

Application:

Connecting a Network

- Suppose the remote mountain country of Vectoria has been given a major grant to install a large Wi-Fi the center of each of its mountain villages.
- Communication cables can run from the main Internet access point to a village tower and cables can also run between pairs of towers.
- The challenge is to interconnect all the towers and the Internet access point as cheaply as possible

Application: Connecting a Network

- We can model this problem using a graph, G, where each vertex in \mathbf{G} is the location of a Wi-Fi the Internet access point, and an edge in \mathbf{G} is a possible cable we could run between two such vertices.
- Each edge in \mathbf{G} could then be given a weight that is equal to the cost of running the cable that that edge represents.
- Thus, we are interested in finding a connected acyclic subgraph of \mathbf{G} that includes all the vertices of \mathbf{G} and has minimum total cost.
- Using the language of graph theory, we are interested in finding a minimum spanning tree (MST) of \mathbf{G}.

Minimum Spanning Trees

Spanning subgraph

- Subgraph of a graph G containing all the vertices of G
Spanning tree
- Spanning subgraph that is itself a (free) tree
Minimum spanning tree (MST)
- Spanning tree of a weighted graph with minimum total edge weight
- Applications
- Communications networks
- Transportation networks

Cycle Property

Cycle Property:

- Let T be a minimum spanning tree of a eighed graph G
- Let e be an edge of G that is not in T and C let be the cycle formed by e with T
- For every edge f of C, weight $(f) \leq$ weight(e)
Proof:
- By contradiction
- If weight $(f)>$ weight $($ e $)$ we can get a spanning tree of smaller weight by replacing e with f
© 2015 Goodrich and Tamassia

Replacing f with e yields a better spanning tree

Partition Property
Partition Property:

- Consider a partition of the vertices of \boldsymbol{G} into subsets \boldsymbol{U} and \boldsymbol{V}
- Let e be an edge of minimum weight across the partition
- There is a minimum spanning tree of
G containing edge e
Proof:
Let T be an MST of G
- If T does not contain e, consider the cycle C formed by e with T and let f be an edge of C across the partition
- By the cycle property,
weight $(f) \leq$ weight (e)
- Thus, weight $(f)=$ weight $($ e $)$
- We obtain another MST by replacing f with e
© 2015 Goodrich and Tamassia Minimum Spanning Trees

Prim-Jarnik's Algorithm

- Similar to Dijkstra's algorithm

Prim-Jarnik Pseudo-code

- We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from s
- We store with each vertex v label $d(v)$ representing the smallest weight of an edge connecting v to a vertex in the cloud
- At each step:
- We add to the cloud the vertex u outside the cloud with the smallest distance label
- We update the labels of the vertices adjacent to u
Pick any vertex v of G
$D[v] \leftarrow 0$
for each ve
for each vertex $u \neq v$ do
$D[u] \leftarrow+\infty$
inalize $T \leftarrow \emptyset$.
Initialize a priority queue Q with an item ($(u$, null $), D[u]$) for each vertex u,
where $(u$, null) is the element and $D[u]$ is the key
while Q is not empty do
$(u, e) \leftarrow Q$.removeMin ()
Add vertex u and edge e to T
for each vertex z adjacent to u such that z is in Q do
each vertex z adjacent to u such that z is in Q do
// perform the relaxation procedure on edge (u, z)
if $w((u, z))<D[z]$ then
$D[z] \leftarrow w((u, z))$
Change to $(z,(u, z))$ the element of vertex z i
Change to $D[z]$ the key of vertex z in Q.
return the tree T.
© 2015 Goodrich and Tamassia Minimum Spanning Trees

Example (contd.)

Analysis

- Graph operations
- We cycle through the incident edges once for each vertex
- Label operations
- We set/get the distance, parent and locator labels of vertex $z \boldsymbol{O}(\operatorname{deg}(z))$ times
- Setting/getting a label takes $\boldsymbol{O}(1)$ time
- Priority queue operations
- Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $\boldsymbol{O}(\log n)$ time
- The key of a vertex w in the priority queue is modified at most $\operatorname{deg}(w)$ times, where each key change takes $\boldsymbol{O}(\log \boldsymbol{n})$ time
- Prim-Jarnik's algorithm runs in $\boldsymbol{O}((\boldsymbol{n}+\boldsymbol{m}) \log n)$ time provided the graph is represented by the adjacency list structure
- Recall that $\sum_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$.
- The running time is $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{n})$ since the graph is connected © 2015 Goodrich and Tamassia Minimum Spanning Trees 11

Kruskal's Approach

- Maintain a partition of the vertices into clusters
- Initially, single-vertex clusters
- Keep an MST for each cluster
- Merge "closest" clusters and their MSTs
- A priority queue stores the edges outside clusters
- Key: weight
- Element: edge
- At the end of the algorithm
© 2015 sooorite enduluster and nnne MST

Kruskal's Algorithm		
Algorithm KruskalMST (G) : Input: A simple connected weighted graph G with n vertices and m edges Output: A minimum spanning tree T for G for each vertex v in G do Define an elementary cluster $C(v) \leftarrow\{v\}$. Let Q be a priority queue storing the edges in G, using edge weights as keys $T \leftarrow \emptyset \quad / / T$ will ultimately contain the edges of the MST while T has fewer than $n-1$ edges do $(u, v) \leftarrow Q$.removeMin() Let $C(v)$ be the cluster containing v Let $C(u)$ be the cluster containing u if $C(v) \neq C(u)$ then Add edge (v, u) to T Merge $C(v)$ and $C(u)$ into one cluster, that is, union $C(v)$ and $C(u)$ return tree T		
© 2015 Goodrich and Tamassia	Minimum Spanning Trees	13

Data Structure for Kruskal's Algorithm

- The algorithm maintains a forest of trees
- A priority queue extracts the edges by increasing weight
- An edge is accepted it if connects distinct trees
- We need a data structure that maintains a partition, i.e., a collection of disjoint sets, with operations:
- makeSet(u): create a set consisting of u
- find(u): return the set storing u
- union (A, B) : replace sets A and B with their union
© 2015 Goodrich and Tamassia Minimum Spanning Trees

Partition-Based Implementation

- Partition-based version of Kruskal's Algorithm
- Cluster merges as unions
- Cluster locations as finds
\square Running time $\boldsymbol{O}((\boldsymbol{n}+\boldsymbol{m}) \log \boldsymbol{n})$
- Priority Queue operations: $\boldsymbol{O}(\boldsymbol{m} \log n)$
- Union-Find operations: $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$

Alternative Implementation

In some applications, we may be given the edges in sorted order by their weights. In such cases, we can implement Kruskal's algorithm faster than the analysis given above. Specifically, we can implement the priority queue, Q, in this case, simply as an ordered list. This approach allows us to perform all the removeMin operations in constant time.

Then, instead of using a simple list-based partition data structure, we can use Then, instead of using a simple list-based partition data structure, we can use quence of $O(m)$ union-find operations runs in $O(m \alpha(n))$ time, where $\alpha(n)$ is the slow-growing inverse of the Ackermann function. Thus, we have the following

Theorem 15.5: Given a simple connected weighted graph G with n vertices and m edges, with the edges ordered by their weights, we can implement Kruskal's algorithm to construct a minimum spanning tree for G in $O(m \alpha(n))$ time.

Baruvka's Algorithm

Like Kruskal's Algorithm, Baruvka's algorithm grows many clusters at once and maintains a forest T

- Each iteration of the while loop halves the number of connected components in forest T
- The running time is $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{n})$

Algorithm BaruvkaMST(G)
$T \leftarrow V\{$ just the vertices of $G\}$
while T has fewer than $n-1$ edges do
for each connected component C in T do
Let edge \boldsymbol{e} be the smallest-weight edge from \boldsymbol{C} to another component in \boldsymbol{T} if e is not already in T then Add edge e to T
return T
© 2015 Goodrich and Tamassia Minimum Spanning Trees

