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Merge Sort

Presentation for use with the textbook, Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015
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Application: 
Internet Search Engines

Sorting has a lot of 
applications, including 
uses in Internet search 
engines. 
Sorting arises in the 
steps needed to build a 
data structure, known 
as the inverted file or 
inverted index, that 
allows a search engine 
to quickly return a list of 
the documents that 
contain a given 
keyword.
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Word Document 
Number & 
word 
location

banana 1:3, 2:45

butterfly 2:15, 3:12

camel 4:40

dog 1:60, 1:70, 
2:22, 3:20, 
4:11

horse 4:21

pig 2:55

pizza 1:56, 3:33

Documents
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Application: How Sorting Builds 
an Internet Search Engine
To build an inverted file we need 
to identify, for each keyword, k, 
the documents containing k. 
Bringing all such documents 
together can be done simply by 
sorting the set of keyword-
document pairs by keywords. 
This places all the (k, d) pairs 
with the same keyword, k, right 
next to one another. 
From this sorted list, it is then a 
simple computation to scan the 
list and build a lookup table of 
documents for each keyword that 
appears in this sorted list.
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Divide-and-Conquer
Divide-and conquer is a 
general algorithm design 
paradigm:
 Divide: divide the input data 

S in two disjoint subsets S1
and S2

 Recur: solve the 
subproblems associated 
with S1 and S2

 Conquer: combine the 
solutions for S1 and S2 into a 
solution for S

The base case for the 
recursion are subproblems of 
size 0 or 1
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Merge-Sort
Merge-sort is a sorting algorithm based on the divide-and-conquer 
paradigm 
Like heap-sort
 It has O(n log n) running time

Unlike heap-sort
 It does not use an auxiliary priority queue
 It accesses data in a sequential manner (suitable to sort data on a disk)
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The Merge-Sort Algorithm
Merge-sort on an input 
sequence S with n
elements consists of 
three steps:
 Divide: partition S into 

two sequences S1 and S2
of about n/2 elements 
each

 Recur: recursively sort S1
and S2

 Conquer: merge S1 and 
S2 into a unique sorted 
sequence

Algorithm mergeSort(S)
Input sequence S with n

elements 
Output sequence S sorted

according to C
if S.size() > 1

(S1, S2)  partition(S, n/2) 
mergeSort(S1)
mergeSort(S2)
S  merge(S1, S2)
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Merging Two Sorted Sequences
The conquer step of 
merge-sort consists 
of merging two 
sorted sequences A 
and B into a sorted 
sequence S 
containing the union 
of the elements of A 
and B
Merging two sorted 
sequences, each 
with n/2 elements 
and implemented by 
means of a doubly 
linked list, takes 
O(n) time
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Merge-Sort Tree
An execution of merge-sort is depicted by a binary tree
 each node represents a recursive call of merge-sort and stores

 unsorted sequence before the execution and its partition
 sorted sequence at the end of the execution

 the root is the initial call 
 the leaves are calls on subsequences of size 0 or 1

7  2  9  4   2  4  7  9

7  2   2  7 9  4   4  9

7  7 2  2 9  9 4  4
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Execution Example
Partition

7  2  9  4   2  4  7  9 3  8  6  1   1  3  8  6

7  2   2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)
Recursive call, partition

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2   2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)
Recursive call, partition

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)
Recursive call, base case

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, base case

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)
Merge

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)
Recursive call, …, base case, merge

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4  4  9 3  8   3  8 6  1   1  6

7  7 2  2 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9

9  9 4  4
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Execution Example (cont.)
Merge

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4  4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, …, merge, merge

7  2  9  4  2  4  7  9 3  8  6  1  1  3  6  8

7  2  2  7 9  4  4  9 3  8  3  8 6  1  1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)
Merge

7  2  9  4  2  4  7  9 3  8  6  1  1  3  6  8

7  2  2  7 9  4  4  9 3  8  3  8 6  1  1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Analysis of Merge-Sort
The height h of the merge-sort tree is O(log n)
 at each recursive call we divide in half the sequence, 

The overall amount or work done at the nodes of depth i is O(n)
 we partition and merge 2i sequences of size n/2i

 we make 2i+1 recursive calls

Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n

1 2 n/2

i 2i n/2i

… … …
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Summary of Sorting Algorithms
Algorithm Time Notes

selection-sort O(n2)
 slow
 in-place
 for small data sets (< 1K)

insertion-sort O(n2)
 slow
 in-place
 for small data sets (< 1K)

heap-sort O(n log n)
 fast
 in-place
 for large data sets (1K — 1M)

merge-sort O(n log n)
 fast
 sequential data access
 for huge data sets (> 1M)


