Dynamic Programming

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

TDynamic Programming:
0/1 Knapsack

ack.

ack. US.
ary Pak. Pubi

© 2015 Goodrich and Tamassia 0/1 Knapsack 1

3/15/2017 2:18 PM

@ Given: A set S of n items, with each item i having

) :L/' d'
‘The 0/1 Knapsack Problem i%

= W, - a positive weight
= b, - a positive benefit
Goal: Choose items with maximum total benefit but with
weight at most W.
If we are not allowed to take fractional amounts, then
this is the 0/1 knapsack problem.

= In this case, we let T denote the set of items we take

= Objective: maximize be

iel
= Constraint: E w,<W
ieT
© 2015 Goodrich and Tamassia Dynamic Programming 2

Example ik

Given: A set S of n items, with each item i having
= b, - a positive “benefit”
= W, - a positive “weight”
@ Goal: Choose items with maximum total benefit but with
weight at most W.

i LGORITIN knapsack
DESIGY
3 o
Items: [/:L it -
1\ 2 3 4

5 box of width 9 in

Weight: 4in 2in 2in 6in 2in Solution:

i o item 5 ($80, 2 in)
Benefit: $20 $3 36 $25 $80 « item 3 (86, 2in)

o item 1 ($20, 4in)

© 2015 Goodrich and Tamassia 0/1 Knapsack 3

The General Dynamic

Programming Technique

‘ # Applies to a problem that at first seems to

require a lot of time (possibly exponential),

provided we have:

= Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j, k, |,
m, and so on.

= Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

= Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

© 2015 Goodrich and Tamassia 0/1 Knapsack 4

A 0/1 Knapsack Algorithm,
First Attempt

"#® S, Set of items numbered 1 to k.
Define B[k] = best selection from S,.

Problem: does not have subproblem optimality:
= Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of
(benefit, weight) pairs and total weight W = 20

(5.4) (8,5). 4.3)

Best for S;: |‘“’

Best for Sg: [°

20 I

© 2015 Goodrich and Tamassia 0/1 Knapsack 5

‘Second (Better) Attempt

® S,: Set of items numbered 1 to k.

A 0/1 Knapsack Algorithm, 7@
=

Define B[k,w] to be the best selection from S, with
weight at most w

Good news: this does have subproblem optimality.

Blk-1,w] if w>w
max{B[k —-1,w], Blk—1,w—w,]+b,} else
Le., the best subset of S, with weight at most w is

either

= the best subset of S,_; with weight at most w or
= the best subset of S, ; with weight at most w-w, plus item k

Blk,w]= {

© 2015 Goodrich and Tamassia 0/1 Knapsack 6

Dynamic Programming 3/15/2017 2:18 PM

0/1 Knapsack Algorithm
{ Blk—-1,w] if w,>w
Blk,w]=
max{B[k—1,w], Blk—=1,w—w,]+b} else
Algorithm 01Knapsack(S, W):
Recall the definition of Input: set S of n items with benefit b;
B[k,w] and weight w;; maximum weight W
Since B[k,w] is defined in Output: benefit of best subset of § with
terms of B[k-1,*], we can weight at most W
use two arrays of instead of let A and B be arrays of length W + 1
a matrix for w < 0 to I do
Running time: O(nW). Blw] <0
Not a polynomial-time for k « 1 to n do
algorithm since W may be copy array B into array A
large for w < w, to IV do
This is a pseudo-polynomial if A[w—w,] + by > A[w] then
time algorithm Blw] < A[w-w,] + b,
return B[]
© 2015 Goodrich and Tamassia 0/1 Knapsack 7

