NP-Completeness Proofs

Composite satellite image of the United States at night, 1996. U.S. government image. NOAA/NGDC DMSP.

Problem Reduction

\&A language M is polynomial-time reducible to a language L if an instance \times for M can be transformed in polynomial time to an instance x^{\prime} for L such that x is in M if and only if x^{\prime} is in L.

- Denote this by $\mathrm{M} \rightarrow \mathrm{L}$.
\&A problem (language) L is NP-hard if every problem in NP is polynomial-time reducible to L .
\diamond A problem (language) is NP-complete if it is in NP and it is NP-hard.
CIRCUIT-SAT is NP-complete:
- CIRCUIT-SAT is in NP
- For every M in NP, $\mathrm{M} \rightarrow$ CIRCUIT-SAT.

Inputs:

Transitivity of Reducibilin \&If $A \rightarrow B$ and $B \rightarrow \mathrm{C}$, then $\mathrm{A} \rightarrow \mathrm{C}$.

- An input x for A can be converted to x ' for B, such that x is in A if and only if x^{\prime} is in B. Likewise, for B to C.
- Convert x^{\prime} into $x^{\prime \prime}$ for C such that x^{\prime} is in B iff $x^{\prime \prime}$ is in C.
- Hence, if x is in A, x^{\prime} is in B, and $x^{\prime \prime}$ is in C.
- Likewise, if $x^{\prime \prime}$ is in C, x^{\prime} is in B, and x is in A.
- Thus, $A \rightarrow C$, since polynomials are closed under composition.
\diamond Types of reductions:
- Local replacement: Show $A \rightarrow B$ by dividing an input to A into components and show how each component can be converted to a component for B.
- Component design: Show $A \rightarrow B$ by building special components for an input of B that enforce properties

SAT

*A Boolean formula is a formula where the variables and operations are Boolean (0/1):

- $(a+b+\neg d+e)(\neg a+\neg c)(\neg b+c+d+e)$ $(a+\neg c+\neg e)$
- OR: +, AND: (times), NOT: ᄀ
*SAT: Given a Boolean formula S , is S satisfiable, that is, can we assign 0's and l's to the variables so that S is 1 ("true")?
- Easy to see that CNF-SAT is in NP:

SAT is NP-complete

*Reduce CIRCUIT-SAT to SAT.

- Given a Boolean circuit, make a variable for every input and gate.
- Create a sub-formula for each gate, characterizing its effect. Form the formula as the output variable AND-ed with all these inputs: sub-formulas:
 The formula is satisfiable if and only if the Boolean circuit is satisfiable.

3SAT

*The SAT problem is still NP-complete even if the formula is a conjunction of disjuncts, that is, it is in conjunctive normal form (CNF).

- The SAT problem is still NP-complete even if it is in CNF and every clause has just 3 literals (a variable or its negation):
- $(a+b+\neg d)(\neg a+\neg c+e)(\neg b+d+e)(a+\neg c+\neg e)$

Reduction from SAT (See §13.3.1).

Vertex Cover

\&A vertex cover of graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a subset W of V , such that, for every edge (a, b) in E , a is in W or b is in W.
\diamond VERTEX-COVER: Given an graph G and an integer K, is does G have vertex cover of size at most K ?

\geqslant VERTEX-COVER is in NP: Non-deterministically

Vertex-Cover is NP-

complete

- Reduce 3SAT to VERTEX-COVER.
- Let S be a Boolean formula in CNF with each clause having 3 literals.
* For each variable x, create a node for x and $\neg x$, and connect these $\underset{x}{\downarrow} \neg \mathrm{x}$
*For each clause $(a+b+c)$, create a triangle and connect these three nodes.

Vertex-Cover is NP-

complete

- Completing the construction
- Connect each literal in a clause triangle to its copy in a variable pair.
- E.g., a clause ($\neg \mathrm{x}+\mathrm{y}+\mathrm{z}$)

Let $\mathrm{n}=$ \# of variables
Let $\mathrm{m}=\#$ of clauses

- Set $K=n+2 m$

Vertex-Cover is NPcomplete

* Example: $(\mathrm{a}+\mathrm{b}+\mathrm{c})(\neg \mathrm{a}+\mathrm{b}+\neg \mathrm{c})(\neg \mathrm{b}+\neg \mathrm{c}+\neg \mathrm{d})$
- Graph has vertex cover of size $K=4+6=10$ iff formula is satisfiable.

Clique

$\diamond A$ clique of a graph $G=(V, E)$ is a subgraph C that is fully-connected (every pair in C has an edge).
\&CLIQUE: Given a graph G and an integer K, is there a clique in G of size at east K ?

This graph has a clique of size 5

>CLIQUE is in NP: non-deterministically choose a subset C of size K and check that every pair in
© 2015 Goodrchand Telp sed ge Nifccrapleteness Proofs

CLIQUE is NP-Complete

- Reduction from VERTEX-COVER.
- A graph G has a vertex cover of size K if and only if it's complement has a clique of size n-K.

G

G'

Some Other Complete Problems

\&SET-COVER: Given a collection of m sets, are there K of these sets whose union is the same as the whole collection of m sets?

- NP-complete by reduction from VERTEXCOVER
*SUBSET-SUM: Given a set of integers and a distinguished integer K , is there a subset of the integers that sums to K ?
- NP-complete by reduction from VERTEX-

Some Other Complete Problems

 0/1 Knapsack: Given a collection of items with weights and benefits, is there a subset of weight at most W and benefit at least K ?- NP-complete by reduction from SUBSET-SUM
*Hamiltonian-Cycle: Given an graph G, is there a cycle in G that visits each vertex exactly once?
- NP-complete by reduction from VERTEX-COVER
*Traveling Saleperson Tour: Given a complete weighted graph G , is there a cycle that visits each vertex and has total

