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Presentation for use with the textbook, Algorithm Design and Appl Icatlon :
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 .
Internet Search Engines

# Sorting has a lot of

2 e . . D t
apph(;atnons, including Nﬂ::’::';
Merge Sort uses in Internet search word
engines. location
# Sorting arises in the banana 1:3, 2:45
steps needed to build a butterfly 215, 3:12
data structure, known | T
as the inverted file or came d
inverted index, that dog 1:60, 1:70,
allows a search engine ‘Zl:ﬁr 3:20,
to quickly return alistof | ;o oo
the documents that horse 421
contain a given pig 2:55
keyword. pizza 1:56, 3:33
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#| To build an inverted file we need ) i )
to identify, for each keyword, k, Document # Divide-and conquer is a
the documents containing k e Number & general algorithm design 1. Divide in half.
. | word paradigm: —
# Bringing all such documents location « Divide: divide the input data Split list equally
together can be done simply by ERERE 133 2:45 S in two disjoint subsets S, 2. Reaur, 2 Recur
sorting the set of keyword- buttorfl 2_1’ D) and s,
document pairs by keywords. utterfly 15, 3: . Regur: t?lolve the ’
# This places all the (k, d) pairs camel 4:40 subproblems assocate
X A d 1:60. 170 with ., and S, )
with the same keyword, k, right og o 3:20, « Conquer: combine the 8
next to one another. 4:11' il solutions for §,and s, into a T .
# From this sorted list, it is then @ | pocuments solution for § \\ /,
simple computation to scan the horse 4:21 # The base case for the == -
list and build a lookup table of pig 2:55 recursion are subproblems of 3. Merge.
documents for each keyword that pizza 1:56, 3:33 size 0 or 1
appears in this sorted list.
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‘Merge-Sort ‘The Merge-Sort Algorithm

"’@ Merge-sort is a sorting algorithm based on the divide-and-conquer

paradigm # Merge-sort on an input | Algorithm mergeSor(S)
# Like heap-sort sequence S with n Input sequence S with
= It has O(n log n) running time elements consists of elements
# Unlike heap-sort three steps: Output sequence S sorted
= It does not use an auxiliary priority queue = Divide: partition S into ] ac.cordmg toC
= It accesses data in a sequential manner (suitable to sort data on a disk) two sequences S, and S, if S.size() > 1
of about »/2 elements (S, S,) « partition(S, n/2)
( 85 24 63 45 17 3| 9% 50 ) [ 17 24 31 45 50 63 85 9% ] each mergeSort(S,)
= Recur: recursively sort mergeSort(S,)
(52 63 45 17 396 s ) (%656 8 j [17 3150 9% ) and §, S < merge(S,, S,)

Conquer: merge S, and
S, into a unique sorted
sequence

85 24 ) 63 45 ) (17 31 ) (9% s0 2 85 45 63)

45 17 @ % )50 @@ @ 17\\@ % | (50
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Merging Two Sorted Sequences

[ #® The conquer step of
merge-sort consists

. 51 and Sy, of size 1y and ny, respectively, sorted in non-
of merging two decreasing order, and an emply array, S, of size at least ny + na
Sorted Sequences A Ouiput: S, containing the elements from Sy and Sy in sorted order
and B into a sorted =

Fi-1
sequence § while i < nand j <ndo
containing the union i Si}i] < Salj] then
S+ — 1] « S1fi]
of the elements of 4 Jeit1
and B else
. Sli+j— 1] + Safj]
# Merging two sorted g
sequences, each Wh‘l.i’\:fj(—dfj 5
with n/2 elements ieitl

H while j <n do
and implemented by ST sl

means of a doubly Jeit1
linked list, takes
O(n) time
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Merge-Sort Tree

@ An execution of merge-sort is depicted by a binary tree
= each node represents a recursive call of merge-sort and stores
+ unsorted sequence before the execution and its partition
+ sorted sequence at the end of the execution
= the root is the initial call
= the leaves are calls on subsequences of size 0 or 1

(72194 52479]

(712527] (914549

(757) (252 [9-9) (a4
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'Execution Example
| @Partition

(729413861 ]

Execution Example (cont.)

@ Recursive call, partition

(729413861 )
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_Execution Example (cont.)

@ Recursive call, partition

(729413861 )

© 2015 Goodrich and Tamassia Merge Sort 11

Execution Example (cont.)

# Recursive call, base case

(729413861 )

EIETI. [ )

712

e ) ) C 2 C
B e do de
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Execution Example (cont.)

#Recursive call, base case

(729413861 )
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Execution Example (cont.)

# Merge

(729413861 )

S P | . J
757 . B B 8 B B
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_Execution Example (cont.)

@ Recursive call, ..., base case, merge

(729413861 )

(72194 )

(712527] (94549 e e
e b | A /\
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Execution Example (cont.)

#®Merge

(729413861 )

(7219452479

~ N
l227 (ea-a9) & 1 .
é} ____________________
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_Execution Example (cont.)

#Recursive call, ..., merge, merge

(729413861 )

(7219452479 [3861—)1368]

7|2—)27 94—)49 38—)38 61—)16
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Execution Example (cont.)

#®Merge

(729413861 >12346789]

- A

(7219452479

(386151368

7|2—>27 94-»49 38—)38 61—)16
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Analysis of Merge-Sort ‘Summary of Sorting Algorithms

| & The height & of th -sort tree is O J ]
# The height & of the merge-sort tree is O(log ) Algorithm | Time |Notes
= at each recursive call we divide in half the sequence,
@ The overall amount or work done at the nodes of depth iis O(n) i ) " §|0W
= we partition and merge 2 sequences of size n/2¢ selection-sort O(n?) = in-place
= we make 2! recursive calls = for small data sets (< 1K)
@ Thus, the total running time of merge-sort is O(n log n) . . = slow
insertion-sort o(n?) = in-place
depth #seqs size = for small data sets (< 1K)
0 1 n /) = fast
heap-sort | O(nlogn) |= in-place
: 2 2 l J ( ) = for large data sets (1K — 1M)
i 20 a2t = fast
merge-sort | O(nlogn) |* sequential data access
= for huge data sets (> 1M)
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