
Dynamic Programming 3/15/2017 2:19 PM

1

© 2015 Goodrich and Tamassia LCS 1

Dynamic Programming:
Longest Common Subsequences

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

© 2015 Goodrich and Tamassia

Application: DNA Sequence
Alignment

DNA sequences can be viewed as strings of
A, C, G, and T characters, which represent
nucleotides.
Finding the similarities between two DNA
sequences is an important computation
performed in bioinformatics.
 For instance, when comparing the DNA of

different organisms, such alignments can highlight
the locations where those organisms have
identical DNA patterns.

LCS 2

© 2015 Goodrich and Tamassia

Application: DNA Sequence
Alignment

Finding the best alignment between two DNA strings
involves minimizing the number of changes to
convert one string to the other.

A brute-force search would take exponential time,
but we can do much better using dynamic
programming.

LCS 3 © 2015 Goodrich and Tamassia LCS 4

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:
 Simple subproblems: the subproblems can be

defined in terms of a few variables, such as j, k, l,
m, and so on.

 Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

 Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

© 2015 Goodrich and Tamassia LCS 5

Subsequences
A subsequence of a character string
x0x1x2…xn-1 is a string of the form
xi1xi2…xik, where ij < ij+1.
Not the same as substring!
Example String: ABCDEFGHIJK
 Subsequence: ACEGIJK
 Subsequence: DFGHK
 Not subsequence: DAGH

© 2015 Goodrich and Tamassia LCS 6

The Longest Common
Subsequence (LCS) Problem

Given two strings X and Y, the longest
common subsequence (LCS) problem is
to find a longest subsequence common
to both X and Y
Has applications to DNA similarity
testing (alphabet is {A,C,G,T})
Example: ABCDEFG and XZACKDFWGH
have ACDFG as a longest common
subsequence

Dynamic Programming 3/15/2017 2:19 PM

2

© 2015 Goodrich and Tamassia LCS 7

A Poor Approach to the
LCS Problem

A Brute-force solution:
 Enumerate all subsequences of X
 Test which ones are also subsequences of Y
 Pick the longest one.

Analysis:
 If X is of length n, then it has 2n

subsequences
 This is an exponential-time algorithm!

© 2015 Goodrich and Tamassia LCS 8

A Dynamic-Programming
Approach to the LCS Problem

Define L[i,j] to be the length of the longest common
subsequence of X[0..i] and Y[0..j].
Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to
indicate that the null part of X or Y has no match with the
other.
Then we can define L[i,j] in the general case as follows:
1. If xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this match)
2. If xi≠yj, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no

match here)

Case 1: Case 2:

© 2015 Goodrich and Tamassia LCS 9

An LCS Algorithm
Algorithm LCS(X,Y):
Input: Strings X and Y with n and m elements, respectively
Output: For i = 0,…,n-1, j = 0,...,m-1, the length L[i, j] of a longest string

that is a subsequence of both the string X[0..i] = x0x1x2…xi and the
string Y [0.. j] = y0y1y2…yj

for i =1 to n-1 do
L[i,-1] = 0

for j =0 to m-1 do
L[-1,j] = 0

for i =0 to n-1 do
for j =0 to m-1 do

if xi = yj then
L[i, j] = L[i-1, j-1] + 1

else
L[i, j] = max{L[i-1, j] , L[i, j-1]}

return array L

© 2015 Goodrich and Tamassia LCS 10

Visualizing the LCS Algorithm

© 2015 Goodrich and Tamassia LCS 11

Analysis of LCS Algorithm
We have two nested loops
 The outer one iterates n times
 The inner one iterates m times
 A constant amount of work is done inside

each iteration of the inner loop
 Thus, the total running time is O(nm)
Answer is contained in L[n,m] (and the
subsequence can be recovered from the
L table).

