

0/1 Knapsack Algorithm	
$B[k,w] = \begin{cases} B[k-1,w] \\ \max \{B[k-1,w], B[k-1,w-1]\} \end{cases}$	$ \begin{array}{c} \text{if } w_k > w \\ w_k] + b_k \} \text{else} \end{array} $
 Recall the definition of B[k,w] 	Algorithm 01Knapsack(S, W): Input: set S of n items with benefit b _i and weight w _i ; maximum weight
 Since B[k,w] is defined in terms of B[k-1,*], we can 	Output: benefit of best subset of S with weight at most W
use two arrays of instead of a matrix	let A and B be arrays of length $W + 1$ for $w \leftarrow 0$ to W do
Running time: O(nW).	$B[w] \leftarrow 0$
 Not a polynomial-time 	for $k \leftarrow 1$ to n do
algorithm since W may be	copy array B into array A
large	for $w \leftarrow w_k$ to W do
This is a pseudo-polynomial	if $A[w - w_k] + b_k \ge A[w]$ then
time algorithm	$B[w] \leftarrow A[w \rightarrow w_k] + b_k$