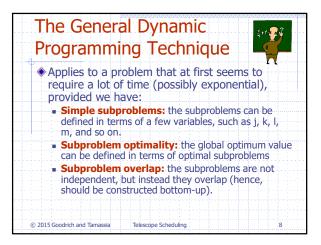
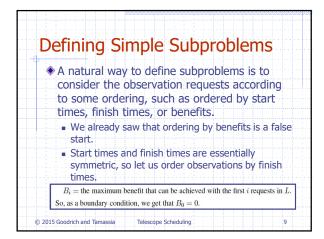
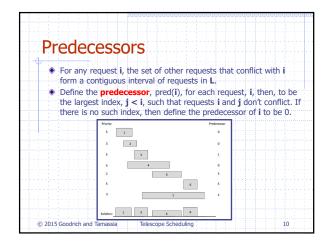
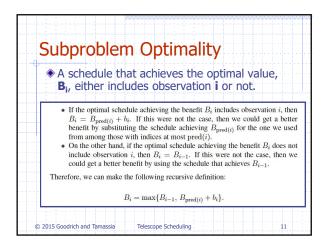


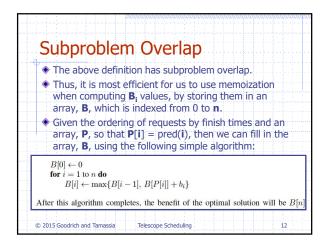
Large, power	ful telescopes are precious
	t are typically oversubscribed by
	ers who request times to use
	nand for observation times is
	e, for instance, for a space
	ich could receive thousands of
observation r	equests per month.




Telescope	Scheduling Problem
that observation	fit, b _i , for an observation request, i , n must be performed by the telescope ne period from the start time, s _i , to the
	ests, i and j , conflict if the time intersects the time interval, [s_j, f j].
optimization pro requests in a no	, of observation requests, the oblem is to schedule observation on-conflicting way so as to maximize the the observations that are included in






False Start 2: Greedy Method
 A natural greedy strategy would be to consider the observation requests ordered by nonincreasing benefits, and include each request that doesn't conflict with any chosen before it.
 This strategy doesn't lead to an optimal solution, however. For instance, suppose we had a list containing just 3 requests—one with benefit 100 that conflicts with two non-conflicting requests with benefit 75 each.
 The greedy method would choose the observation with benefit 100, whereas we can achieve a total benefit of 150 by taking the two requests with benefit 75 each.
So a greedy strategy based on repeatedly choosing a non- conflicting request with maximum benefit won't work. 2015 Goodrich and Tamassia Telescope Scheduling 7

	lysis of the A	-
fini	easy to see that the p prithm is O(n) , assum th times and we are givest i .	running time of this ing the list L is ordered by iven the predecessor for each
 Of not orc 	ourse, we can easily s given to us already sc ering.	sort L by finish times if it is orted according to this
 To that sor 	compute the predeces it is sufficient that we ed by start times.	sor of each request, note e also have the requests in L
	n particular, given a listin nd another listing, L' , ord nerging of these two lists Section 8.1), gives us wh	g of L ordered by finish times dered by start times, then a , as in the merge-sort algorithm at we want.
		st i is literally the index of the