Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Dynamic Programming: 0/1 Knapsack

The 0/1 Knapsack Problem

- Given: A set S of n items, with each item i having
- w_{i} - a positive weight
- b_{i} - a positive benefit
- Goal: Choose items with maximum total benefit but with weight at most W .
- If we are not allowed to take fractional amounts, then this is the $\mathbf{0 / 1}$ knapsack problem.
- In this case, we let T denote the set of items we take
- Objective: maximize $\sum_{i \in T} b_{i}$
- Constraint: $\quad \sum_{i \in T} w_{i} \leq W$
© 2015 Goodrich and Tamassia Dynamic Programming

Example

- Given: A set S of n items, with each item i having
- b_{i} - a positive "benefit"
- w_{i} - a positive "weight"
- Goal: Choose items with maximum total benefit but with weight at most W.

"knapsack"

box of width 9 in .
Solution:
- item 5 ($\$ 80,2$ in)
- item 3 (\$6, 2in)
- item 1 ($\$ 20,4 \mathrm{in})$
© 2015 Goodrich and Tamassia
0/1 Knapsack

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
- Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, I, m , and so on.
- Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
- Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).
© 2015 Goodrich and Tamassia
0/1 Knapsack

A 0/1 Knapsack Algorithm, Second (Better) Attempt

- S_{k} : Set of items numbered 1 to k .
- Define $B[k, w]$ to be the best selection from S_{k} with weight at most w
- Good news: this does have subproblem optimality.
$B[k, w]=\left\{\begin{array}{cc}B[k-1, w] & \text { if } w_{k}>w \\ \max \left\{B[k-1, w], B\left[k-1, w-w_{k}\right]+b_{k}\right\} & \text { else }\end{array}\right.$
- I.e., the best subset of S_{k} with weight at most w is either
- the best subset of S_{k-1} with weight at most w or
- the best subset of $\mathrm{S}_{\mathrm{k}-1}$ with weight at most $\mathrm{w}-\mathrm{w}_{\mathrm{k}}$ plus item k
- S_{k} : Set of items numbered 1 to k .

- Define $B[k]=$ best selection from S_{k}.
- Problem: does not have subproblem optimality:
- Consider set $\mathrm{S}=\{(3,2),(5,4),(8,5),(4,3),(10,9)\}$ of (benefit, weight) pairs and total weight $\mathrm{W}=20$

Best for S_{4} :

Best for S_{5} :

© 2015 Goodrich and Tamassia
0/1 Knapsack
© 2015 Goodrich and Tamassia
0/1 Knapsack

