

Polynomial Evaluation

Polynomial Multiplication Problem

- Given coefficients ($a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}$) and ($\left.b_{0}, b_{1}, b_{2}, \ldots, b_{n-1}\right)$ defining two polynomials, $p()$ and $q()$, and number x, compute $p(x) q(x)$.
- Horner's rule doesn't help, since

$$
p(x)=\sum_{i=0}^{n-1} a_{i} x^{i}
$$

- Given x, we can evaluate $p(x)$ in $O(n)$ time using the equation

$$
p(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+\quad+x\left(a_{n-2}+x a_{n-1}\right)\right)\right)
$$

- Eval(A,x): $\quad\left[\right.$ Where $\left.A=\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}\right)\right]$
- If $n=1$, then return a_{0}
- Else,
- Let $A^{\prime}=\left(a_{1}, a_{2}, \ldots, a_{n-1}\right) \quad$ [assume this can be done in constant time] - return $a_{0}+x^{*} \operatorname{Eval}\left(A^{\prime}, x\right)$
© 2015 Goodrich and Tamassia \quad FFT FFT

Polynomials

- Polynomial:

$$
p(x)=5+2 x+8 x^{2}+3 x^{3}+4 x^{4}
$$

- In general,

$$
p(x)=\sum_{i=0}^{n-1} a_{i} x^{i}
$$

or

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\quad+a_{n-1} x^{n-1}
$$

© 2015 Goodrich and Tamassia
FFT

$$
p(x) q(x)=\sum_{i=0}^{2 n-2} c_{i} x^{i}
$$

where

$$
c_{i}=\sum_{j=0}^{i} a_{j} b_{i-j}
$$

- A straightforward evaluation would take $O\left(n^{2}\right)$ time. The "magical" FFT will do it in $O(n \log n)$ time.

Primitive Roots of Unity

- A number ω is a primitive \boldsymbol{n}-th root of unity, for $\mathrm{n}>1$, if - $\quad \omega^{n}=1$
- The numbers $1, \omega, \omega^{2}, \ldots, \omega^{n-1}$ are all distinct
- Calculate $p()$ on $2 n$-values, $x_{0}, x_{1}, \cdots, x_{2 n-1}$
- Calculate $q()$ on the same $2 n \times$ values.
- Find the $(2 n-1)$-degree polynomial that goes through the points $\left\{\left(x_{0}, p\left(x_{0}\right) q\left(x_{0}\right)\right),\left(x_{1}, p\left(x_{1}\right) q\left(x_{1}\right)\right), \ldots,\left(x_{2 n-1} p\left(x_{2 n-1}\right) q\left(x_{2 n-1}\right)\right)\right\}$.
- Unfortunately, a straightforward evaluation would still take $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time, as we would need to apply an $\mathrm{O}(\mathrm{n})$-time Horner's Rule evaluation to $2 n$ different points.
- The "magical" FFT will do it in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time, by picking 2 n points that are easy to evaluate...
© 2015 Goodrich and Tamassia FFT
- Example 1:

- $2,6,7,8$ are 10 -th roots of unity in $Z^{*}{ }_{11}$
- $2^{2}=4,6^{2}=3,7^{2}=5,8^{2}=9$ are 5 -th roots of unity in $Z^{*}{ }_{11}$
- $\quad 2^{-1}=6,3^{-1}=4,4^{-1}=3,5^{-1}=9,6^{-1}=2,7^{-1}=8,8^{-1}=7,9^{-1}=5$
- Example 2: The complex number $\mathrm{e}^{2 \pi i / n}$ is a primitive n -th root of unity, where
© 2015 Goodrich and Tamassia

Properties of
 Primitive Roots of Unity

- Inverse Property: If ω is a primitive root of unity, then $\omega^{-1}=\omega^{n-1}$
- Proof: $\omega \omega^{n-1}=\omega^{n}=1$
- Cancellation Property: For non-zero $-\mathrm{n}<\mathrm{k}<\mathrm{n}, \quad \sum_{j=0}^{n-1} \omega^{k_{j}}=0$
- Proof:

$$
\sum_{j=0}^{n-1} \omega^{k j}=\frac{\left(\omega^{k}\right)^{n}-1}{\omega^{k}-1}=\frac{\left(\omega^{n}\right)^{k}-1}{\omega^{k}-1}=\frac{(1)^{k}-1}{\omega^{k}-1}=\frac{1-1}{\omega^{k}-1}=0
$$

- Reduction Property: If w is a primitive (2n)-th root of unity, then ω^{2} is a primitive n-th root of unity.
- Proof: If $1, \omega, \omega^{2}, \ldots, \omega^{2 n-1}$ are all distinct, so are $1, \omega^{2},\left(\omega^{2}\right)^{2}, \ldots,\left(\omega^{2}\right)^{n-1}$
- Reflective Property: If n is even, then $\omega^{n / 2}=-1$.
- Proof: By the cancellation property, for $\mathrm{k}=\mathrm{n} / 2$

© 2015 Goodrich Corollary: anmassia $^{k+n / 2}=-\omega^{k}$. FFT
7

E

The Discrete Fourier Transform

- Given coefficients $\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}\right)$ for an ($n-1$)-degree polynomial $p(x)$
- The Discrete Fourier Transform is to evaluate p at the values
- $1, \omega, \omega^{2}, \ldots, \omega^{n-1}$
- We produce $\left(y_{0}, y_{1}, y_{2}, \ldots, y_{n-1}\right)$, where $y_{j}=p\left(\omega^{j}\right)$
- That is, $y_{j}=\sum_{i=0}^{n-1} a_{i} \omega^{i j}$
- Matrix form: $\mathbf{y}=F a$, where $F[i, j]=\omega^{i j}$.
- The Inverse Discrete Fourier Transform recovers the coefficients of an ($n-1$)-degree polynomial given its values at $1, \omega, \omega^{2}, \ldots, \omega^{n-1}$
- Matrix form: $\mathbf{a}=\mathbf{F}^{-1} \mathbf{y}$, where $\mathbf{F}^{-1}[\mathrm{i}, \mathrm{j}]=\omega^{-\mathrm{j}} / \mathrm{n}$.
© 2015 Goodrich and Tamassia FFI
FFT

The FFT Algorithm
Algorithm FFT($\mathbf{a}, \boldsymbol{\omega}$):
Input: An n-length coefficient vector $\mathbf{a}=\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]$ and a primitive nth output: A vector y of values of the of 2
of the polynomial for a at the nth roots of unity
if $n=1$ then
return $\mathbf{y}=\mathrm{a}$.
$x \leftarrow \omega^{0} \quad{ }_{\{x}$ will store powers of ω, so initially $x=1$. $\}$
\{Divide Step, which separates even and odd indices\}
${ }^{\text {even }} \leftarrow\left[a_{0}, a_{2}, a_{4}, \ldots, a_{n-2}\right]$
$\mathbf{a}^{\text {odd }} \leftarrow\left[a_{1}, a_{3}, a_{5}, \ldots, a_{n-1}\right]$
even \leftarrow FFT (aven ${ }^{\text {even }} \omega^{2}$) as $(n / 2)$ th root of unity, by the reduction property
$y^{\text {even }} \leftarrow \mathrm{FFT}\left(\mathrm{a}^{\text {even }}, \omega^{2}\right)$
$y^{\text {odd }} \leftarrow \mathrm{FFT}\left(\mathbf{a}^{\text {odd }}, \omega^{2}\right)$
\{Combine Step, using $x=\omega^{\prime}$
for $i \leftarrow 0$ to $n / 2-1$ do
for $i \leftarrow 0$ to $n / 2-1$ do
$y_{i} \leftarrow y^{\text {even }}+x \cdot y^{\text {odd }}$
$y_{i} \leftarrow y_{i}+x \cdot y_{i}$
$y_{i+n / 2} \leftarrow y_{i}^{\text {even }}-x \cdot y_{i}^{\text {odd }}$
\{Uses reflective property\}
return \mathbf{y}
The running time is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$. [inverse FFT is similar]
© 2015 Goodrich and Tamassia

Multiplying Big Integers

- Given N-bit integers I and J, compute IJ,
- Assume: we can multiply words of $O(\log N)$ bits in constant time.
- Setup: Find a prime $p=c n+1$ that can be represented in one word, and set $m=(\log p) / 3$, so that we can view I and J as n-length vectors of m-bit words.
- Finding a primitive root of unity.
- Find a generator x of $\mathrm{Z}_{\mathrm{p}}^{*}$.
- Then $\omega=x^{c}$ is a primitive n-th root of unity in Z_{p}^{*} (arithmetic is mod p)
- Apply convolution and FFT algorithm to compute the convolution C of the vector representations of I and J.
- Then compute $K=\sum_{i=0}^{n-1} c_{i} 2^{m i}$
- K is a vector representing IJ, and takes $O(n \log n)$ time to compute.
© 2015 Goodrich and Tamassia FFT 13

Non-recursive FFT

- There is also a non-recursive version of the FFT
- Performs the FFT in place
- Precomputes all roots of unity
- Performs a cumulative collection of shuffles on A and on B prior to the FFT, which amounts to assigning the value at index i to the index bit-reverse(i).
- The code is a bit more complex, but the running time is faster by a constant, due to improved overhead

