
Minimum Spanning Tree 5/2/2017 6:12 PM

1

© 2015 Goodrich and Tamassia Minimum Spanning Trees 1

Minimum Spanning Trees

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

© 2015 Goodrich and Tamassia

Application:
Connecting a Network
 Suppose the remote mountain country of Vectoria has been given

a major grant to install a large Wi-Fi the center of each of its
mountain villages.

 Communication cables can run from the main Internet access point
to a village tower and cables can also run between pairs of towers.

 The challenge is to interconnect all the towers and the Internet
access point as cheaply as possible.

Minimum Spanning Trees 2

© 2015 Goodrich and Tamassia

Application:
Connecting a Network
 We can model this problem using a graph, G, where

each vertex in G is the location of a Wi-Fi the Internet
access point, and an edge in G is a possible cable we
could run between two such vertices.

 Each edge in G could then be given a weight that is
equal to the cost of running the cable that that edge
represents.

 Thus, we are interested in finding a connected acyclic
subgraph of G that includes all the vertices of G and
has minimum total cost.

 Using the language of graph theory, we are interested
in finding a minimum spanning tree (MST) of G.

Minimum Spanning Trees 3 © 2015 Goodrich and Tamassia Minimum Spanning Trees 4

Minimum Spanning Trees
Spanning subgraph

 Subgraph of a graph G
containing all the vertices of G

Spanning tree
 Spanning subgraph that is

itself a (free) tree

Minimum spanning tree (MST)
 Spanning tree of a weighted

graph with minimum total
edge weight

 Applications
 Communications networks
 Transportation networks

ORD

PIT

ATL

STL

DEN

DFW

DCA

10
1

9

8

6

3

25

7

4

© 2015 Goodrich and Tamassia Minimum Spanning Trees 5

Cycle Property
Cycle Property:

 Let T be a minimum
spanning tree of a
weighted graph G

 Let e be an edge of G
that is not in T and C let
be the cycle formed by e
with T

 For every edge f of C,
weight(f) weight(e)

Proof:
 By contradiction
 If weight(f) > weight(e) we

can get a spanning tree
of smaller weight by
replacing e with f

8
4

2 3
6

7

7

9

8
e

C

f

8
4

2 3
6

7

7

9

8

C

e

f

Replacing f with e yields
a better spanning tree

© 2015 Goodrich and Tamassia Minimum Spanning Trees 6

U V

Partition Property
Partition Property:

 Consider a partition of the vertices of
G into subsets U and V

 Let e be an edge of minimum weight
across the partition

 There is a minimum spanning tree of
G containing edge e

Proof:
 Let T be an MST of G
 If T does not contain e, consider the

cycle C formed by e with T and let f
be an edge of C across the partition

 By the cycle property,
weight(f) weight(e)

 Thus, weight(f) = weight(e)
 We obtain another MST by replacing

f with e

7
4

2 8
5

7

3

9

8 e

f

7
4

2 8
5

7

3

9

8 e

f

Replacing f with e yields
another MST

U V

Minimum Spanning Tree 5/2/2017 6:12 PM

2

© 2015 Goodrich and Tamassia Minimum Spanning Trees 7

Prim-Jarnik’s Algorithm
 Similar to Dijkstra’s algorithm

 We pick an arbitrary vertex s and we grow the MST as
a cloud of vertices, starting from s

 We store with each vertex v label d(v) representing
the smallest weight of an edge connecting v to a
vertex in the cloud

 At each step:
 We add to the cloud the vertex u outside the cloud with the

smallest distance label

 We update the labels of the vertices adjacent to u

© 2015 Goodrich and Tamassia Minimum Spanning Trees 8

Prim-Jarnik Pseudo-code

© 2015 Goodrich and Tamassia Minimum Spanning Trees 9

Example

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0
7

2

8

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0
7

2

5

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0
7

2

5

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0
7

2

5 4

7

© 2015 Goodrich and Tamassia Minimum Spanning Trees 10

Example (contd.)

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0
3

2

5 4

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0
3

2

5 4

7

© 2015 Goodrich and Tamassia Minimum Spanning Trees 11

Analysis
 Graph operations

 We cycle through the incident edges once for each vertex
 Label operations

 We set/get the distance, parent and locator labels of vertex z O(deg(z))
times

 Setting/getting a label takes O(1) time
 Priority queue operations

 Each vertex is inserted once into and removed once from the priority
queue, where each insertion or removal takes O(log n) time

 The key of a vertex w in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time

 Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure

 Recall that Sv deg(v) = 2m

 The running time is O(m log n) since the graph is connected

© 2015 Goodrich and Tamassia

Kruskal’s Approach
 Maintain a partition of the vertices into

clusters
 Initially, single-vertex clusters
 Keep an MST for each cluster
 Merge “closest” clusters and their MSTs

 A priority queue stores the edges outside
clusters
 Key: weight
 Element: edge

 At the end of the algorithm
 One cluster and one MSTMinimum Spanning Trees 12

Minimum Spanning Tree 5/2/2017 6:12 PM

3

© 2015 Goodrich and Tamassia

Kruskal’s Algorithm

Minimum Spanning Trees 13 © 2015 Goodrich and Tamassia Campus Tour 14

Example of Kruskal’s Algorithm

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

© 2015 Goodrich and Tamassia Campus Tour 15

Example (contd.)

four steps

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

© 2015 Goodrich and Tamassia

Data Structure for Kruskal’s
Algorithm
 The algorithm maintains a forest of trees
 A priority queue extracts the edges by increasing

weight
 An edge is accepted it if connects distinct trees
 We need a data structure that maintains a

partition, i.e., a collection of disjoint sets, with
operations:
 makeSet(u): create a set consisting of u
 find(u): return the set storing u
 union(A, B): replace sets A and B with their union

Minimum Spanning Trees 16

© 2015 Goodrich and Tamassia Minimum Spanning Trees 17

List-based Partition
 Each set is stored in a sequence
 Each element has a reference back to the set

 operation find(u) takes O(1) time, and returns the set of
which u is a member.

 in operation union(A,B), we move the elements of the
smaller set to the sequence of the larger set and update
their references

 the time for operation union(A,B) is min(|A|, |B|)

 Whenever an element is processed, it goes into a
set of size at least double, hence each element is
processed at most log n times

© 2015 Goodrich and Tamassia

Partition-Based Implementation
 Partition-based version of Kruskal’s

Algorithm
 Cluster merges as unions
 Cluster locations as finds

 Running time O((n + m) log n)
 Priority Queue operations: O(m log n)
 Union-Find operations: O(n log n)

Minimum Spanning Trees 18

Minimum Spanning Tree 5/2/2017 6:12 PM

4

© 2015 Goodrich and Tamassia

Alternative Implementation

Minimum Spanning Trees 19 © 2015 Goodrich and Tamassia Minimum Spanning Trees 20

Baruvka’s Algorithm
 Like Kruskal’s Algorithm, Baruvka’s algorithm grows many

clusters at once and maintains a forest T
 Each iteration of the while loop halves the number of

connected components in forest T
 The running time is O(m log n)

Algorithm BaruvkaMST(G)
T V {just the vertices of G}

while T has fewer than n - 1 edges do
for each connected component C in T do

Let edge e be the smallest-weight edge from C to another component in T
if e is not already in T then

Add edge e to T
return T

© 2015 Goodrich and Tamassia

Example of Baruvka’s
Algorithm (animated)

Minimum Spanning Trees 21

1

5
4

3

2

3

4

49

6

8
7

6

5
4

9

6

8

Slide by Matt Stallmann
included with permission.

1

5
4

3

2

3

4

49

6

8
7

6

5

