

Polynomial	Multiplication 26
	nts in the plane with distinct x-coordinates, e (n-1)-degree polynomial going through all
 Calculate p() on 2 	to computing p(x)q(x): n x-values, x ₀ ,x ₁ ,,x _{2n-1} . he same 2n x values.
	egree polynomial that goes through the points $x_{1,p}(x_1)q(x_1)$,, $(x_{2n-1},p(x_{2n-1})q(x_{2n-1}))$.
	aightforward evaluation would still take vould need to apply an O(n)-time Horner' s 2n different points.
The "magical" FFT points that are easy	will do it in O(n log n) time, by picking 2n

IN	ultiplying Big Integers
۲	Given N-bit integers I and J, compute IJ.
۲	Assume: we can multiply words of O(log N) bits in constant time.
	Setup: Find a prime $p=cn+1$ that can be represented in one word, and set $m=(\log p)/3$, so that we can view I and J as n-length vectors of m-bit words.
۲	Finding a primitive root of unity.
	Find a generator x of Z [*] _p .
	Then $\omega = x^c$ is a primitive n-th root of unity in Z_p^* (arithmetic is mod p)
	Apply convolution and FFT algorithm to compute the convolution C of the vector representations of I and J.
۲	Then compute $K = \sum_{i=0}^{n-1} c_i 2^{mi}$
	K is a vector representing IJ, and takes O(n log n) time to compute.

Non-recursi	ve FFT	
 There is also a i Performs the Ff Precomputes al 	T in place	sion of the FFT
on B prior to th	nulative collection of e FFT, which amour lex i to the index bit	ts to assigning
The code is a bit time is faster by overhead	t more complex, a constant, due	
015 Goodrich and Tamassia	FFT	14