Cryptography 12/18/2017 4:08 PM

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Polynomials

\ # Polynomial:
p(x)=5+2x+8x" +3x° +4x*

The Fast Fourier Transform

In general,

0123456789101112131415

n-1
p(x)= Zaixi
i=0

or

0123456789101112131415

1

p(x)=a,+ax+ax*+ +a, x"

© 2015 Goodrich and Tamassia FFT 1 © 2015 Goodrich and Tamassia FFT 2

. . g . - &
Polynomial Multiplication @& ¢@
Polynomial Evaluation Problem IR
Horner’s Rule: | # Given coefficients (2g,a1,@5-+-,8n.1) @nd (bg,by,b,,...,b,, ;) defining
= Given coefficients (ag,a;,a,,...,a,.1), defining polynomial two polynomials, p() and q(), and number x, compute p(x)q(x).
n-1
p(x) - zaix" @ Horner’ s rule doesn’ t help, since
2n=2
i=0 i
= Given x, we can evaluate p(x) in O(n) time using the equation p()C)q(X) = Z c,X
i=0
p(x)=ay+x(a,+x(a,+ +x(a,,+xa,,))) e i
Eval(Ax): [Where A=(ag,ay,ay..:,an.1)] ci = Zajbi—j
=« If n=1, then return a, Jj=0
= Ese, # A straightforward evaluation would take O(n2) time. The
+ Let A’ =(ay,ay...,an.1) [assume this can be done in constant time] “magical” FFT will do it in O(n log n) time.
« return ap+x*Eval(A’ ,X)
© 2015 Goodrich and Tamassia FFT 3 © 2015 Goodrich and Tamassia FFT 4

Polynomial Interpolation & .° Primitive Roots of Unity
POIynomlal MUItlpllcatlon @ A number o is a primitive n-th root of unity, for n>1, if

| # Given a set of n points in the plane with distinct x-coordinates, \ = o'=1
there is exactly one (n-1)-degree polynomial going through all = The numbers 1, o, ?, ..., o™ are all distinct
these points. & Example 1:
Alternate approach to computing p(x)q(x): . 2 X X2 a8 a8 a8 T 08 e
= Calculate p() on 2n x-values, Xo,Xy,...,.Xpn.1- § : : i '10 g ; 2 i :
= Calculate q() on the same 2n x values. 4 5 9 3 1 4 5 9 31
= Find the (2n-1)-degree polynomial that goes through the points I I T S W 5 T
{(XoP(X0)A(X0))s (X1, P(X)AX1)), s Kan-1/P(Xon-1)A(Xan-1)) 3+ 7 5 2 3 10 4 6 9 8 | 1
8 9 6 4 10 3 2 5 7 1
9 4 3 5 1 9 4 3 5 1
10 1 10 1 10 1 10 1 10 1

Unfortunately, a straightforward evaluation would still take
0O(n2) time, as we would need to apply an O(n)-time Horner’ s
Rule evaluation to 2n different points.

The “magical” FFT will do it in O(n log n) time, by picking 2n
points that are easy to evaluate...

= 2,6, 7, 8are 10-th roots of unity in Z*;;
= 22=4, 62=3, 72=5, 82=9 are 5-th roots of unity in Z*;,
» 2126, 31=4, 41=3, 51=9, 61=2, 7-1=8, 81=7, 9'1=5
#® Example 2: The complex number e is a primitive n-th root of
unity, where i=~—1
© 2015 Goodrich and Tamassia FFT 5 © 2015 Goodrich and Tamassia FFT 6

Cryptography

Properties of
Primitive Roots of Unity ,

‘Q Inverse Property: If o is a primitive root of unity, then ® 1—0)" -1
= Proof: oo™ l=e"=1
Cancellation Property: For non-zero -n<k<n, Zwk’ =

= Proof: |
Fov_ @)=t @)t-1_ o —1: 1-1
=) -1 ot -1 ot -1 -1

#® Reduction Property: If w is a primitive (2n)-th root of unity, then
o? is a primitive n-th root of unity.
= Proof: If 1,0,0?,...,02™! are all distinct, so are 1,0?,(®?)2,...,(0?)™!

Reflective Property: If n is even, then "2 = -1.
. Proof By the cancellation property, for k=n/2:

"t +0’+ 0" =m/2)(1+ ")

0= waz)/ 0+ 0" + 0" + o
=0
Corollary: of"2= -ak,
© 2015 Goodrich and Tam?;s\a’ FFT 7

12/18/2017 4:08 PM

=

‘The Discrete Fourier Transform

|® Given coefficients (ag,ay,ay.---,a,4) for an (n-1)-degree polynomial
p(x)
& The Discrete Fourier Transform is to evaluate p at the values
= 1o0%..,0m

= We produce (yo,yuyz, Y1), Where y;=p(o)
That i
. at is, v = Za,w
i=0
= Matrix form: yéFa, where F[i,jl=ol.
@ The Inverse Discrete Fourier Transform recovers the
coefficients of an (n-1)-degree polynomial given its values at

1,0,0%,...,0"1
= Matrix form: a=F -1y, where F “1[i,j]=o"/n.

© 2015 Goodrich and Tamassia FFT 8

Correctness of the E0m o
inverse DFT Gese

The DFT and inverse DFT really are inverse operations
@ Proof: Let A=F-F. We want to show that A=I, where

n=1

Ali, jl=— Zw "
If i=j, then
n-l 1 n-l 1
Ali,i]=— Zw " Za)"=7n=1
L= n

If i and j are different, then

Ali, j1= Zw J% =0 (by Cancellation Property)

=0

© 2015 Goodrich and Tamassia FFT 9

: Convolution

“® The DFT and the
inverse DFT can be
used to multiply two
polynomials

[aya,ay...at,]

‘ Pad with n 0's

1:0.0....0]

S0 we can get the
coefficients of the
product polynomial
quickly if we can
compute the DFT (and D2V aniZana]

its inverse) quickly...

[y Cpnsay]

© 2015 Goodrich and Tamassia FFT (Convolution) 10

The Fast Fourier Transform g

The FFT is an efficient algorithm for computing the DFT
The FFT is based on the divide-and-conquer paradigm:
= If niseven, we can divide a polynomial

) =do+ax+ax’ +-- -+, 1x"!
into two polynomials

even(n/2—1

PVN) = aptaxFax’ o a, o
pOdd(x) = al+L13x+a5x2+...+a”71xn/271

and we can write

p) = pVN) +ap).

© 2015 Goodrich and Tamassia FFT 11

;The FFT Algorithm

Algorithm FFT(a,0):
Input: An n-length coefficient vector a = [ag. a, 1] and a primitive nth
Toot of unity o, where 1 is a power of 2
Output: A vector y of values of the polynomial for a at the nth roots of unity
if n =1 then
relurn y=a
ye o {x will store powers of w, so initially x = 1.}
{Divide Step, which separates even and odd indices}
€V (a4 a5 ay, y
a2 —laya]
{Recursive Calls, with * as (1/2)th root of unity, by the reduction property}
¥
y
{

VN FET(afVeN 2

odd T (aedd o2
Combine Step, using x = '}
for i 0ton/2 1do

3y yeven L. odd
Vit yeven _y.yodd {Uses reflective property }
Xe—X-0
return y The running time is O(n log n). [inverse FFT is similar]
© 2015 Goodrich and Tamassia FFT 12

Cryptography 12/18/2017 4:08 PM

Non-recursive FFT

) # There is also a non-recursive version of the FFT
@ Assume: we can multiply words of O(log N) bits in constant time.
@®

Setup: Find a prime p=cn+1 that can be represented in one word, = Performs the FFT in place
and set m=(log p)/3, so that we can view I and J as n-length = Precomputes all roots of unity
. \fc;?rs of mb'tt Wordi £ U = Performs a cumulative collection of shuffles on A and
inding a primitive root of unity. on B prior to the FFT, which amounts to assigning

= Find a generator x of Z°,. . i - i 5
= Then o=x° is a primitive n-th root of unity in Z; (arithmetic is mod p) the value at index i to the index bit-reverse(i).

Multlplylng Big Integers

Given N-bit integers I and J, compute 1J.

® Apply convolution and FFT algorithm to compute the convolution C # The code is a bit more complex, but the running
i;the VECtortreDresﬁﬂfat'O”S of I.and J. time is faster by a constant, due to improved
& en compute K:chzm‘ overhead
i=0
Kis a vector representing IJ, and takes O(n log n) time to compute.
© 2015 Goodrich and Tamassia FFT 13 © 2015 Goodrich and Tamassia FFT 14

