

Application: DNA Sequence Alignment

- Finding the best alignment between two DNA strings involves minimizing the number of changes to convert one string to the other.

LCS

Application: DNA Sequence

 Alignment- DNA sequences can be viewed as strings of A, C, G, and T characters, which represent nucleotides.
- Finding the similarities between two DNA sequences is an important computation performed in bioinformatics.
- For instance, when comparing the DNA of different organisms, such alignments can highlight the locations where those organisms have identical DNA patterns.
© 2015 Goodrich and Tamassia \quad LCS

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
- Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, I, m , and so on.
- Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
- Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).
© 2015 Goodrich and Tamassia
LCS

The Longest Common

 Subsequence (LCS) Problem- Given two strings X and Y, the longest common subsequence (LCS) problem is to find a longest subsequence common to both X and Y
- Has applications to DNA similarity testing (alphabet is $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$)
- Example: ABCDEFG and XZACKDFWGH have ACDFG as a longest common subsequence
© 2015 Goodrich and Tamassia
LCS

A Poor Approach to the LCS Problem

\bullet A Brute-force solution:

- Enumerate all subsequences of X
- Test which ones are also subsequences of Y
- Pick the longest one.
-Analysis:
- If X is of length n, then it has 2^{n} subsequences
- This is an exponential-time algorithm!
© 2015 Goodrich and Tamassia
LCS

Visualizing the LCS Algorithm
Algorithm $\operatorname{LCS}(X, Y)$:
Input: Strings X and Y with n and m elements, respectively
Output: For $\mathrm{i}=0, \ldots, \mathrm{n}-1, \mathrm{j}=0, \ldots, \mathrm{~m}-1$, the length $\mathrm{L}[i, j]$ of a longest string that is a subsequence of both the string $X[0 . . i]=x_{0} x_{1} x_{2} \ldots x_{i}$ and the string $Y[0 \ldots j]=y_{0} y_{1} y_{2} \ldots y_{j}$
for $i=1$ to $n-1$ do $\mathrm{L}[\mathrm{i},-1]=0$
for $\mathrm{j}=0$ to $\mathrm{m}-1$ do
$\mathrm{L}[-1, j]=0$
for $i=0$ to $n-1$ do
for $j=0$ to $m-1$ do
if $x_{i}=y_{j}$ then
else
$E[i, j]=L[i-1, j-1]+1$
$L[i, j]=\max \{L[i-1, j], L[i, j-1]\}$
return array L
$\ldots, \ldots, L[1, j], L[1]\}$
© 2015 Goodrich and Tamassia
LCS

© 2015 Goodrich and Tamassia
LCS

Analysis of LCS Algorithm

-We have two nested loops

- The outer one iterates n times
- The inner one iterates m times
- A constant amount of work is done inside each iteration of the inner loop
- Thus, the total running time is $\mathrm{O}(\mathrm{nm})$

Answer is contained in $L[n, m]$ (and the subsequence can be recovered from the L table).

