

Application: DNA Sequence Alignment

- DNA sequences can be viewed as strings of A, C, G, and T characters, which represent nucleotides.
- Finding the similarities between two DNA sequences is an important computation performed in bioinformatics.
- For instance, when comparing the DNA of different organisms, such alignments can highlight the locations where those organisms have identical DNA patterns.

Application: DNA Sequence Alignment

- Finding the best alignment between two DNA strings involves minimizing the number of changes to convert one string to the other.

X: ACCGGTCGAGTGCGCGGAAGCCGGCCGAA $\begin{array}{llllll}1 & 11 & 11 & 11 & 1 & 11111111111 \\ \text { G } & \text { TC } & \text { GT } & \text { CG } & \text { G AAGCCGGCCGAA }\end{array}$ gTCGT CGGAA GCCG GC C G AA Y: GTCGTTCGGAATGCCGTTGCTCTGTAA	
Figure 12.1: Two DNA sequences, X and Y, and their alignment in terms of a longest subsequence, GTCGTCGGAAGCCGGCCGAA, that is common to these two strings.	
A brute-force but we can programmi	ce search would take exponential time do much better using dynamic ming.

Matrix Chain-Products

- Matrix Chain-Product:
- Compute $A=A_{0} * A_{1} * \ldots * A_{n-1}$
- A_{i} is $d_{i} \times d_{i+1}$
- Problem: How to parenthesize?
- Example
- B is 3×100
- C is 100×5
- D is 5×5
- $\left(B^{*} \mathrm{C}\right) * D$ takes $1500+75=1575$ ops
- $B^{*}(C * D)$ takes $1500+2500=4000 \mathrm{ops}$

An Enumeration Approach

Matrix Chain-Product Alg.:

- Try all possible ways to parenthesize $A=A_{0} * A_{1} * \ldots * A_{n-1}$
- Calculate number of ops for each one
- Pick the one that is best
- Running time:
- The number of paranethesizations is equal
to the number of binary trees with n nodes
- This is exponential!
- It is called the Catalan number, and it is almost 4 n .
- This is a terrible algorithm!
© 2015 Goodrich and Tamassia Dynamic Programming

A Greedy Approach

- Idea \#1: repeatedly select the product that uses (up) the most operations.
- Counter-example:
- A is 10×5
- B is 5×10
- C is 10×5
- D is 5×10
- Greedy idea \#1 gives (A*B)*(C*D), which takes $500+1000+500=2000$ ops
- $A^{*}\left(\left(B^{*} C\right) * D\right)$ takes $500+250+250=1000$ ops

Another Greedy Approach

- Idea \#2: repeatedly select the product that uses the fewest operations.
- Counter-example:
- A is 101×11
- B is 11×9
- C is 9×100
- D is 100×99
- Greedy idea \#2 gives $\left.A^{*}\left(\left(B^{*} C\right) * D\right)\right)$, which takes $109989+9900+108900=228789 \mathrm{ops}$
- $(\mathrm{A} * \mathrm{~B})^{*}(\mathrm{C} * \mathrm{D})$ takes $9999+89991+89100=189090$ ops
- The greedy approach is not giving us the optimal value.

A Characterizing Equation

A "Recursive" Approach

- Define subproblems:
- Find the best parenthesization of $\mathrm{A}_{\mathrm{i}} * \mathrm{~A}_{\mathrm{i}+1} * \ldots * \mathrm{~A}_{\mathrm{j}}$.
- Let $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ denote the number of operations done by this subproblem.
- The optimal solution for the whole problem is $\mathrm{N}_{0, \mathrm{n}-1}$
- Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems
- There has to be a final multiplication (root of the expression tree) for the optimal solution.
- Say, the final multiply is at index i: $\left(\mathrm{A}_{0} * \ldots * \mathrm{~A}_{\mathrm{i}}\right) *\left(\mathrm{~A}_{\mathrm{i}+1} * \ldots \mathrm{~A}_{n-1}\right)$.
- Then the optimal solution $N_{0, n-1}$ is the sum of two optimal subproblems, $N_{0, i}$ and $N_{i+1, n-1}$ plus the time for the last multiply.
- If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.
© 2015 Goodrich and Tamassia
Dynamic Programming
- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiply is at.
- Let us consider all possible places for that final multiply:
- Recall that A_{i} is a $d_{i} \times d_{i+1}$ dimensional matrix.
- So, a characterizing equation for $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ is the following:

$$
N_{i, j}=\min _{i \leq k<j}\left\{N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}
$$

- Note that subproblems are not independent--the subproblems overlap.
© 2015 Goodrich and Tamassia Dynamic Programming

A Dynamic Programming Algorithm Visualization

- The bottom-up
$N_{i, j}=\min _{i \leq k<j}\left\{N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}$
 N array by diagonals
- $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ gets values from pervious entries in i-th row and j-th column
- Filling in each entry in the N table takes $\mathrm{O}(\mathrm{n})$ time.
- Total run time: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Getting actual parenthesization can be done by remembering
" k " for each N entry
© 2015 Goodrich and Tamassia

Input: sequence \boldsymbol{S} of \boldsymbol{n} matrices to be multiplied Output: number of operations in an optimal paranethization of S
for $i \leftarrow 1$ to $n-l$ do $N_{i, i} \leftarrow 0$
for $b \leftarrow 1$ to $n-1$ do
for $i \leftarrow 0$ to $n-b-l$ do
$j \leftarrow i+b$
$N_{i, j} \leftarrow+$ infinity
for $k \leftarrow i$ to $j-1$ do
$N_{i j} \leftarrow \min \left\{N_{i j}, N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}$

Dynamic Programming

answer $-$ -....

```
The General Dynamic
Programming Technique
- 8
- Applies to a problem that at first seems to
    require a lot of time (possibly exponential),
    provided we have:
    - Simple subproblems: the subproblems can be
        defined in terms of a few variables, such as j, k, I,
        m , and so on.
    - Subproblem optimality: the global optimum value
        can be defined in terms of optimal subproblems
    - Subproblem overlap: the subproblems are not
        independent, but instead they overlap (hence,
        should be constructed bottom-up).```

