Dynamic Programming

3/13/2017 3:57 PM

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Dynamic Programming

Principle of Optimality: From
any point on an optimal
sequence of choices,
the remaining sequence is
optimal for the corresponding
problem initiated at that point

DN double felix, 2003, ULS. government
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Application: DNA Sequence

Alignment

# DNA sequences can be viewed as strings of
A, C, G, and T characters, which represent
nucleotides.

# Finding the similarities between two DNA
sequences is an important computation
performed in bioinformatics.

= For instance, when comparing the DNA of
different organisms, such alignments can highlight
the locations where those organisms have
identical DNA patterns.
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Application: DNA Sequence
_Alignment

' # Finding the best alignment between two DNA strings
involves minimizing the number of changes to
convert one string to the other.

X: ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
I LT 14 1 i N O

G TC GT CG G AAGCCGGCCGAA
GTICGT CGGAA GCCG GC C G AA
PEERE TRt e e

S GTCGTTCGGAATGCCGTTGCTCTGTAR

Figure 12.1: Two DNA sequences, X and Y, and their alignment in terms of a longest
subsequence, GTCGTCGGARGCCGGCCGAR, that is common to these two strings.

# A brute-force search would take exponential time,
but we can do much better using dynamic
programming.
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Warm-up: Matrix Chain-Products

| @ Dynamic Programming is a general

algorithm design paradigm.

= Rather than give the general structure, let us f
first give a motivating example:
= Matrix Chain-Products B
@ Review: Matrix Multiplication.
= C=A*B
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Matrix Chain-Products

| @ Matrix Chain-Product:
= Compute A=A *A*.. %A 4
[ AI is d, X d|+1
= Problem: How to parenthesize?

@ Example

= Bis3 x 100
= Cis 100 x 5
aDis5 x5
s (B*C)*D takes 1500 + 75 = 1575 ops
= B*(C*D) takes 1500 + 2500 = 4000 ops
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An Enumeration Approach

| # Matrix Chain-Product Alg.:
= Try all possible ways to parenthesize
A=AFA*. A, \
= Calculate number of ops for each one
= Pick the one that is best
@ Running time:

= The number of paranethesizations is equal
to the number of binary trees with n nodes

= This is exponential!

= It is called the Catalan number, and it is
almost 4.
= This is a terrible algorithm!
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Dynamic Programming

&
A Greedy Approach t

# Idea #1: repeatedly select the product that
uses (up) the most operations.
# Counter-example:
= Ais10 x 5
= Bis5 x 10
= Cis10 x 5
= Dis5 x 10
= Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops
= A*((B*C)*D) takes 500+250+250 = 1000 ops
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&
Another Greedy Approach f

@ Idea #2: repeatedly select the product that uses
the fewest operations.
@ Counter-example:
= Ais 101 x 11
w Bis1l x 9
= Cis9 x 100
= Dis 100 x 99

= Greedy idea #2 gives A*((B*C)*D)), which takes
109989+9900+108900=228789 ops

= (A*B)*(C*D) takes 9999+89991+89100=189090 ops

@ The greedy approach is not giving us the optimal
value.

© 2015 Goodrich and Tamassia Dynamic Programming 8

A "Recursive” Approach

# Define subproblems:
= Find the best parenthesization of A*A, *.. *A;.

= Let N;; denote the number of operations done by this
subproblem.

= The optimal solution for the whole problem is N ..

@ Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems

= There has to be a final multiplication (root of the expression
tree) for the optimal solution.

= Say, the final multiply is at index it (Ag*.. *A)*(A 1 *.. %A 1).

= Then the optimal solution Ny ., is the sum of two optimal
subproblems, Ny, and Nj, ., plus the time for the last multiply.

= If the global optimum did not have these optimal
subproblems, we could define an even better “optimal”

solution.
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A Characterizin
S

'Equation

@ The global optimal has to be defined in terms of
optimal subproblems, depending on where the final
multiply is at.

# Let us consider all possible places for that final multiply:

= Recall that A;is a d, X d;,, dimensional matrix.
= So, a characterizing equation for N;; is the following:

N, ,=min{N,, + N,

) i<k<j

vddyd,,)

+1,j

# Note that subproblems are not independent--the
subproblems overlap.
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A Dynamic Programming
‘Algorithm

@ since subproblems

overlap, we don’t | Algorithm matrixChain(S):
use recursion. Input: sequence S of n matrices to be multiplied
# Instead, we Output: number of operations in an optimal
construct optimal paranethization of §
subproblems fori < 1 to n-1 do
“bottom-up.” Nji<0
® Ni’i' s are easy, SO for b « | to n-1 do
start with them for i < 0 to n-b-1 do
# Then do length jith
2,3,... subproblems, N, « +infinity
and so on. for k < ito j-I do
# The running time is Ny« min{N;; , Ny *Niyy; +d;dyey djv}
0o(n3)
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A Dynamic Programming
“Algorithm Visualization

| The bottom-up Nl,_/ = xsklf}{Nx,k +Nk+l,_/ +dxdk+ld_/+l}
construction fills inthe  N|o 1 2 j o
N array by diagonals 0 . —

@ N;; gets values from 1
pervious entries in i-th
row and j-th column i ||

# Filling in each entry in
the N table takes O(n)
time.

@ Total run time: O(n3)

@ Getting actual n-1
parenthesization can be
done by remembering
“K” for each N entry
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The General Dynamic
Programming Technique

@ Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

= Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j, k, |,
m, and so on.

= Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

= Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).
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