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Applications

@ One of the most time-consuming parts of astronomy involves
collecting the light from the galaxy or star over a given period of
time.

@To do this with a telescope, a large aluminum disk the size of the
diameter of the telescope is used.

@This disk is placed in the focal plane of the telescope, so that the
light from each stellar objects in an observation falls in a specific
spot on the disk.

@The astronomers use robotic drilling equment to drill a hole in
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Application to TSP
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# Drilling the holes in the
fastest way is an instance
of the traveling
salesperson problem
(TSP).

@According to this formulation of TSP, each of the hole locations is
a “city” and the time it takes to move a robot drill from one hole
to another corresponds to the distance between the “citie” for
these two holes.

@Thus, a minimum-distance tour of the cities that starts and ends
at the resting position for the robot drill is one that will drill the
holes the fastest.

@ Unfortunately, TSP is NP-complete.
© 2015@0%‘?E‘Wt%ld be ideal jf we could at least approximate this problem.
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Application to Set Cover

J@Another optimization problem is to minimize the number
of observations needed in order to collect the spectra of
all the stellar objects of interest.

# In this case, we want to cover the map of objects with the
minimum number of disks having the same diameter as
the telescope.

# This optimization problem is an instance of the set cover
problem.

# Each of the distinct sets of objects that can be included in
a single observation is given as an input set and the
optimization problem is to minimize the number of sets
whose union includes all the objects of interest.

# This problem is also NP-complete, but it is a problem for
which an approximation to the optimum might be
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Set Cover Example

N

Figure 18.2: An example disk cover for a set of significant stellar objects (smaller
objects are not included). Background image is from Omega Centauri, 2009. U.S.
government image. Credit: NASA, ESA, and the Hubble SM4 ERO team.
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Approximation Ratios

J@Optimization Problems

= We have some problem instance x that has
many feasible “solutions”.

= We are trying to minimize (or maximize) some
cost function c(S) for a “solution” S to x. For
example,
* Finding a minimum spanning tree of a graph
* Finding a smallest vertex cover of a graph
* Finding a smallest traveling salesperson tour in a
graph
# An approximation produces a solution T
= Tis a k-approximation to the optimal solution
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Travellng Salesperson
Problem

# OPT-TSP: Given a complete, weighted
graph, find a cycle of minimum cost that
visits each vertex.
= OPT-TSP is NP-hard

= Special case: edge weights satisfy the triangle
iInequality (which is common in many

applications):

* w(a,b) + w(b,
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A 2-Approximation for TSR
Special Case
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Euler tour P of MST M

Output tour T
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Algorithm TSPApprox(G)
Input weighted complete graph G,
satisfying the triangle inequality
Output a TSP tour T for G
M « a minimum spanning tree for G

P < an Euler tour traversal of M,
starting at some vertex s

T < empty list
for each vertex v in P (in traversal order)

if this is v’s first appearance in P then
T.insertLast(v)

T.insertLast(s)
return T
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A 2-Approximation for TS
SpeC|aI Case - Proof |

@ The optimal tour is a spanning tour; hence |[M|<|OPT]|.
# The Euler tour P visits each edge of M twice; hence |P|=2|M|

# Each time we shortcut a vertex in the Euler Tour we will not
Increase the total length, by the triangle inequality (w(a,b) +
w(b,c) > w(a,c)); hence, |T|<|P].

# Therefore, |T|<|P|=2|M|<2|OPT]|

f\\

Output tour T Euler tour P of MST M Optimal tour OPT
(at most the cost of P) (twice the cost of M) (at least the cost of MST M)
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The Christofides Algorithm

1. Construct a minimum spanning tree, M, for G.

2. Let W be the set of vertices of & that have odd degree in M and let H be
the subgraph of G induced by the vertices in W. That is, H is the graph that
has W as its vertices and all the edges from G that join such vertices. By a
simple argument, we can show that the number of vertices in W is even (see
Exercise R-18.12). Compute a minimum-cost perfect matching, P, in H.

3. Combine the graphs M and P to create a graph, G’, but don’t combine par-
allel edges into single edges. That is, if an edge e is in both M and P, then
we create two copies of e in the combined graph, G”.

4. Create an Eulerian circuit, C, in G’, which visits each edge exactly once (un-
like in the 2-approximation algorithm, here the edges of G’ are undirected).

5. Convert C' into a tour, T', by skipping over previously visited vertices.

N

> running time is dominated by Step 2, which takes O(n3) tin
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Example and Start of
Analysis

SRR e rh

(c) (d)

N

Figure 18.5: Illustrating the Christofides approximation algorithm: (a) a minimum
spanning tree, M, for GG; (b) a minimum-cost perfect matching P on the vertices
in W (the vertices in W are shown solid and the edges in P are shown as curved
arcs); (c¢) an Eulerian circuit, C', of G'; (d) the approximate TSP tour, T

# To begin our analysis of the Christofides approximation
algorithm, let S be an optimal solution to this instance of
METRIC-TSP and let T be the tour that is produced by
the Christofides approximation algorithm.

# Because S includes a spanning tree and M is a minimum

spanning tree in G, c(M) = c(S).
© 2015 Goodrich and
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Analysis, continued

# In addition, let R denote a solution to the traveling
salesperson problem on H.

# Since the edges in G (and, hence, H) satisfy the triangle
Inequality, and all the edges of H are also in G, c(R) =
c(S).

# That is, visiting more vertices than in the tour R cannot
reduce its total cost.

# Consider now the cost of a perfect matching, P, of H,
and how it relates to R, an optimal traveling salesperson
tour of H. Number the edges of R, and ignore the last
edge (which returns to the start vertex).

# Note that the costs of the set of odd-numbered edges
and the set of even-numbered edges in R sum to c(R);
hence, one of these two sets has total cost at most half
© 2015 Goo@icEhad of R, that is, cost at most c(R)/2.
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Analysis, completed

# The set of odd-numbered edges and the set of even-
numbered edges in R are both perfect matchings;
hence, the cost of P, a minimum-weight perfect
matching on the edges of H, will be at most the smaller
of these two. That is, c(P) = c(R)/2.

# Therefore, c(M) + c(P) = c(S) + c(R)/2 < 3c¢(S)/2.

# Since the edges in G satisfy the triangle inequality, we
can only improve the cost of a tour by making shortcuts
that avoid previously visited vertices. Thus, c(T) = c(M)
+ c(P), which implies that c(T) = 3c(S)/2.

# In other words, the Christofides approximation algorithm
gives us a (3/2)-approximation algorithm for the
METRIC-TSP optimization problem that runs in
polynomial time.

© 2015 Goodrich and
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Vertex Cover

N

# A vertex cover of graph G=(V,E) is a subset W of
V, such that, for every (a,b) iInE, aisin Worb s
in W.

# OPT-VERTEX-COVER: Given an graph G, find a
vertex cover of G with smallest size.

# OPT-VERTEX-COYER is NP-hard.

© 2015 Goodrich and
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A 2-Approximation for

Vertex Cover

# Every chosen edge e
has both ends in C

# But e must be
covered by an
optimal cover;
hence, one end of e
must be in OPT

#® Thus, there is at
most twice as many

vertices in C as in
OPT.

# That is, C is a 2-
© 2015 Googlgsheesx. of OPT,
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Algorithm VertexCoverApprox(G):
Input: A graph G
Output: A small vertex cover C for GG
C 0
while G still has edges do

select an edge e = (v,w) of G
add vertices v and w to C

for each edge f incident to v or w do
remove f from G

return
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Set Cover (Greedy
Algorithm)

# OPT-SET-COVER: Given a collection of m sets, find the
smallest number of them whose union is the same as the
whole collection of m sets?

= OPT-SET-COVER is NP-hard

# Greedy approach produces an O(log n)-approximation
algorithm

Algorithm SetCoverApprox(S):
Input: A collection S of sets S, 5s,...,.5,, whose union is U
QOutput: A small set cover C' for S

N

C+ 0 /f The set cover built so far

E+ 0 // The elements from U currently covered by C

while E = U do
select a set S; that has the maximum number of uncovered elements
add S; to C
E+ EUS;

Return C.

© 2015 Good
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Greedy Set Cover Analysis

N
\

#> Consider the moment in our algorithm when a set S;is
added to C, and let k be the number of previously
uncovered elements in S,.

# We pay a total charge of 1 to add this set to C, so we
charge each previously uncovered element i of S, a charge
of c(i) = 1/k.

# Thus, the total size of our cover is equal to the total
charges made.

# To prove an approximation bound, we will consider the
charges made to the elements in each subset S, that

belongs to an optimal cover, C". So, suppose that S,
belongs to C".
# Let us write S, = {x;, X,, . . ., X, } so that S/’s elements are

© 2015 Gogdtigtkid the order in which they are covered by our
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cont.
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Now, consider the iteration in which z; is first covered. At that moment, S; has not
yet been selected; hence, whichever set is selected must have at least n; uncovered
elements. Thus, z; is charged at most 1/n;. So let us consider, then, the moment
our algorithm charges an element z; of S;. In the worst case, we will have not
yet chosen .S; (indeed, our algorithm may never choose this S;). Whichever set is
chosen in this iteration has, in the worst case, at least n; —[+1 uncovered elements;
hence, z; is charged at most 1/(n; — I + 1). Therefore, the total amount charged to
all the elements of .5; is at most]
; n—1+1 ; [’

which is the familiar harmonic number, H, . 1t is well known (for example, see
the Appendix) that H,,, is O(logn;). Let ¢(S;) denote the total charges given to all
the elements of a set .S; that belongs to the optimal cover C'’. Our charging scheme
implies that ¢(S;) is O(log ;). Thus, summing over the sets of C'/, we obtain

> e(S;) < ) blogn;
S;eC’ S;eC’
< b|C'|logn,
for some constant b > 1. But, since C'/ is a set cover,
Y eli)y< Y elS)).
icU S,eC"
Therefore,

|C| < b|C'| logn.
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Polynomial-Time
Approximation Schemes %

# A problem L has a polynomial-time
approximation scheme (PTAS) if it has
a polynomial-time (1+¢)-approximation
algorithm, for any fixed € >0 (this value
can appear in the running time).

# 0/1 Knapsack has a PTAS, with a running
time that is O(n3/ g).

© 2015 Goodrich and
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