
Dynamic Programming 3/15/2017 2:19 PM

1

© 2015 Goodrich and Tamassia LCS 1

Dynamic Programming:
Longest Common Subsequences

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

© 2015 Goodrich and Tamassia

Application: DNA Sequence
Alignment

DNA sequences can be viewed as strings of
A, C, G, and T characters, which represent
nucleotides.
Finding the similarities between two DNA
sequences is an important computation
performed in bioinformatics.
 For instance, when comparing the DNA of

different organisms, such alignments can highlight
the locations where those organisms have
identical DNA patterns.

LCS 2

© 2015 Goodrich and Tamassia

Application: DNA Sequence
Alignment

Finding the best alignment between two DNA strings
involves minimizing the number of changes to
convert one string to the other.

A brute-force search would take exponential time,
but we can do much better using dynamic
programming.

LCS 3 © 2015 Goodrich and Tamassia LCS 4

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:
 Simple subproblems: the subproblems can be

defined in terms of a few variables, such as j, k, l,
m, and so on.

 Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

 Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

© 2015 Goodrich and Tamassia LCS 5

Subsequences
A subsequence of a character string
x0x1x2…xn-1 is a string of the form
xi1xi2…xik, where ij < ij+1.
Not the same as substring!
Example String: ABCDEFGHIJK
 Subsequence: ACEGIJK
 Subsequence: DFGHK
 Not subsequence: DAGH

© 2015 Goodrich and Tamassia LCS 6

The Longest Common
Subsequence (LCS) Problem

Given two strings X and Y, the longest
common subsequence (LCS) problem is
to find a longest subsequence common
to both X and Y
Has applications to DNA similarity
testing (alphabet is {A,C,G,T})
Example: ABCDEFG and XZACKDFWGH
have ACDFG as a longest common
subsequence

Dynamic Programming 3/15/2017 2:19 PM

2

© 2015 Goodrich and Tamassia LCS 7

A Poor Approach to the
LCS Problem

A Brute-force solution:
 Enumerate all subsequences of X
 Test which ones are also subsequences of Y
 Pick the longest one.

Analysis:
 If X is of length n, then it has 2n

subsequences
 This is an exponential-time algorithm!

© 2015 Goodrich and Tamassia LCS 8

A Dynamic-Programming
Approach to the LCS Problem

Define L[i,j] to be the length of the longest common
subsequence of X[0..i] and Y[0..j].
Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to
indicate that the null part of X or Y has no match with the
other.
Then we can define L[i,j] in the general case as follows:
1. If xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this match)
2. If xi≠yj, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no

match here)

Case 1: Case 2:

© 2015 Goodrich and Tamassia LCS 9

An LCS Algorithm
Algorithm LCS(X,Y):
Input: Strings X and Y with n and m elements, respectively
Output: For i = 0,…,n-1, j = 0,...,m-1, the length L[i, j] of a longest string

that is a subsequence of both the string X[0..i] = x0x1x2…xi and the
string Y [0.. j] = y0y1y2…yj

for i =1 to n-1 do
L[i,-1] = 0

for j =0 to m-1 do
L[-1,j] = 0

for i =0 to n-1 do
for j =0 to m-1 do

if xi = yj then
L[i, j] = L[i-1, j-1] + 1

else
L[i, j] = max{L[i-1, j] , L[i, j-1]}

return array L

© 2015 Goodrich and Tamassia LCS 10

Visualizing the LCS Algorithm

© 2015 Goodrich and Tamassia LCS 11

Analysis of LCS Algorithm
We have two nested loops
 The outer one iterates n times
 The inner one iterates m times
 A constant amount of work is done inside

each iteration of the inner loop
 Thus, the total running time is O(nm)
Answer is contained in L[n,m] (and the
subsequence can be recovered from the
L table).

