
Cryptography 12/18/2017 4:08 PM

1

FFT 1

The Fast Fourier Transform

0 1110987654321 1512 1413

0 1110987654321 1512 1413

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

© 2015 Goodrich and Tamassia FFT 2

Polynomials
Polynomial:

In general,

432 43825)(xxxxxp

1
1

2
210

1

0

)(

or

)(

n
n

n

i

i
i

xaxaxaaxp

xaxp

© 2015 Goodrich and Tamassia

FFT 3

Polynomial Evaluation
Horner’s Rule:
 Given coefficients (a0,a1,a2,…,an-1), defining polynomial

 Given x, we can evaluate p(x) in O(n) time using the equation

Eval(A,x): [Where A=(a0,a1,a2,…,an-1)]
 If n=1, then return a0

 Else,
 Let A’=(a1,a2,…,an-1) [assume this can be done in constant time]
 return a0+x*Eval(A’,x)

1

0

)(
n

i

i
i xaxp

)))((()(12210 nn xaaxaxaxaxp

© 2015 Goodrich and Tamassia FFT 4

Polynomial Multiplication
Problem

Given coefficients (a0,a1,a2,…,an-1) and (b0,b1,b2,…,bn-1) defining
two polynomials, p() and q(), and number x, compute p(x)q(x).

Horner’s rule doesn’t help, since

where

A straightforward evaluation would take O(n2) time. The
“magical” FFT will do it in O(n log n) time.

22

0

)()(
n

i

i
i xcxqxp

i

j
jiji bac

0

© 2015 Goodrich and Tamassia

FFT 5

Polynomial Interpolation &
Polynomial Multiplication

Given a set of n points in the plane with distinct x-coordinates,
there is exactly one (n-1)-degree polynomial going through all
these points.
Alternate approach to computing p(x)q(x):
 Calculate p() on 2n x-values, x0,x1,…,x2n-1.
 Calculate q() on the same 2n x values.
 Find the (2n-1)-degree polynomial that goes through the points

{(x0,p(x0)q(x0)), (x1,p(x1)q(x1)), …, (x2n-1,p(x2n-1)q(x2n-1))}.

Unfortunately, a straightforward evaluation would still take
O(n2) time, as we would need to apply an O(n)-time Horner’s
Rule evaluation to 2n different points.
The “magical” FFT will do it in O(n log n) time, by picking 2n
points that are easy to evaluate…

© 2015 Goodrich and Tamassia FFT 6

Primitive Roots of Unity
A number w is a primitive n-th root of unity, for n>1, if
 wn = 1
 The numbers 1, w, w2, …, wn-1 are all distinct

Example 1:
 Z*

11:

 2, 6, 7, 8 are 10-th roots of unity in Z*
11

 22=4, 62=3, 72=5, 82=9 are 5-th roots of unity in Z*
11

 2-1=6, 3-1=4, 4-1=3, 5-1=9, 6-1=2, 7-1=8, 8-1=7, 9-1=5

Example 2: The complex number e2pi/n is a primitive n-th root of
unity, where

x x^2 x^3 x^4 x^5 x^6 x^7 x^8 x^9 x^10
1 1 1 1 1 1 1 1 1 1
2 4 8 5 10 9 7 3 6 1
3 9 5 4 1 3 9 5 4 1
4 5 9 3 1 4 5 9 3 1
5 3 4 9 1 5 3 4 9 1
6 3 7 9 10 5 8 4 2 1
7 5 2 3 10 4 6 9 8 1
8 9 6 4 10 3 2 5 7 1
9 4 3 5 1 9 4 3 5 1
10 1 10 1 10 1 10 1 10 1

1i
© 2015 Goodrich and Tamassia

Cryptography 12/18/2017 4:08 PM

2

FFT 7

Properties of
Primitive Roots of Unity

Inverse Property: If w is a primitive root of unity, then w -1=wn-1

 Proof: wwn-1=wn=1

Cancellation Property: For non-zero -n<k<n,
 Proof:

Reduction Property: If w is a primitive (2n)-th root of unity, then
w2 is a primitive n-th root of unity.
 Proof: If 1,w,w2,…,w2n-1 are all distinct, so are 1,w2,(w2)2,…,(w2)n-1

Reflective Property: If n is even, then wn/2 = -1.
 Proof: By the cancellation property, for k=n/2:

 Corollary: wk+n/2= -wk.

0
1

0

n

j

kjw

0
1

11

1

1)1(

1

1)(

1

1)(1

0

kk

k

k

kn

k

nkn

j

kj

www
w

w
ww

)1)(2/(0 2/2/02/02/0
1

0

)2/(nnnn
n

j

jn n wwwwwwww

© 2015 Goodrich and Tamassia FFT 8

The Discrete Fourier Transform
Given coefficients (a0,a1,a2,…,an-1) for an (n-1)-degree polynomial
p(x)
The Discrete Fourier Transform is to evaluate p at the values
 1,w,w2,…,wn-1

 We produce (y0,y1,y2,…,yn-1), where yj=p(wj)
 That is,

 Matrix form: y=Fa, where F[i,j]=wij.

The Inverse Discrete Fourier Transform recovers the
coefficients of an (n-1)-degree polynomial given its values at
1,w,w2,…,wn-1

 Matrix form: a=F -1y, where F -1[i,j]=w-ij/n.

1

0

n

i

ij
ij ay w

© 2015 Goodrich and Tamassia

FFT 9

Correctness of the
inverse DFT

The DFT and inverse DFT really are inverse operations
Proof: Let A=F -1F. We want to show that A=I, where

If i=j, then

If i and j are different, then

1

0

1
],[

n

k

kjki

n
jiA ww

 Property)onCancellati(by 0
1

],[
1

0

)(

n

k

kij

n
jiA w

1
111

],[
1

0

0
1

0

 n
nnn

iiA
n

k

n

k

kiki www

© 2015 Goodrich and Tamassia FFT 10

Convolution
The DFT and the
inverse DFT can be
used to multiply two
polynomials

So we can get the
coefficients of the
product polynomial
quickly if we can
compute the DFT (and
its inverse) quickly…

Pad with n 0's Pad with n 0's

[a0,a1,a2,...,an-1] [b0,b1,b2,...,bn-1]

DFT DFT

[a0,a1,a2,...,an-1,0,0,...,0] [b0,b1,b2,...,bn-1,0,0,...,0]

[y0,y1,y2,...,y2n-1] [z0,z1,z2,...,z2n-1]

Component
Multiply

inverse DFT

[y0z0,y1z1,...,y2n-1z2n-1]

[c0,c1,c2,...,c2n-1]

(Convolution)© 2015 Goodrich and Tamassia

FFT 11

The Fast Fourier Transform
The FFT is an efficient algorithm for computing the DFT
The FFT is based on the divide-and-conquer paradigm:
 If n is even, we can divide a polynomial

into two polynomials

and we can write

© 2015 Goodrich and Tamassia FFT 12

The FFT Algorithm

The running time is O(n log n). [inverse FFT is similar]

© 2015 Goodrich and Tamassia

Cryptography 12/18/2017 4:08 PM

3

FFT 13

Multiplying Big Integers
Given N-bit integers I and J, compute IJ.
Assume: we can multiply words of O(log N) bits in constant time.
Setup: Find a prime p=cn+1 that can be represented in one word,
and set m=(log p)/3, so that we can view I and J as n-length
vectors of m-bit words.
Finding a primitive root of unity.
 Find a generator x of Z*

p.
 Then w=xc is a primitive n-th root of unity in Z*

p (arithmetic is mod p)

Apply convolution and FFT algorithm to compute the convolution C
of the vector representations of I and J.
Then compute

K is a vector representing IJ, and takes O(n log n) time to compute.

1

0

2
n

i

mi
icK

© 2015 Goodrich and Tamassia FFT 14

Non-recursive FFT
There is also a non-recursive version of the FFT
 Performs the FFT in place
 Precomputes all roots of unity
 Performs a cumulative collection of shuffles on A and

on B prior to the FFT, which amounts to assigning
the value at index i to the index bit-reverse(i).

The code is a bit more complex, but the running
time is faster by a constant, due to improved
overhead

© 2015 Goodrich and Tamassia

