
Merge Sort 3/15/2017 2:29 PM

1

© 2015 Goodrich and Tamassia Merge Sort 1

Merge Sort

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

© 2015 Goodrich and Tamassia

Application:
Internet Search Engines

Sorting has a lot of
applications, including
uses in Internet search
engines.
Sorting arises in the
steps needed to build a
data structure, known
as the inverted file or
inverted index, that
allows a search engine
to quickly return a list of
the documents that
contain a given
keyword.

Merge Sort 2

Word Document
Number &
word
location

banana 1:3, 2:45

butterfly 2:15, 3:12

camel 4:40

dog 1:60, 1:70,
2:22, 3:20,
4:11

horse 4:21

pig 2:55

pizza 1:56, 3:33

Documents

© 2015 Goodrich and Tamassia

Application: How Sorting Builds
an Internet Search Engine
To build an inverted file we need
to identify, for each keyword, k,
the documents containing k.
Bringing all such documents
together can be done simply by
sorting the set of keyword-
document pairs by keywords.
This places all the (k, d) pairs
with the same keyword, k, right
next to one another.
From this sorted list, it is then a
simple computation to scan the
list and build a lookup table of
documents for each keyword that
appears in this sorted list.

Merge Sort 3

Word Document
Number &
word
location

banana 1:3, 2:45

butterfly 2:15, 3:12

camel 4:40

dog 1:60, 1:70,
2:22, 3:20,
4:11

horse 4:21

pig 2:55

pizza 1:56, 3:33

Documents

© 2015 Goodrich and Tamassia Merge Sort 4

Divide-and-Conquer
Divide-and conquer is a
general algorithm design
paradigm:
 Divide: divide the input data

S in two disjoint subsets S1
and S2

 Recur: solve the
subproblems associated
with S1 and S2

 Conquer: combine the
solutions for S1 and S2 into a
solution for S

The base case for the
recursion are subproblems of
size 0 or 1

© 2015 Goodrich and Tamassia Merge Sort 5

Merge-Sort
Merge-sort is a sorting algorithm based on the divide-and-conquer
paradigm
Like heap-sort
 It has O(n log n) running time

Unlike heap-sort
 It does not use an auxiliary priority queue
 It accesses data in a sequential manner (suitable to sort data on a disk)

© 2015 Goodrich and Tamassia Merge Sort 6

The Merge-Sort Algorithm
Merge-sort on an input
sequence S with n
elements consists of
three steps:
 Divide: partition S into

two sequences S1 and S2
of about n/2 elements
each

 Recur: recursively sort S1
and S2

 Conquer: merge S1 and
S2 into a unique sorted
sequence

Algorithm mergeSort(S)
Input sequence S with n

elements
Output sequence S sorted

according to C
if S.size() > 1

(S1, S2)  partition(S, n/2)
mergeSort(S1)
mergeSort(S2)
S  merge(S1, S2)

Merge Sort 3/15/2017 2:29 PM

2

© 2015 Goodrich and Tamassia Merge Sort 7

Merging Two Sorted Sequences
The conquer step of
merge-sort consists
of merging two
sorted sequences A
and B into a sorted
sequence S
containing the union
of the elements of A
and B
Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes
O(n) time

© 2015 Goodrich and Tamassia Merge Sort 8

Merge-Sort Tree
An execution of merge-sort is depicted by a binary tree
 each node represents a recursive call of merge-sort and stores

 unsorted sequence before the execution and its partition
 sorted sequence at the end of the execution

 the root is the initial call
 the leaves are calls on subsequences of size 0 or 1

7 2  9 4  2 4 7 9

7  2  2 7 9  4  4 9

7  7 2  2 9  9 4  4

© 2015 Goodrich and Tamassia Merge Sort 9

Execution Example
Partition

7 2 9 4  2 4 7 9 3 8 6 1  1 3 8 6

7 2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

© 2015 Goodrich and Tamassia Merge Sort 10

Execution Example (cont.)
Recursive call, partition

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7 2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

© 2015 Goodrich and Tamassia Merge Sort 11

Execution Example (cont.)
Recursive call, partition

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

© 2015 Goodrich and Tamassia Merge Sort 12

Execution Example (cont.)
Recursive call, base case

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

Merge Sort 3/15/2017 2:29 PM

3

© 2015 Goodrich and Tamassia Merge Sort 13

Execution Example (cont.)

Recursive call, base case

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

© 2015 Goodrich and Tamassia Merge Sort 14

Execution Example (cont.)
Merge

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

© 2015 Goodrich and Tamassia Merge Sort 15

Execution Example (cont.)
Recursive call, …, base case, merge

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

9  9 4  4

© 2015 Goodrich and Tamassia Merge Sort 16

Execution Example (cont.)
Merge

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

© 2015 Goodrich and Tamassia Merge Sort 17

Execution Example (cont.)

Recursive call, …, merge, merge

7 2  9 4  2 4 7 9 3 8 6 1  1 3 6 8

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

© 2015 Goodrich and Tamassia Merge Sort 18

Execution Example (cont.)
Merge

7 2  9 4  2 4 7 9 3 8 6 1  1 3 6 8

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

Merge Sort 3/15/2017 2:29 PM

4

© 2015 Goodrich and Tamassia Merge Sort 19

Analysis of Merge-Sort
The height h of the merge-sort tree is O(log n)
 at each recursive call we divide in half the sequence,

The overall amount or work done at the nodes of depth i is O(n)
 we partition and merge 2i sequences of size n/2i

 we make 2i+1 recursive calls

Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n

1 2 n/2

i 2i n/2i

… … …

© 2015 Goodrich and Tamassia Merge Sort 20

Summary of Sorting Algorithms
Algorithm Time Notes

selection-sort O(n2)
 slow
 in-place
 for small data sets (< 1K)

insertion-sort O(n2)
 slow
 in-place
 for small data sets (< 1K)

heap-sort O(n log n)
 fast
 in-place
 for large data sets (1K — 1M)

merge-sort O(n log n)
 fast
 sequential data access
 for huge data sets (> 1M)

