Quick-Sort 3/15/2017 2:30 PM

Presentation for use with the textbook, Algorithm Design and

Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 .
Quick-Sort

Quick-sort is a randomized
. _ sorting algorithm based D
QUICk Sort on the divide-and-conquer D ot D
paradigm:
= Divide: pick a random |:|

element x (called pivot) and
partition § into |:| o
[42—)23] [ZQ—)ZQ] + L elements less than x T - HG_/

+ E elements equal x E

(74962524679 |

[252] [] [] [9 iR 9] + G elements greater than x
d = Recur: sort L and ¢
= Congquer: join L, E and G oQ D
© 2015 Goodrich and Tamassia Quick-Sort 1 © 2015 Goodrich and Tamassia Quick-Sort 2

Partition ' ‘Quick-Sort Tree

We partition an input Algorithm partition(S,p) # An execution of quick-sort is depicted by a binary tree
sequence as f°|_|°W5: g’ ::"“:e;‘l:';_“:eu;‘\f;m,lm;p Goi»tl‘) :l\]:l = Each node represents a recursive call of quick-sort and stores
. :{:n::?ti\v/?;olpnt;gdea(:h semem:(?fs less [};;n'.’ cqual to, + Unsorted sequence before the execution and its pivot
« We inserty into Z, Eor G, B Ef\r(gre:t:;t@ﬂ the pl\‘ol«, resp. + Sorted sequence at the end of the execution
B, G pty | sequerices = The root is the initial call

depending on the result of

the comparison with the
pivot x S 5 0

< S. ve(S. first

Each insertion and removal éf}l _”‘""M firs [74962 >24679]

is at the beginning or at the I))
L.addLast(y)

end of a sequence, and

X « S.remove(p)

while —S.isEmpiy() = The leaves are calls on subsequences of size 0 or 1

Ise if p =
hence takes O(1) time eselEiddzaw) [42 524] [79 ->79]
Thus, the partition step of else {y>x)
quick-sort takes O(n) time G.addLast(y)
return L, E, G [2_)2] [] [] [9_)9]
© 2015 Goodrich and Tamassia Quick-Sort 3 © 2015 Goodrich and Tamassia Quick-Sort 4

_Execution Example Execution Example (cont.)

@ Pivot selection @ Partition, recursive call, pivot selection

(72943761] (72943761)

© 2015 Goodrich and Tamassia Quick-Sort 5 © 2015 Goodrich and Tamassia Quick-Sort 6

Quick-Sort

3/15/2017 2:30 PM

Execution Example (cont.)

@ Partition, recursive call, base case

(72943761)

© 2015 Goodrich and Tamassia Quick-Sort 7

Execution Example (cont.)

#Recursive call, ..., base case, join

(729437561)

(243151234

-~ N

(151) (43-534]

0 &3

© 2015 Goodrich and Tamassia Quick-Sort 8

_Execution Example (cont.)

#Recursive call, pivot selection

(72943761)
~
(243151234] 797
(151] (43534 i o

© 2015 Goodrich and Tamassia Quick-Sort 9

Execution Example (cont.)

Partition, ..., recursive call, base case

(729437561)

(243151234

(151] (43534

=

© 2015 Goodrich and Tamassia Quick-Sort 10

_Execution Example (cont.)

#Join, join

(72943761512346779]

/

(243151234

(151] (43534

© 2015 Goodrich and Tamassia Quick-Sort 11

‘Worst-case Running Time

The worst case for quick-sort occurs when the pivot is the unique

minimum or maximum element
One of L and G has size n - 1 and the other has size 0
The running time is proportional to the sum
n+n—1)+...+2+1
Thus, the worst-case running time of quick-sort is O(n?)
depth time

0 n
1 n—-1
n—1 1 E

© 2015 Goodrich and Tamassia Quick-Sort 12

Quick-Sort

Expected Running Time

| @ Consider a recursive call of quick-sort on a sequence of size s
= Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

72943761
P >~
[EXER) sz)

Good call Bad call
A call is good with probability 1/2
= 1/2 of the possible pivots cause good calls:
(12345678910111213141516 |

——
Bad pivots Good pivots Bad pivots

© 2015 Goodrich and Tamassia Quick-Sort 13

3/15/2017 2:30 PM

Expected Running Time, Part 2

|#® Probabilistic Fact: The expected number of coin tosses required in
order to get k heads is 2k
For a node of depth i, we expect
= /2 ancestors are good calls
= The size of the input sequence for the current call is at most (3/4)n

Therefore, we have expected height
= For a node of depth 2log,n,
the expected input size is one
= The expected height of the s s) | e o)
quick-sort tree is O(log n)
& The amount or work done at the
nodes of the same depth is O(n)
Thus, the expected running time
of quick-sort is O(n log n)

time per level

Olog n)

total expected time: O(1 log 1)

© 2015 Goodrich and Tamassia Quick-Sort 14

In-Place Quick-Sort

I # Quick-sort can be implemented
to run in-place

In the partition step, we use Algorithm inPlaceQuickSort(S, I, r)

replace operations to rearrange | Input sequence . ranks /and r
the elements of the input Output sequence S with the
sequence such that elements of rank between / and r
the elements less than the rearranged in increasing order
.
pivot have rank less than / ift/=r
= the elements equal to the pivot return
have rank between # and & i < arandom integer between / and r
= the elements greater than the X « S.elemAtRank(i)
pivot have rank greater than & (h, k) < inPlacePartition(x)
The recursive calls consider inPlaceQuickSort(S, I, h - 1)
= elements with rank less than & inPlaceQuickSort(S, k + 1, r)
= elements with rank greater
than k
© 2015 Goodrich and Tamassia Quick-Sort 15

In-Place Partitioning

g
@ Perform the partition using two indices to split S into L
and E U G (a similar method can split E U G into E and G).
j k

(32510735927989769] (pivot=6)

Repeat until j and k cross:
= Scan j to the right until finding an element > x.
= Scan k to the left until finding an element < x.
= Swap elements at indices j and k

j k

LS
[32510!1!359!_2!7989759]
~

© 2015 Goodrich and Tamassia Quick-Sort 16

“,Summary of Sorting Algorithms

Algorithm Time Notes

= in-place

ion- 2
selection-sort O(n?) = slow (good for small inputs)

= in-place

. S 2
insertion-sort @) o e (sl o s s,

O(n log n) |~ in-place, randomized

qmck—sort expected = fastest (good for large inputs)
= in-place
heap sort O(n 10g n) = fast (good for large inputs)
= sequential data acces:
merge-sort O(nlogn) | 0ue cess

= fast (good for huge inputs)

© 2015 Goodrich and Tamassia Quick-Sort 17

