Output: The array € sorted by the total order relation
fori +1tondo

e« Cli]
Pinsert(e,e) //the key is the element itself
fori < 1tondo
¢ ¢ PremoveMin() // remove a smallest element from I
Clil«e
© 2015 Goodrich and Tamassia Heaps 3

Heaps

a A heap is a binary tree storing
keys at its nodes and satisfying
the following properties:

a Heap-Order: for every internal
node v other than the root,
key(v) > key(parent(v))

a Complete Binary Tree: let be
the height of the heap

n fori=0,...,h—-1,thereare 2
nodes of depth i
= at depth & — 1, the internal nodes

are to the left of the external
nodes

o The last node of a heap
is the rightmost node of
maximum depth

last node

© 2015 Goodrich and Tamassia Heaps 4

_Height of a Heap

| o Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)
= Let i be the height of a heap storing n keys

= Since there are 2/ keys at depth i = 0, ..., — 1 and at least one key
atdepth h, we have n > 1 +2+4+... +21 +1

s Thus, n>2",ie., h<logn

depth keys
0 1
1 2
h-1 21
h 1
© 2015 Goodrich and Tamassia Heaps 5

Heaps and Priority Queues

o We can use a heap to implement a priority queue
o We store a (key, element) item at each internal node
o We keep track of the position of the last node

© 2015 Goodrich and Tamassia Heaps 6

Heaps

‘,,Array-based Heap Implementation

a We can represent a heap with n
keys by means of an array of
length n

a For the node at rank i
= the left child is at rank 2i
= the right child is at rank 2i + 1

a Links between nodes are not
explicitly stored

a Operation add corresponds to
inserting at rank n + 1

a Operation remove_min
corresponds to removing at rank »

a Yields in-place heap-sort

© 2015 Goodrich and Tamassia Heaps 7

3/13/2023

Insertion into a
‘Heap

o Method insertItem of the
priority queue ADT
corresponds to the
insertion of a key & to
the heap

a The insertion algorithm
consists of three steps

= Find the insertion node z
(the new last node)

= Store katz
= Restore the heap-order
property (discussed next)

© 2015 Goodrich and Tamassia Heaps 8

_Upheap

a After the insertion of a new key k, the heap-order property may be
violated

a Algorithm upheap restores the heap-order property by swapping &
along an upward path from the insertion node

a Upheap terminates when the key k& reaches the root or a node
whose parent has a key smaller than or equal to &

a Since a heap has height O(log n), upheap runs in O(log n) time

© 2015 Goodrich and Tamassia Heaps 9

Insertion Pseudo-Code

o Assumes an array-based heap
implementation.

Algorithm Heaplnsert(k, e):
Input: A key-element pair
Output: An update of the array, A, of n elements, for a heap, to add (k, e)
nn+1
Aln] + (k.e)
i< n
while i > 1 and A[[i/2]] > A[i] do
Swap A[[i/2]] and A[i]
i< |i/2]

© 2015 Goodrich and Tamassia Heaps 10

‘Removal from a Heap

a Method removeMin of
the priority queue ADT
corresponds to the
removal of the root key
from the heap

o The removal algorithm
consists of three steps
= Replace the root key with
the key of the last node w
= Remove w
= Restore the heap-order
property (discussed next)

new last node

© 2015 Goodrich and Tamassia Heaps 11

‘Downheap

a After replacing the root key with the key & of the last node, the
heap-order property may be violated

a Algorithm downheap restores the heap-order property by
swapping key & along a downward path from the root

o Upheap terminates when key k reaches a leaf or a node whose
children have keys greater than or equal to k&

o Since a heap has height O(log n), downheap runs in O(log n) time

© 2015 Goodrich and Tamassia Heaps 12

Heaps

RemoveMin Pseudo-code

a Assumes heap is implemented with an array.

Algorithm HeapRemoveMin():
Input: None
Output: An update of the array, A, of n elements, for a heap, (o remove and
return an item with smallest key
temp + A[l]
All] « Af]
nen-1
i1
while i < n do
i2i 4 1< nthen // this node has two intemal children
if Ali] < A[2] and A[i] < A[2i + 1] then
return femp /f we have restored the heap-order property
else
Let j be the index of the smaller of A[2i] and A[2i +1]
Swap Ali] and A[j]

it
else /7 this node has zero or one internal child
if2i < n then // this node has one internal child (the last node)
iCA[i] > A[2] then
Swap Afi] and A[2i]

return femp // we have restored the heap-order property
return temp // we reached the last node or an external node
© 2015 Goodrich and Tamassia Heaps 13

3/13/2023

Performance of a Heap

a A heap has the following performance for the priority queue
operations.

Operation | Time
insert | O(logn)
removeMin | O(log n)

a The above analysis is based on the following facts:

The height of heap T is O(log n), since T is complete.

In the worst case, up-heap and down-heap bubbling take time proportional
to the height of T.

Finding the insertion position in the execution of insert and updating the
last node position in the execution of removeMin takes constant time.

The heap T has n internal nodes, each storing a reference to a key and a
reference to an element.

© 2015 Goodrich and Tamassia Heaps 14

Heap-Sort

a Consider a priority a Using a heap-based
queue with n items priority queue, we can
implemented by means sort a sequence of »
of a heap e]ements in O(n log n)

= the space used is O(n) time

« methods insert and o The resulting algorithm is

removeMin take O(log 1) called heap-sort

time o Heap-sort is much faster

methods size, iSEmpty, than quadratic sorting

and min take time O(1) algorithms, such as

time insertion-sort and

selection-sort

© 2015 Goodrich and Tamassia Heaps 15

‘Merging Two Heaps

. ©) @
o We are given two two
heaps and a key k ® ©) @ ©
a We create a new heap
with the root node
storing k£ and with the
two heaps as subtrees
o We perform downheap
to restore the heap-
order property

© 2015 Goodrich and Tamassia Heaps 16

Bottom-up Heap Construction,

B
o We can construct a heap
storing n given keys in
using a bottom-up
construction with log n
phases ﬂ
o In phase i, pairs of
heaps with 2/ -1 keys are
merged into heaps with
2i+1-1 keys
© 2015 Goodrich and Tamassia Heaps 17

‘Example

8 S 8 g S
N

@ ® @ ® @ o @

O

© 2015 Goodrich and Tamassia Heaps 18

BUN

Heaps 3/13/2023

Example (contd.) ‘Example (contd.)

(2 ()

()

© 2015 Goodrich and Tamassia Heaps 19 © 2015 Goodrich and Tamassia Heaps 20

Example (end) “Analysis

o We visualize the worst-case time of a downheap with a proxy path
that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)

a Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)

a Thus, bottom-up heap construction runs in O(n) time

o Bottom-up heap construction is faster than »n successive insertions

and speeds up the first phase of heap-sort, which takes O(n log n)

time in its second phase.

© 2015 Goodrich and Tamassia Heaps 21 © 2015 Goodrich and Tamassia Heaps 22

