Dynamic Programming

3/15/2017 2:19 PM

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

’Dynamic Programming:
Longest Common Subsequences

© 2015 Goodrich and Tamassia

Application: DNA Sequence

Alignment

DNA sequences can be viewed as strings of
A, C, G, and T characters, which represent
nucleotides.

Finding the similarities between two DNA
sequences is an important computation
performed in bioinformatics.

= For instance, when comparing the DNA of
different organisms, such alignments can highlight
the locations where those organisms have
identical DNA patterns.

© 2015 Goodrich and Tamassia LCS 2

Application: DNA Sequence
_Alignment

I # Finding the best alignment between two DNA strings
involves minimizing the number of changes to
convert one string to the other.

X: ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
I LT 14 1 i N O
G TC GT CG G AAGCCGGCCGAA
GTICGT CGGAA GCCG GC C G AA
PEERE TRt e e
S GTCGTTCGGAATGCCGTTGCTCTGTAR

Figure 12.1: Two DNA sequences, X and Y, and their alignment in terms of a longest
subsequence, GTCGTCGGARGCCGGCCGAR, that is common to these two strings.

A brute-force search would take exponential time,
but we can do much better using dynamic
programming.

© 2015 Goodrich and Tamassia LCS 3

The General Dynamic
Programming Technique

‘ # Applies to a problem that at first seems to

require a lot of time (possibly exponential),
provided we have:
= Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j, k, |,
m, and so on.
= Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems
= Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

© 2015 Goodrich and Tamassia LCS 4

Subsequences

@A subsequence of a character string
XoX1X3:+:Xq.1 IS @ string of the form
X Xp--- i, Where iy < fj+1.
#Not the same as substring!
@ Example String: ABCDEFGHIJK
= Subsequence: ACEGIJK
= Subsequence: DFGHK
= Not subsequence: DAGH

© 2015 Goodrich and Tamassia LCS 5

The Longest Common
Subsequence (LCS) Problem

Given two strings X and Y, the longest
common subsequence (LCS) problem is
to find a longest subsequence common
to both X and Y

®Has applications to DNA similarity
testing (alphabet is {A,C,G,T})

@ Example: ABCDEFG and XZACKDFWGH
have ACDFG as a longest common
subsequence

© 2015 Goodrich and Tamassia

Dynamic Programming

A Poor Approach to the
'LCS Problem

@ A Brute-force solution:
= Enumerate all subsequences of X
= Test which ones are also subsequences of Y
= Pick the longest one.

@ Analysis:

= If X is of length n, then it has 2"
subsequences

= This is an exponential-time algorithm!

© 2015 Goodrich and Tamassia LCS 7

3/15/2017 2:19 PM

A Dynamic-Programming

Approach to the LCS Problem

Define L[i,j] to be the length of the longest common
subsequence of X[0..i] and Y[0..j].

Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to
inﬂicate that the null part of X or Y has no match with the
other.

Then we can define L[i,j] in the general case as follows:

1. If xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this match)
2. If xi#yj, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no
match here)

Case 1: Case 2:
234567891011 012345678910
Y-CGATAATTGAGA Y=CGATAATTGAG L[9.9]=6
L0 NN\ L[8.10}=5
X=GTTCCTAATA X=GTTCCTAATA
0123456789 0123456789
© 2015 Goodrich and Tamassia LCS 8

_An LCS Algorithm

" Algorithm LCS(X,Y):
Input: Strings X and Y with n and m elements, respectively
Output: Fori = 0,...,n-1, j = 0,...,m-1, the length L[i, j] of a longest string
that is a subsequence of both the string X[0..i] = XoX;X,...x; and the
string Y [0.. j]1 = Yoy1y2--.Y;
fori=1ton-1do
L[i,-1]1=0
for j =0 to m-1 do
L[-1,j1=0
for i =0 to n-1 do
for j =0 to m-1 do
if x; = y; then
L[i, j] = L[i-1, j-1] + 1
else
L[i, 1 = max{L{i-1, j], LLi, j-1]}
return array L

© 2015 Goodrich and Tamassia LCS 9

‘Visualizing the LCS Algorithm

L]-1|10[1|2|3[4(5|6|7|8|9]|10]I11
1fojofojojojofofojo|lofOo]0O]|O
OJOjOojT (1|11 |f1]1jTf1|1]|1 1
01234567891011
11001 (1]|2|2(2]|2]2(2|2|2]|2
Y=CGATAATTGAG.
2|0]0|1|1|2({2[{2]3|3(3(3][3]|3
3jofrfr|1{2(2)2(3(3|3|3(3 |3
X=GTTCCTAATA
410 (1f1|1|2]{2|2(3(3(3|3|3|3 0123456789
5|10 |1|1|1(2]2]2]|3(4[4|4| 4|4
6|0|1|1|2(2(3[3|3|4(4(5]|5]|5
7101 |1|2(2]3|4]|4|4[4|5|5]|6
8]0 (f1[1]2]3]|3|4(5|5|5|5|5/|6
9|0|1|1|2(3]|4|4|5|5|5|6|6/|6
© 2015 Goodrich and Tamassia LCs 10

“Analysis of LCS Algorithm

@ We have two nested loops
= The outer one iterates n7 times
= The inner one iterates m times

= A constant amount of work is done inside
each iteration of the inner loop

= Thus, the total running time is O(/1m)

#® Answer is contained in L[n,m] (and the
subsequence can be recovered from the
L table).

© 2015 Goodrich and Tamassia LCS 11

