
Dynamic Programming 3/13/2017 3:57 PM

1

© 2015 Goodrich and Tamassia Dynamic Programming 1

Dynamic Programming

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Principle of Optimality: From
any point on an optimal

sequence of choices,
the remaining sequence is

optimal for the corresponding
problem initiated at that point

© 2015 Goodrich and Tamassia

Application: DNA Sequence
Alignment

DNA sequences can be viewed as strings of
A, C, G, and T characters, which represent
nucleotides.
Finding the similarities between two DNA
sequences is an important computation
performed in bioinformatics.
 For instance, when comparing the DNA of

different organisms, such alignments can highlight
the locations where those organisms have
identical DNA patterns.

Dynamic Programming 2

© 2015 Goodrich and Tamassia

Application: DNA Sequence
Alignment

Finding the best alignment between two DNA strings
involves minimizing the number of changes to
convert one string to the other.

A brute-force search would take exponential time,
but we can do much better using dynamic
programming.

Dynamic Programming 3 © 2015 Goodrich and Tamassia Dynamic Programming 4

Warm-up: Matrix Chain-Products
Dynamic Programming is a general
algorithm design paradigm.
 Rather than give the general structure, let us

first give a motivating example:
 Matrix Chain-Products

Review: Matrix Multiplication.
 C = A*B
 A is d × e and B is e × f

 O(def) time
A C

B

d d

f

e

f

e

i

j

i,j







1

0

],[*],[],[
e

k

jkBkiAjiC

© 2015 Goodrich and Tamassia Dynamic Programming 5

Matrix Chain-Products
Matrix Chain-Product:
 Compute A=A0*A1*…*An-1

 Ai is di × di+1

 Problem: How to parenthesize?
Example
 B is 3 × 100
 C is 100 × 5
 D is 5 × 5
 (B*C)*D takes 1500 + 75 = 1575 ops
 B*(C*D) takes 1500 + 2500 = 4000 ops

© 2015 Goodrich and Tamassia Dynamic Programming 6

An Enumeration Approach
Matrix Chain-Product Alg.:
 Try all possible ways to parenthesize

A=A0*A1*…*An-1

 Calculate number of ops for each one
 Pick the one that is best

Running time:
 The number of paranethesizations is equal

to the number of binary trees with n nodes
 This is exponential!
 It is called the Catalan number, and it is

almost 4n.
 This is a terrible algorithm!

Dynamic Programming 3/13/2017 3:57 PM

2

© 2015 Goodrich and Tamassia Dynamic Programming 7

A Greedy Approach
Idea #1: repeatedly select the product that
uses (up) the most operations.
Counter-example:
 A is 10 × 5
 B is 5 × 10
 C is 10 × 5
 D is 5 × 10
 Greedy idea #1 gives (A*B)*(C*D), which takes

500+1000+500 = 2000 ops
 A*((B*C)*D) takes 500+250+250 = 1000 ops

© 2015 Goodrich and Tamassia Dynamic Programming 8

Another Greedy Approach
Idea #2: repeatedly select the product that uses
the fewest operations.
Counter-example:
 A is 101 × 11
 B is 11 × 9
 C is 9 × 100
 D is 100 × 99
 Greedy idea #2 gives A*((B*C)*D)), which takes

109989+9900+108900=228789 ops
 (A*B)*(C*D) takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the optimal
value.

© 2015 Goodrich and Tamassia Dynamic Programming 9

A “Recursive” Approach
Define subproblems:
 Find the best parenthesization of Ai*Ai+1*…*Aj.
 Let Ni,j denote the number of operations done by this

subproblem.
 The optimal solution for the whole problem is N0,n-1.

Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems
 There has to be a final multiplication (root of the expression

tree) for the optimal solution.
 Say, the final multiply is at index i: (A0*…*Ai)*(Ai+1*…*An-1).
 Then the optimal solution N0,n-1 is the sum of two optimal

subproblems, N0,i and Ni+1,n-1 plus the time for the last multiply.
 If the global optimum did not have these optimal

subproblems, we could define an even better “optimal”
solution.

© 2015 Goodrich and Tamassia Dynamic Programming 10

A Characterizing
Equation

The global optimal has to be defined in terms of
optimal subproblems, depending on where the final
multiply is at.
Let us consider all possible places for that final multiply:
 Recall that Ai is a di × di+1 dimensional matrix.
 So, a characterizing equation for Ni,j is the following:

Note that subproblems are not independent--the
subproblems overlap.

}{min 11,1,, 
 jkijkki

jki
ji dddNNN

© 2015 Goodrich and Tamassia Dynamic Programming 11

A Dynamic Programming
Algorithm

Since subproblems
overlap, we don’t
use recursion.
Instead, we
construct optimal
subproblems
“bottom-up.”
Ni,i’s are easy, so
start with them
Then do length
2,3,… subproblems,
and so on.
The running time is
O(n3)

Algorithm matrixChain(S):
Input: sequence S of n matrices to be multiplied
Output: number of operations in an optimal

paranethization of S
for i  1 to n-1 do

Ni,i  0
for b  1 to n-1 do

for i  0 to n-b-1 do
j  i+b
Ni,j  +infinity
for k  i to j-1 do

Ni,j  min{Ni,j , Ni,k +Nk+1,j +di dk+1 dj+1}

© 2015 Goodrich and Tamassia Dynamic Programming 12

answerN 0 1

0

1

2 …

n-1

…

n-1j

i

A Dynamic Programming
Algorithm Visualization
The bottom-up
construction fills in the
N array by diagonals
Ni,j gets values from
pervious entries in i-th
row and j-th column
Filling in each entry in
the N table takes O(n)
time.
Total run time: O(n3)
Getting actual
parenthesization can be
done by remembering
“k” for each N entry

}{min 11,1,, 
 jkijkki

jki
ji dddNNN

Dynamic Programming 3/13/2017 3:57 PM

3

© 2015 Goodrich and Tamassia Dynamic Programming 13

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:
 Simple subproblems: the subproblems can be

defined in terms of a few variables, such as j, k, l,
m, and so on.

 Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

 Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

