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Applications
One of the most time-consuming parts of astronomy involves 
collecting the light from the galaxy or star over a given period of 
time. 
To do this with a telescope, a large aluminum disk the size of the 
diameter of the telescope is used. 
This disk is placed in the focal plane of the telescope, so that the 
light from each stellar objects in an observation falls in a specific 
spot on the disk. 
The astronomers use robotic drilling equipment to drill a hole in 
each spot of interest and they insert a fiber-optic cable into each 
such hole and connect it to a spectrograph.
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Application to TSP

Drilling the holes in the 
fastest way is an instance 
of the traveling 
salesperson problem 
(TSP).
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According to this formulation of TSP, each of the hole locations is 
a “city” and the time it takes to move a robot drill from one hole 
to another corresponds to the distance between the “citie” for 
these two holes. 
Thus, a minimum-distance tour of the cities that starts and ends 
at the resting position for the robot drill is one that will drill the 
holes the fastest.
Unfortunately, TSP is NP-complete. 
So it would be ideal if we could at least approximate this problem.



Application to Set Cover
Another optimization problem is to minimize the number 
of observations needed in order to collect the spectra of 
all the stellar objects of interest. 
In this case, we want to cover the map of objects with the 
minimum number of disks having the same diameter as 
the telescope. 
This optimization problem is an instance of the set cover 
problem. 
Each of the distinct sets of objects that can be included in 
a single observation is given as an input set and the 
optimization problem is to minimize the number of sets 
whose union includes all the objects of interest. 
This problem is also NP-complete, but it is a problem for 
which an approximation to the optimum might be 
sufficient.
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Set Cover Example
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Approximation Ratios
Optimization Problems
 We have some problem instance x that has 

many feasible “solutions”.
 We are trying to minimize (or maximize) some 

cost function c(S) for a “solution” S to x. For 
example,
 Finding a minimum spanning tree of a graph
 Finding a smallest vertex cover of a graph
 Finding a smallest traveling salesperson tour in a 

graph

An approximation produces a solution T
 T is a k-approximation to the optimal solution 

OPT if c(T)/c(OPT) < k (assuming a min. prob.; 
a maximization approximation would be the 
reverse)
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Special Case of the 
Traveling Salesperson 
Problem

OPT-TSP: Given a complete, weighted 
graph, find a cycle of minimum cost that 
visits each vertex.
 OPT-TSP is NP-hard
 Special case: edge weights satisfy the triangle 

inequality (which is common in many 
applications):
 w(a,b) + w(b,c) > w(a,c)

a

b

c
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A 2-Approximation for TSP 
Special Case

Output tour T

Euler tour P of MST M

Algorithm TSPApprox(G)
Input weighted complete graph G, 

satisfying the triangle inequality
Output a TSP tour T for G
M  a minimum spanning tree for G
P  an Euler tour traversal of M, 
     starting at some vertex s
T  empty list

for each vertex v in P (in traversal order)
if this is v’s first appearance in P then 

T.insertLast(v)
T.insertLast(s)
return T
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A 2-Approximation for TSP 
Special Case - Proof

Euler tour P of MST MOutput tour T Optimal tour  OPT 
(twice the cost of M) (at least the cost of MST M)(at most the cost of P)

The optimal tour is a spanning tour; hence |M|<|OPT|.
The Euler tour P visits each edge of M twice; hence |P|=2|M|
Each time we shortcut a vertex in the Euler Tour we will not 
increase the total length, by the triangle inequality (w(a,b) + 
w(b,c) > w(a,c)); hence, |T|<|P|.
Therefore, |T|<|P|=2|M|<2|OPT|
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The Christofides Algorithm
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The running time is dominated by Step 2, which takes O(n3) time.



Example and Start of 
Analysis

To begin our analysis of the Christofides approximation 
algorithm, let S be an optimal solution to this instance of 
METRIC-TSP and let T be the tour that is produced by 
the Christofides approximation algorithm. 
Because S includes a spanning tree and M is a minimum 
spanning tree in G, c(M) ≤ c(S).
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Analysis, continued
In addition, let R denote a solution to the traveling 
salesperson problem on H.
Since the edges in G (and, hence, H) satisfy the triangle 
inequality, and all the edges of H are also in G, c(R) ≤ 
c(S).
That is, visiting more vertices than in the tour R cannot 
reduce its total cost.
Consider now the cost of a perfect matching, P, of H, 
and how it relates to R, an optimal traveling salesperson 
tour of H. Number the edges of R, and ignore the last 
edge (which returns to the start vertex). 
Note that the costs of the set of odd-numbered edges 
and the set of even-numbered edges in R sum to c(R); 
hence, one of these two sets has total cost at most half 
of that of R, that is, cost at most c(R)/2.© 2015 Goodrich and 
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Analysis, completed
The set of odd-numbered edges and the set of even-
numbered edges in R are both perfect matchings; 
hence, the cost of P, a minimum-weight perfect 
matching on the edges of H, will be at most the smaller 
of these two. That is, c(P) ≤ c(R)/2.
Therefore, c(M) + c(P) ≤ c(S) + c(R)/2 ≤ 3c(S)/2.
Since the edges in G satisfy the triangle inequality, we 
can only improve the cost of a tour by making shortcuts 
that avoid previously visited vertices. Thus, c(T) ≤ c(M) 
+ c(P), which implies that c(T) ≤ 3c(S)/2.
In other words, the Christofides approximation algorithm 
gives us a (3/2)-approximation algorithm for the 
METRIC-TSP optimization problem that runs in 
polynomial time.
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Vertex Cover

A vertex cover of graph G=(V,E) is a subset W of 
V, such that, for every (a,b) in E, a is in W or b is 
in W. 
OPT-VERTEX-COVER: Given an graph G, find a 
vertex cover of G with smallest size.
OPT-VERTEX-COVER is NP-hard.
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A 2-Approximation for    
Vertex Cover

Every chosen edge e 
has both ends in C
But e must be 
covered by an 
optimal cover; 
hence, one end of e 
must be in OPT
Thus, there is at 
most twice as many 
vertices in C as in 
OPT.
That is, C is a 2-
approx. of OPT
Running time: 
O(n+m)
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Set Cover (Greedy 
Algorithm)

OPT-SET-COVER: Given a collection of m sets, find the 
smallest number of them whose union is the same as the 
whole collection of m sets?

 OPT-SET-COVER is NP-hard
Greedy approach produces an O(log n)-approximation 
algorithm.
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Greedy Set Cover Analysis
Consider the moment in our algorithm when a set Sj is 
added to C, and let k be the number of previously 
uncovered elements in Sj. 

We pay a total charge of 1 to add this set to C, so we 
charge each previously uncovered element i of Sj a charge 
of c(i) = 1/k.
Thus, the total size of our cover is equal to the total 
charges made.
To prove an approximation bound, we will consider the 
charges made to the elements in each subset Sj that 
belongs to an optimal cover, C ′. So, suppose that Sj 

belongs to C ′. 
Let us write Sj = {x1, x2, . . . , xnj } so that Sj’s elements are 
listed in the order in which they are covered by our 
algorithm.
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Greedy Set Cover Analysis, 
cont.
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Polynomial-Time 
Approximation Schemes

A problem L has a polynomial-time 
approximation scheme (PTAS) if it has 
a polynomial-time (1+)-approximation 
algorithm, for any fixed  >0 (this value 
can appear in the running time).
0/1 Knapsack has a PTAS, with a running 
time that is O(n3/ ).  
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