
Dynamic Programming 3/22/2021 6:32 PM

1

© 2015 Goodrich and Tamassia Telescope Scheduling 1

Dynamic Programming: 
Telescope Scheduling

Presentation for use with the textbook, Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Hubble Space Telescope. Public domain image, NASA, 2009.

© 2015 Goodrich and Tamassia

Motivation
Large, powerful telescopes are precious 
resources that are typically oversubscribed by 
the astronomers who request times to use 
them. 
This high demand for observation times is 
especially true, for instance, for a space 
telescope, which could receive thousands of 
observation requests per month. 

Telescope Scheduling 2

© 2015 Goodrich and Tamassia

Telescope Scheduling Problem
The input to the telescope scheduling problem is a list, 
L, of observation requests, where each request, i, 
consists of the following elements:
 a requested start time, si, which is the moment when a 

requested observation should begin
 a finish time, fi, which is the moment when the observation 

should finish (assuming it begins at its start time)
 a positive numerical benefit, bi, which is an indicator of the 

scientific gain to be had by performing this observation.

The start and finish times for an observation request 
are specified by the astronomer requesting the 
observation; the benefit of a request is determined by 
an administrator or a review committee.

Telescope Scheduling 3 © 2015 Goodrich and Tamassia

Telescope Scheduling Problem
To get the benefit, bi, for an observation request, i, 
that observation must be performed by the telescope 
for the entire time period from the start time, si, to the 
finish time, fi. 
Thus, two requests, i and j, conflict if the time 
interval [si, fi], intersects the time interval, [sj, fj]. 
Given the list, L, of observation requests, the 
optimization problem is to schedule observation 
requests in a non-conflicting way so as to maximize the 
total benefit of the observations that are included in 
the schedule.

Telescope Scheduling 4

© 2015 Goodrich and Tamassia

Example

Telescope Scheduling 5

The left and right boundary of each rectangle represent the start and 
finish times for an observation request. The height of each rectangle 
represents its benefit. We list each request’s benefit (Priority) on the 
left. The optimal solution has total benefit 17=5+5+2+5.

© 2015 Goodrich and Tamassia

False Start 1: Brute Force
There is an obvious exponential-time algorithm 
for solving this problem, of course, which is to 
consider all possible subsets of L and choose 
the one that has the highest total benefit 
without causing any scheduling conflicts.
Implementing this brute-force algorithm would 
take O(n2n) time, where n is the number of 
observation requests.
We can do much better than this, however, by 
using the dynamic programming technique.

Telescope Scheduling 6



Dynamic Programming 3/22/2021 6:32 PM

2

© 2015 Goodrich and Tamassia

False Start 2: Greedy Method
A natural greedy strategy would be to consider the 
observation requests ordered by nonincreasing
benefits, and include each request that doesn’t 
conflict with any chosen before it. 
 This strategy doesn’t lead to an optimal solution, however.

For instance, suppose we had a list containing just 3 
requests—one with benefit 100 that conflicts with 
two non-conflicting requests with benefit 75 each. 
 The greedy method would choose the observation with 

benefit 100, whereas we can achieve a total benefit of 150 
by taking the two requests with benefit 75 each. 

 So a greedy strategy based on repeatedly choosing a non-
conflicting request with maximum benefit won’t work.

Telescope Scheduling 7 © 2015 Goodrich and Tamassia Telescope Scheduling 8

The General Dynamic 
Programming Technique

Applies to a problem that at first seems to 
require a lot of time (possibly exponential), 
provided we have:
 Simple subproblems: the subproblems can be 

defined in terms of a few variables, such as j, k, l, 
m, and so on.

 Subproblem optimality: the global optimum value 
can be defined in terms of optimal subproblems

 Subproblem overlap: the subproblems are not 
independent, but instead they overlap (hence, 
should be constructed bottom-up).

© 2015 Goodrich and Tamassia Telescope Scheduling 9

Defining Simple Subproblems
A natural way to define subproblems is to 
consider the observation requests according 
to some ordering, such as ordered by start 
times, finish times, or benefits.
 We already saw that ordering by benefits is a false 

start.
 Start times and finish times are essentially 

symmetric, so let us order observations by finish 
times.

© 2015 Goodrich and Tamassia Telescope Scheduling 10

Predecessors
For any request i, the set of other requests that conflict with i
form a contiguous interval of requests in L.
Define the predecessor, pred(i), for each request, i, then, to be 
the largest index, j < i, such that requests i and j don’t conflict. If 
there is no such index, then define the predecessor of i to be 0.

© 2015 Goodrich and Tamassia Telescope Scheduling 11

Subproblem Optimality
A schedule that achieves the optimal value, 
Bi, either includes observation i or not.

© 2015 Goodrich and Tamassia Telescope Scheduling 12

Subproblem Overlap
The above definition has subproblem overlap. 
Thus, it is most efficient for us to use memoization
when computing Bi values, by storing them in an 
array, B, which is indexed from 0 to n. 
Given the ordering of requests by finish times and an 
array, P, so that P[i] = pred(i), then we can fill in the 
array, B, using the following simple algorithm:



Dynamic Programming 3/22/2021 6:32 PM

3

© 2015 Goodrich and Tamassia Telescope Scheduling 13

Analysis of the Algorithm
It is easy to see that the running time of this 
algorithm is O(n), assuming the list L is ordered by 
finish times and we are given the predecessor for each 
request i. 
Of course, we can easily sort L by finish times if it is 
not given to us already sorted according to this 
ordering. 
To compute the predecessor of each request, note 
that it is sufficient that we also have the requests in L 
sorted by start times. 
 In particular, given a listing of L ordered by finish times 

and another listing, L′, ordered by start times, then a 
merging of these two lists, as in the merge-sort algorithm 
(Section 8.1), gives us what we want. 

 The predecessor of request i is literally the index of the 
predecessor in L of the value, si, in L′.


