Minimum Spanning Tree

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Minimum Spanning Trees

© 2015 Goodrich and Tamassia Minimum Spanning Trees 1

5/2/2017 6:12 PM

Application:
Connecting a Network

o Suppose the remote mountain country of Vectoria has been given
a major grant to install a large Wi-Fi the center of each of its
mountain villages.

o Communication cables can run from the main Internet access point
to a village tower and cables can also run between pairs of towers.

a The challenge is to interconnect all the towers and the Internet
access point as cheaply as possible.

© 2015 Goodrich and Tamassia Minimum Spanning Trees 2

Application:
_Connecting a Network

a We can model this problem using a graph, G, where
each vertex in G is the location of a Wi-Fi the Internet
access point, and an edge in G is a possible cable we
could run between two such vertices.

Each edge in G could then be given a weight that is
equal to the cost of running the cable that that edge
represents.

o Thus, we are interested in finding a connected acyclic
subgraph of G that includes all the vertices of G and
has minimum total cost.

Using the language of graph theory, we are interested
in finding a minimum spanning tree (MST) of G.

o

o

© 2015 Goodrich and Tamassia Minimum Spanning Trees 3

‘Minimum Spanning Trees

Spanning subgraph
= Subgraph of a graph G
containing all the vertices of G
Spanning tree
= Spanning subgraph that is
itself a (free) tree
Minimum spanning tree (MST)
= Spanning tree of a weighted
graph with minimum total
edge weight
o Applications
= Communications networks
= Transportation networks

© 2015 Goodrich and Tamassia Minimum Spanning Trees 4

Cycle Property

Cycle Property:

= Let 7 be a minimum
spanning tree of a
weighted graph G

= Let e be an edge of G
that is not in Tand C let
be the cycle formed by e
with T Replacing £ with e yields

= For every edge fof C, ﬂ a better spanning tree
weight(f) < weight(e)

Proof:

= By contradiction

u If weight(f) > weight(e) we
can get a spanning tree
of smaller weight by
replacing e with f

© 2015 Goodrich and Tamassia Minimum Spanning Trees 5

Partition Property

Partition Property:

= Consider a partition of the vertices of
G into subsets U and V

= Let ¢ be an edge of minimum weight
across the partition

= There is a minimum spanning tree of
G containing edge e

Proof: ﬂReplacing fwith eyields

= Let 7be an MST of G another MST

= If T does not contain e, consider the
cycle € formed by e with Tand let f
be an edge of € across the partition

= By the cycle property,

weight(f) < weight(e)

» Thus, weight(f) = weight(e)

= We obtain another MST by replacing
f with e

© 2015 Goodrich and Tamassia Minimum Spanning Trees 6

Minimum Spanning Tree 5/2/2017 6:12 PM

_Prim-Jarnik’ s Algorithm ‘Prim-Jarnik Pseudo-code

o . . ’ N) Algorithm PrimJarnikMST(G):
o Similar to Dijkstra’s algorithm Input: A weighted connected graph G with n vertices and m edges
. 4 . Output: A minimum spanning tree T for G
o We pick an ar@trary ver’Fex s and we grow the MST as S at b G
a cloud of vertices, starting from s Dv] 0
for each vertex u # v do
o We store with each vertex v label d(v) representing i & e
the smallest weight of an edge connecting v to a Initialize a priority queve Q with an item ((u, null), D[u]) for each vertex u,
i where (u, null) is the elemgnt and D[u] is the key.
vertex in the cloud while Q is not empty do
(u,€) + Q.removeMin()
o At each step: Add vertex u and edge € 0 T.
for each vertex z adjacent to u such that z is in Q@ do
= We add to the cloud the vertex « outside the cloud with the /1 perform the relaxation procedure on edge (u,)
smallest distance label ifw((w,2)) < Diz] then

D[] « w((u, 2))
Change to (2, (1, z)) the element of vertex z in Q.
Change to D[z] the key of vertex z in Q.
return the tree T'

= We update the labels of the vertices adjacent to u

© 2015 Goodrich and Tamassia Minimum Spanning Trees 7

© 2015 Goodrich and Tamassia Minimum Spanning Trees 8

'Example (contd.)

© 2015 Goodrich and Tamassia Minimum Spanning Trees 9

© 2015 Goodrich and Tamassia Minimum Spanning Trees 10

_Analysis Kruskal’ s Approach

a Graph operations

= We cycle through the incident edges once for each vertex a Maintain a partltlon Of the vertices into
o Label operations clusters
= We set/get the distance, parent and locator labels of vertex z O(deg(z)) - InitiaIIy, single—vertex clusters
times
= Setting/getting a label takes O(1) time = Keep an MST for each cluster
a Priority queue operations = Merge “closest” clusters and their MSTs
= Each vertex is inserted once into and removed once from the priority

queue, where each insertion or removal takes O(log n) time oA priority queue stores the edgeS outside
= The key of a vertex w in the priority queue is modified at most deg(w)

times, where each key change takes O(log n) time clusters
a Prim-Jarnik’ s algorithm runs in O((n + m) log n) time provided the

i Hhm e i | = Key: weight
raph is represente the adjacency list structure
grapn s rep Y dacency = Element: edge
= Recall that X, deg(v) =2m i
o The running time is O(m log n) since the graph is connected o At the end of the algorithm
© 2015 Goodrich and Tamassia Minimum Spanning Trees 11 © 2015 GDDQQQnngﬁJsgg a”d»ﬁﬂﬁmﬁng Trees 12

Minimum Spanning Tree

Kruskal’s Algorithm

5/2/2017 6:12 PM

Algorithm KruskalMST(G):
Input: A simple connected weighted graph G with n vertices and m edges
Output: A minimum spanning tree T' for G
for each vertex v in G do
Define an elementary cluster C'(v) + {v}.
Let @ be a priority queue storing the edges in G, using edge weights as keys
T+ 0 /I'T will ultimately contain the edges of the MST
while T has fewer than n — 1 edges do
(u,v) + Q.removeMin()
Let C'(v) be the cluster containing v
Let C(u) be the cluster containing u
if C(v) # C(u) then
Add edge (v,u)to T
Merge C(v) and C(u) into one cluster, that is, union C(v) and C'(u)
return tree 7'

© 2015 Goodrich and Tamassia Minimum Spanning Trees 13

'Example of Kruskal’s Algorithm

4
6
2
4
6
2
© 2015 Goodrich and Tamassia Campus Tour 14

Example (contd.)

© 2015 Goodrich and Tamassia Campus Tour 15

Data Structure for Kruskal's
“Algorithm

o The algorithm maintains a forest of trees

a A priority queue extracts the edges by increasing
weight

o An edge is accepted it if connects distinct trees

o We need a data structure that maintains a

partition, i.e., a collection of disjoint sets, with
operations:

= makeSet(u): create a set consisting of u

= find(u): return the set storing u

= union(A, B): replace sets A and B with their union

© 2015 Goodrich and Tamassia Minimum Spanning Trees 16

List-based Partition

o Each set is stored in a sequence

o Each element has a reference back to the set

= operation find(u) takes O(1) time, and returns the set of
which u is a member.

= in operation union(A,B), we move the elements of the
smaller set to the sequence of the larger set and update
their references

= the time for operation union(A,B) is min(|A|, |B|)
o Whenever an element is processed, it goes into a
set of size at least double, hence each element is
processed at most log n times

© 2015 Goodrich and Tamassia Minimum Spanning Trees 17

Partition-Based Implementation

o Partition-based version of Kruskal’ s
Algorithm

= Cluster merges as unions
= Cluster locations as finds
o Running time O((n + m) log n)
= Priority Queue operations: O(m log n)
= Union-Find operations: O(n log n)

© 2015 Goodrich and Tamassia Minimum Spanning Trees 18

Minimum Spanning Tree

5/2/2017 6:12 PM

Alternative Implementation

In some applications, we may be given the edges in sorted order by their weights.
In such cases, we can implement Kruskal’s algorithm faster than the analysis given
above. Specifically, we can implement the priority queue, Q. in this case, simply as
an ordered list. This approach allows us to perform all the removeMin operations
in constant time.

Then, instead of using a simple list-based partition data structure, we can use
the tree-based union-find structure given in Chapter 7. This implies that the se-
quence of O(m) union-find operations runs in O(m «(n)) time, where a(n) is the
slow-growing inverse of the Ackermann function. Thus, we have the following.

Theorem 15.5: Given a simple connected weighted graph G with n. vertices and
m edges, with the edges ordered by their weights, we can implement Kruskal’s
algorithm to construct a minimum spanning tree for G in O(m a(n)) time.

© 2015 Goodrich and Tamassia Minimum Spanning Trees 19

Baruvka’ s Algorithm

o Like Kruskal’ s Algorithm, Baruvka’s algorithm grows many
clusters at once and maintains a forest 7

o Each iteration of the while loop halves the number of
connected components in forest 7

a The running time is O(m log n)

Algorithm BaruvkaMST(G)
T« V {just the vertices of G}
while 7 has fewer than n — 1 edges do
for each connected component C'in 7 do |
Let edge e be the smallest-weight edge from C to another component in 7' |
if e is not already in 7 then |
Add edge eto T
return 7'

© 2015 Goodrich and Tamassia Minimum Spanning Trees 20

Slide by Matt Stallmann

Exa mple Of Ba rqua ’ S included with permission.
Algorithm (animated)

© 2015 Goodrich and Tamassia Minimum Spanning Trees 21

