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Running Time Revisited
Input size, n

 To be exact, let n denote the number of bits in a 
nonunary encoding of the input

All the polynomial-time algorithms studied so far 
in this course run in polynomial time using this 
definition of input size.

 Exception: any pseudo-polynomial time algorithm
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Dealing with Hard 
Problems

What to do when we find a 
problem that looks hard…

I couldn’t find a polynomial-time algorithm; 
I guess I’m too dumb.

(cartoon inspired by [Garey-Johnson, 79])© 2015 Goodrich and Tamassia 
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Dealing with Hard 
Problems

Sometimes we can prove a strong 
lower bound…  (but not usually)

I couldn’t find a polynomial-time algorithm, 
because no such algorithm exists!

(cartoon inspired by [Garey-Johnson, 79])© 2015 Goodrich and Tamassia 
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Dealing with Hard 
Problems

NP-completeness let’s us show 
collectively that a problem is hard.

I couldn’t find a polynomial-time algorithm, 
but neither could all these other smart people.

(cartoon inspired by [Garey-Johnson, 79])© 2015 Goodrich and Tamassia 
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Polynomial-Time 
Decision Problems

To simplify the notion of “hardness,” we 
will focus on the following:
 Polynomial-time as the cut-off for efficiency
 Decision problems: output is 1 or 0 (“yes” or 

“no”)
 Examples:
 Does a given graph G have an Euler tour?
 Does a text T contain a pattern P?
 Does an instance of 0/1 Knapsack have a solution 

with benefit at least K?
 Does a graph G have an MST with weight at most 

K?
© 2015 Goodrich and Tamassia 
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Problems and Languages

A language L is a set of strings defined over 
some alphabet Σ
Every decision algorithm A defines a language 
L

 L is the set consisting of every string x such that A 
outputs “yes” on input x.

 We say “A accepts x’’ in this case
 Example:
 If A determines whether or not a given graph G 

has an Euler tour, then the language L for A is all 
graphs with Euler tours.

© 2015 Goodrich and Tamassia 
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The Complexity Class P

A complexity class is a collection of 
languages
P is the complexity class consisting of all 
languages that are accepted by polynomial-
time algorithms
For each language L in P there is a polynomial-
time decision algorithm A for L.

 If n=|x|, for x in L, then A runs in p(n) time on input 
x.

 The function p(n) is some polynomial

© 2015 Goodrich and Tamassia 
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The Complexity Class NP
We say that an algorithm is non-deterministic 
if it uses the following operation:

 Choose(b): chooses a bit b
 Can be used to choose an entire string y (with |y| 

choices)

We say that a non-deterministic algorithm A 
accepts a string x if there exists some 
sequence of choose operations that causes A 
to output “yes” on input x.
NP is the complexity class consisting of all 
languages accepted by polynomial-time 
non-deterministic algorithms.

© 2015 Goodrich and Tamassia 
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NP example
Problem: Decide if a graph has an MST of 
weight K

Algorithm: 
1. Non-deterministically choose a set T of n-1 edges
2. Test that T forms a spanning tree
3. Test that T has weight at most K

Analysis: Testing takes O(n+m) time, so this 
algorithm runs in polynomial time.

© 2015 Goodrich and Tamassia 
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The Complexity Class NP 
Alternate Definition

We say that an algorithm B verifies the 
acceptance of a language L if and only if, for 
any x in L, there exists a certificate y such that 
B outputs “yes” on input (x,y).
NP is the complexity class consisting of all 
languages verified by polynomial-time 
algorithms.

We know: P is a subset of NP.
Major open question: P=NP?
Most researchers believe that P and NP are 
different.© 2015 Goodrich and Tamassia 
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NP example (2)
Problem: Decide if a graph has an MST of 
weight K

Verification Algorithm: 
1. Use as a certificate, y, a set T of n-1 edges
2. Test that T forms a spanning tree
3. Test that T has weight at most K

Analysis: Verification takes O(n+m) time, so 
this algorithm runs in polynomial time.

© 2015 Goodrich and Tamassia 
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Equivalence of the 
Two Definitions

Suppose A is a non-deterministic algorithm
Let y be a certificate consisting of all the outcomes of 
the choose steps that A uses
We can create a verification algorithm that uses y 
instead of A’s choose steps
If A accepts on x, then there is a certificate y that 
allows us to verify this (namely, the choose steps A 
made)
If A runs in polynomial-time, so does this verification 
algorithm

Suppose B is a verification algorithm
Non-deterministically choose a certificate y
Run B on y
If B runs in polynomial-time, so does this non-
deterministic algorithm© 2015 Goodrich and Tamassia 
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An Interesting Problem
A Boolean circuit is a circuit of AND, OR, and 
NOT gates; the CIRCUIT-SAT problem is to 
determine if there is an assignment of 0’s and 
1’s to a circuit’s inputs so that the circuit 
outputs 1.

© 2015 Goodrich and Tamassia 
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CIRCUIT-SAT is in NP
Non-deterministically choose a set of inputs 
and the outcome of every gate, then test each 
gate’s I/O.

© 2015 Goodrich and Tamassia 
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NP-Completeness
A problem (language) L is NP-hard if 
every problem in NP can be reduced to L 
in polynomial time.
That is, for each language M in NP, we 
can take an input x for M, transform it 
in polynomial time to an input x’ for L 
such that  x is in M if and only if x’ is in L.
L is NP-complete if it’s in NP and is NP-
hard.

NP poly-time L

© 2015 Goodrich and Tamassia 
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Cook-Levin Theorem
CIRCUIT-SAT is NP-complete.

 We already showed it is in NP.

To prove it is NP-hard, we have to show that 
every language in NP can be reduced to it.

 Let M be in NP, and let x be an input for M.
 Let y be a certificate that allows us to verify 

membership in M in polynomial time, p(n), by some 
algorithm D.

 Let S be a circuit of size at most O(p(n)2) that simulates 
a computer (details omitted…)

NP poly-time CIRCUIT-SAT
M

© 2015 Goodrich and Tamassia 
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Cook-Levin Proof

< p(n) 
cells

S

x

D

W

y

x

D

W

y

S S

x

D

W

y

p(n)
steps

In
p

u
ts

n

We can build a circuit that simulates the verification 
of x’s membership in M using y.

 Let W be the working 
storage for D (including 
registers, such as program 
counter); let D be given in 
RAM “machine code.”

 Simulate p(n) steps of D 
by replicating circuit S for 
each step of D.  Only 
input: y.

 Circuit is satisfiable if and 
only if x is accepted by D 
with some certificate y

 Total size is still 
polynomial: O(p(n)3).

Output
0/1

from D
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Some Thoughts     
about P and NP

Belief: P is a proper subset of NP.
Implication: the NP-complete problems are the hardest in 
NP.
Why: Because if we could solve an NP-complete problem in 
polynomial time, we could solve every problem in NP in 
polynomial time.
That is, if an NP-complete problem is solvable in polynomial 
time, then P=NP.
Since so many people have attempted without success to 
find polynomial-time solutions to NP-complete problems, 
showing your problem is NP-complete is equivalent to 
showing that a lot of smart people have worked on your 
problem and found no polynomial-time algorithm.

NP P

CIRCUIT-SAT

NP-complete 
problems live here
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