
Cryptography 12/18/2017 4:08 PM

1

FFT 1

The Fast Fourier Transform
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Presentation for use with the textbook, Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015
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Polynomials
Polynomial:

In general,
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Polynomial Evaluation
Horner’s Rule:
 Given coefficients (a0,a1,a2,…,an-1), defining polynomial

 Given x, we can evaluate p(x) in O(n) time using the equation

Eval(A,x):      [Where A=(a0,a1,a2,…,an-1)]
 If n=1, then return a0

 Else, 
 Let A’=(a1,a2,…,an-1)  [assume this can be done in constant time]
 return a0+x*Eval(A’,x)
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Polynomial Multiplication 
Problem

Given coefficients (a0,a1,a2,…,an-1) and (b0,b1,b2,…,bn-1) defining 
two polynomials, p() and q(), and number x, compute p(x)q(x).

Horner’s rule doesn’t help, since

where

A straightforward evaluation would take O(n2) time. The 
“magical” FFT will do it in O(n log n) time.
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Polynomial Interpolation & 
Polynomial Multiplication

Given a set of n points in the plane with distinct x-coordinates, 
there is exactly one (n-1)-degree polynomial going through all 
these points.
Alternate approach to computing p(x)q(x):
 Calculate p() on 2n x-values, x0,x1,…,x2n-1.
 Calculate q() on the same 2n x values.
 Find the (2n-1)-degree polynomial that goes through the points 

{(x0,p(x0)q(x0)), (x1,p(x1)q(x1)), …, (x2n-1,p(x2n-1)q(x2n-1))}.

Unfortunately, a straightforward evaluation would still take 
O(n2) time, as we would need to apply an O(n)-time Horner’s 
Rule evaluation to 2n different points. 
The “magical” FFT will do it in O(n log n) time, by picking 2n 
points that are easy to evaluate…
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Primitive Roots of Unity
A number w is a primitive n-th root of unity, for n>1, if
 wn = 1
 The numbers 1, w, w2, …, wn-1 are all distinct

Example 1:
 Z*

11:

 2, 6, 7, 8 are 10-th roots of unity in Z*
11

 22=4, 62=3, 72=5, 82=9 are 5-th roots of unity in Z*
11

 2-1=6, 3-1=4, 4-1=3, 5-1=9, 6-1=2, 7-1=8, 8-1=7, 9-1=5

Example 2: The complex number e2pi/n is a primitive n-th root of 
unity, where 

x x^2 x^3 x^4 x^5 x^6 x^7 x^8 x^9 x^10
1 1 1 1 1 1 1 1 1 1
2 4 8 5 10 9 7 3 6 1
3 9 5 4 1 3 9 5 4 1
4 5 9 3 1 4 5 9 3 1
5 3 4 9 1 5 3 4 9 1
6 3 7 9 10 5 8 4 2 1
7 5 2 3 10 4 6 9 8 1
8 9 6 4 10 3 2 5 7 1
9 4 3 5 1 9 4 3 5 1
10 1 10 1 10 1 10 1 10 1

1i
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Properties of 
Primitive Roots of Unity

Inverse Property: If w is a primitive root of unity, then w -1=wn-1

 Proof: wwn-1=wn=1

Cancellation Property: For non-zero -n<k<n,
 Proof:

Reduction Property: If w is a primitive (2n)-th root of unity, then 
w2 is a primitive n-th root of unity.
 Proof: If 1,w,w2,…,w2n-1 are all distinct, so are 1,w2,(w2)2,…,(w2)n-1

Reflective Property: If n is even, then wn/2 = -1.
 Proof: By the cancellation property, for k=n/2:

 Corollary: wk+n/2= -wk.

0
1

0






n

j

kjw

0
1

11

1

1)1(

1

1)(

1

1)(1

0

















kk

k

k

kn

k

nkn

j

kj

www
w

w
ww

)1)(2/(0 2/2/02/02/0
1

0

)2/( nnnn
n

j

jn n wwwwwwww 




© 2015 Goodrich and Tamassia FFT 8

The Discrete Fourier Transform
Given coefficients (a0,a1,a2,…,an-1) for an (n-1)-degree polynomial 
p(x)
The Discrete Fourier Transform is to evaluate p at the values
 1,w,w2,…,wn-1

 We produce (y0,y1,y2,…,yn-1), where yj=p(wj)
 That is, 

 Matrix form: y=Fa, where F[i,j]=wij.

The Inverse Discrete Fourier Transform recovers the 
coefficients of an (n-1)-degree polynomial given its values at 
1,w,w2,…,wn-1

 Matrix form: a=F -1y, where F -1[i,j]=w-ij/n.
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Correctness of the 
inverse DFT

The DFT and inverse DFT really are inverse operations
Proof: Let A=F -1F.  We want to show that A=I, where

If i=j, then

If i and j are different, then
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Convolution
The DFT and the 
inverse DFT can be 
used to multiply two 
polynomials

So we can get the 
coefficients of the 
product polynomial 
quickly if we can 
compute the DFT (and 
its inverse) quickly…

Pad with n 0's Pad with n 0's

[a0,a1,a2,...,an-1] [b0,b1,b2,...,bn-1]

DFT DFT

[a0,a1,a2,...,an-1,0,0,...,0] [b0,b1,b2,...,bn-1,0,0,...,0]

[y0,y1,y2,...,y2n-1] [z0,z1,z2,...,z2n-1]

Component
Multiply

inverse DFT

[y0z0,y1z1,...,y2n-1z2n-1]

[c0,c1,c2,...,c2n-1]

(Convolution)© 2015 Goodrich and Tamassia 
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The Fast Fourier Transform
The FFT is an efficient algorithm for computing the DFT
The FFT is based on the divide-and-conquer paradigm:
 If n is even, we can divide a polynomial

into two polynomials

and we can write
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The FFT Algorithm

The running time is O(n log n). [inverse FFT is similar]
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Multiplying Big Integers
Given N-bit integers I and J, compute IJ.
Assume: we can multiply words of O(log N) bits in constant time.
Setup: Find a prime p=cn+1 that can be represented in one word, 
and set m=(log p)/3, so that we can view I and J as n-length 
vectors of m-bit words.
Finding a primitive root of unity.
 Find a generator x of Z*

p.
 Then w=xc is a primitive n-th root of unity in Z*

p (arithmetic is mod p)

Apply convolution and FFT algorithm to compute the convolution C 
of the vector representations of I and J.
Then compute

K is a vector representing IJ, and takes O(n log n) time to compute.
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Non-recursive FFT
There is also a non-recursive version of the FFT
 Performs the FFT in place
 Precomputes all roots of unity
 Performs a cumulative collection of shuffles on A and 

on B prior to the FFT, which amounts to assigning 
the value at index i to the index bit-reverse(i).

The code is a bit more complex, but the running 
time is faster by a constant, due to improved 
overhead
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