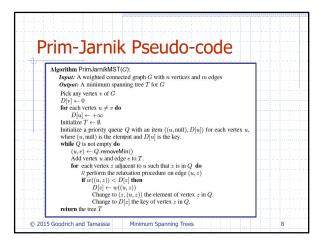
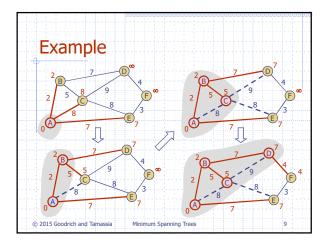
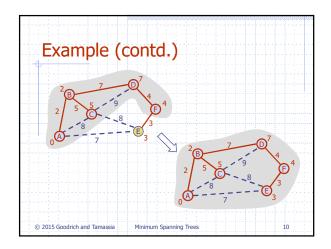


Prim-Jarnik	's Algorithm	
 Similar to Dijks 	tra' s algorithm	
	itrary vertex <i>s</i> and we grow ices, starting from <i>s</i>	the MST as
	each vertex v label $d(v)$ represented to f an edge connecting oud	
At each step:		
 We add to the smallest distar 	cloud the vertex <i>u</i> outside the clo	oud with the
 We update the 	e labels of the vertices adjacent to	и
© 2015 Goodrich and Tamassia	Minimum Spanning Trees	7



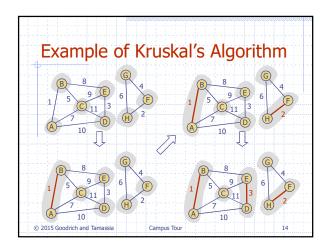


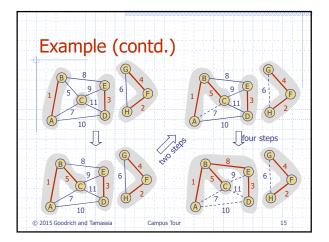


A	nalysis
	Graph operations
	- We cycle through the incident edges once for each vertex
- a	Label operations
	 We set/get the distance, parent and locator labels of vertex z O(deg(z times
	 Setting/getting a label takes O(1) time
	Priority queue operations
	 Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes O(log n) time
	 The key of a vertex w in the priority queue is modified at most deg(w) times, where each key change takes O(log n) time
	Prim-Jarnik's algorithm runs in $O((n + m) \log n)$ time provided the graph is represented by the adjacency list structure
	• Recall that $\sum_{v} deg(v) = 2m$
	The running time is $O(m \log n)$ since the graph is connected

Kruskal' s Approach	
 Maintain a partition of the vertices into clusters 	
 Initially, single-vertex clusters 	
 Keep an MST for each cluster 	
Merge "closest" clusters and their MSTs	
A priority queue stores the edges outsic clusters	le
Key: weight	
Element: edge	
At the end of the algorithm	
2015 Boomencluster and Minner Spanning Trees	12

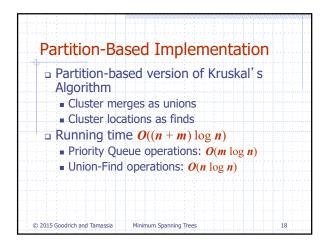
1	ruckal's Algorithm
	ruskal's Algorithm
A	lgorithm KruskalMST(G):
	<i>Input:</i> A simple connected weighted graph G with n vertices and m edges <i>Output:</i> A minimum spanning tree T for G
	for each vertex v in G do
	Define an elementary cluster $C(v) \leftarrow \{v\}$.
	Let Q be a priority queue storing the edges in G , using edge weights as keys
	$T \leftarrow \emptyset$ // T will ultimately contain the edges of the MST
	while T has fewer than $n-1$ edges do
	$(u, v) \leftarrow Q$.removeMin $()$
	Let $C(v)$ be the cluster containing v
	Let $C(u)$ be the cluster containing u
	if $C(v) \neq C(u)$ then
	Add edge (v, u) to T
	Merge $C(v)$ and $C(u)$ into one cluster, that is, union $C(v)$ and $C(u)$
	return tree T





Data Structu Algorithm	re for Kruskal's	
A priority queu	maintains a forest of trees le extracts the edges by inc	reasing
weight An edge is acc	epted it if connects distinct	trees
	a structure that maintains a collection of disjoint sets,	
	create a set consisting of u n the set storing u	
union(A, B): r	eplace sets A and B with their ur	nion
© 2015 Goodrich and Tamassia	Minimum Spanning Trees	16

ist-based	
 Each set is stor 	red in a sequence
Each element h	has a reference back to the set
 operation find(which u is a m 	(u) takes O(1) time, and returns the set of ember.
	nion(A,B), we move the elements of the the sequence of the larger set and update
 the time for op 	peration union(A,B) is min(A , B)
set of size at le	element is processed, it goes into a bast double, hence each element is host log n times



In such cases, we can im above. Specifically, we can ordered list. This app in constant time. Then, instead of using the tree-based union-fin- quence of $O(m)$ union-fin-	may be given the edges in sorted order by their weight plement Kruskal's algorithm faster than the analysis give an implement the priority queue, Q , in this case, simply a roach allows us to perform all the removeMin operation of a simple list-based partition data structure, we can us d structure given in Chapter 7. This implies that the se and operations runs in $O(m \alpha(n))$ time, where $\alpha(n)$ is th the Ackermann function. Thus, we have the following.
m edges, with the edge	a simple connected weighted graph G with n vertices a ordered by their weights, we can implement Kruskal' minimum spanning tree for G in $O(m \alpha(n))$ time.

1	
	Like Kruskal's Algorithm, Baruvka's algorithm grows many clusters at once and maintains a forest <i>T</i>
٩	Each iteration of the while loop halves the number of connected components in forest <i>T</i>
	The running time is $O(m \log n)$
Al	gorithm BaruvkaMST(G)
-	$T \leftarrow V$ {just the vertices of G }
	while T has fewer than $n - 1$ edges do for each connected component C in T do
	Let edge e be the smallest-weight edge from C to another component in T
	if e is not already in T then
	Add edge e to T

