
Quick-Sort

- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
- Divide: pick a random element x (called pivot) and partition S into
- L elements less than x
- E elements equal
- G elements greater than x
- Recur: sort L and G
- Conquer: join L, E and G
c 2015 Goodrich and Tamassia \quad Quick-Sort \qquad

Execution Example

\diamond Pivot selection
Execution Example (cont.)

- Partition, recursive call, pivot selection

Expected Running Time

- Consider a recursive call of quick-sort on a sequence of size s
- Good call: the sizes of L and G are each less than $3 \boldsymbol{s} / 4$
- Bad call: one of L and G has size greater than $3 s / 4$

Good call

Bad call

- A call is good with probability $1 / 2$
- $1 / 2$ of the possible pivots cause good calls:

© 2015 Goodrich and Tamassia

Expected Running Time, Part 2

- Probabilistic Fact: The expected number of coin tosses required in order to get \boldsymbol{k} heads is $2 \boldsymbol{k}$
- For a node of depth i, we expect
- i/2 ancestors are good calls
- The size of the input sequence for the current call is at most $(3 / 4)^{i / 2} \boldsymbol{n}$
- Therefore, we have
- For a node of depth $2 \log _{4 / 3} n_{\text {r }}$ the expected input size is one
- The expected height of the quick-sort tree is $\boldsymbol{O}(\log \boldsymbol{n})$
- The amount or work done at the nodes of the same depth is $\boldsymbol{O}(\boldsymbol{n})$
- Thus, the expected running time of quick-sort is $\boldsymbol{O}(n \log n)$

In-Place Partitioning

- Perform the partition using two indices to split S into L

Algorithm inPlaceQuickSort(S, l, r) Input sequence S, ranks l and r
Output sequence S with the elements of rank between \boldsymbol{l} and r if $l \geq r$

return

\leftarrow a random integer between l and r $x \leftarrow$ S.elemAtRank (i)
$(h, k) \leftarrow$ inPlacePartition (x) inPlaceQuickSort(S, $\boldsymbol{t}, \boldsymbol{h}-1$) inPlaceQuickSort($S, \boldsymbol{k}+1, \boldsymbol{r}$) - elements with rank less than h

- elements with rank greater than k
and $E \cup G$ (a similar method can split $E \cup G$ into E and G).

(pivot $=6$)
- Repeat until j and k cross:
- Scan j to the right until finding an element $\geq \mathrm{x}$.
- Scan k to the left until finding an element $<x$.
- Swap elements at indices j and k

© 2015 Goodrich and Tamassia \quad Quick-Sort

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O\left(n^{2}\right)$	- in-place - slow (good for small inputs)
insertion-sort	$O\left(n^{2}\right)$	- in-place - slow (good for small inputs)
quick-sort	$\begin{gathered} \boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n}) \\ \text { expected } \end{gathered}$	- in-place, randomized - fastest (good for large inputs)
heap-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$	- in-place - fast (good for large inputs)
merge-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$	- sequential data access - fast (good for huge inputs)
© 2015 Goodrich and Tamassia	Quick-Sort	17

