Shortest Path 5/2/2017 6:10 PM

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Weighted Graphs

o In a weighted graph, each edge has an associated numerical
value, called the weight of the edge

Shortest Paths o Edge weights may represent, distances, costs, etc.
o Example:

= Ina flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

Lightning strke, 2009, U.S. government image. NOAA

© 2015 Goodrich and Tamassia Shortest Paths 1 © 2015 Goodrich and Tamassia Shortest Paths 2

Shortest Paths Shortest Path Properties

““"a Given a weighted graph and two vertices and v, we want to

find a path of minimum total weight between u and v. Property 1: 0
= Length of a path is the sum of the weights of its edges. A subpath of a shortest path is itself a shortest path
a Example: Property 2:
= Shortest path between Providence and Honolulu There is a tree of shortest paths from a start vertex to all the other
vertices

o Applications
= Internet packet routing
= Flight reservations
= Driving directions

Example:
Tree of shortest paths from Providence

© 2015 Goodrich and Tamassia Shortest Paths 3 © 2015 Goodrich and Tamassia Shortest Paths 4

an y . .
Dijkstra’ s Algorithm Edge Relaxation
o The distance of a vertex o We grow a “cloud” of vertices, a Consider an edge e =(u,z)
v from a vertex s is the beginning with s and eventually such that
length of a shortest path covering all the vertices = uis the vertex most recently
between s and v a We store with each vertex v a added to the cloud
o Dijkstra’ s algorithm label D[v] representing the = zisnotin the cloud
computes the distances distance of v from s in the
of all the vertices from a subgraph consisting of the cloud o The relaxation of edge e
given start vertex s and its adjacent vertices updates distance d(z) as
a Assumptions: a At each step follows:
= the graph is connected = We add to the cloud the vertex D[z] < min{D[z], D[u] + weight(e)}
» the edges are u outside the cloud with the
undirected smallest distance label, D[u]
» the edge weights are = We update the labels of the 3
nonnegative vertices adjacent to u R
© 2015 Goodrich and Tamassia Shortest Paths 5 © 2015 Goodrich and Tamassia Shortest Paths 6

Shortest Path

Dijkstra’s Algorithm: Details

Algorithm DijkstraShortestPaths(G, v):
Input: A simple undirected weighted graph G' with nonnegative edge weights,
and a distinguished vertex v of G
Output: A label, D[u], for each vertex u of G, such that D[u] is the distance
fromvtouin G
Dv] <0
for each vertex u # v of G do
D[u] + +o0
Let a priority queue, @, contain all the vertices of G using the D labels as keys.
while @ is not empty do
// pull a new vertex u into the cloud
u ¢ Q.removeMin()
for each vertex z adjacent to u such that z is in Q do
/I perform the relaxation procedure on edge (u, z)
if D[u] + w((u,2)) < Dl[z] then
D[z] + D[u] + w((u,z))
Change the key for vertex z in @ to D[z]
return the label D[u] of each vertex u

© 2015 Goodrich and Tamassia Shortest Paths 7

5/2/2017 6:10 PM

© 2015 Goodrich and Tamassia Shortest Paths 8

Example (cont.)

© 2015 Goodrich and Tamassia Shortest Paths 9

‘Analysis of Dijkstra’ s Algorithm

a Graph operations
= We find all the incident edges once for each vertex
a Label operations
= We set/get the distance and locator labels of vertex z O(deg(z)) times
= Setting/getting a label takes O(1) time
Priority queue operations

= Each vertex is inserted once into and removed once from the priority
queue, where each insertion or removal takes O(log n) time

= The key of a vertex in the priority queue is modified at most deg(i)
times, where each key change takes O(log n) time

a Dijkstra’ s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list/map structure
= Recall that X, deg(v) = 2m

a The running time can also be expressed as O(m log n) since the
graph is connected

o

© 2015 Goodrich and Tamassia Shortest Paths 10

'Why Dijkstra’ s Algorithm Works

o Dijkstra’ s algorithm is based on the greedy
method. It adds vertices by increasing distance.
= Suppose it didn’t find all shortest

distances. Let w be the first wrong

vertex the algorithm processed.

When the previous node, u, on the

true shortest path was considered,

its distance was correct

But the edge (u,w) was relaxed at

that time!

Thus, so long as D[w]>D[u], w’s R

distance cannot be wrong. Thatis, (W) = (D,F) in this example

there is no wrong vertex

© 2015 Goodrich and Tamassia Shortest Paths 11

Why It Doesn’ t Work for Negative-
Weight Edges

Dijkstra’ s algorithm is based on the greedy
method. It adds vertices by increasing distance.

= If a node with a negative
incident edge were to be added
late to the cloud, it could mess
up distances for vertices already "\
in the cloud. '

C’ s true distance is 1, but
it is already in the cloud
with d(C)=>5!

© 2015 Goodrich and Tamassia Shortest Paths 12

Shortest Path

Bellman-Ford Algorithm

o Works even with negative-weight edges

a Must assume directed edges (for otherwise
we would have negative-weight cycles)

a Iteration i finds all shortest paths that use i
edges.

o Running time: O(nm).

o Can be extended to detect a negative-weight
cycle if it exists
= How?

© 2015 Goodrich and Tamassia Shortest Paths 13

5/2/2017 6:10 PM

‘Bellman-Ford Algorithm: Details

Algorithm BellmanFordShortestPaths(G, v):
Input: A weighted directed graph G with n vertices, and a vertex v of G
Output: A label D[u], for each vertex u of G, such that D[u] is the distance
from v to u in G, or an indication that & has a negative-weight cycle
D]+ 0
for each vertex u # v of Gdo
Dlu] + +co
fori< 1ton—1do
for each (directed) edge (u, z) outgoing from u do
/I Perform the relaxation operation on (u,z)
if D[u] + w((u,2)) < D[] then
Dl2] + D[u] +w((u,z))
if there are no edges left with potential relaxation operations then
return the label D[u] of each vertex u
else
return “G contains a negative-weight cycle”

© 2015 Goodrich and Tamassia Shortest Paths 14

_Bellman-Ford Example

Nodes are labeled with their D[v] values

© 2015 Goodrich and Tamassia Shortest Paths 15

'DAG-based Algorithm

o We can produce a specialized shortest-
path algorithm for directed acyclic
graphs (DAGS)

o Works even with negative-weight edges

o Uses topological order

o Doesn’ t use any fancy data structures

o Is much faster than Dijkstra’ s algorithm

o Running time: O(n+m).

© 2015 Goodrich and Tamassia Shortest Paths 16

DAG-based Algorithm: Details

Algorithm DAGShortestPaths(G, s):
Input: A weighted directed acyclic graph (DAG) G with n vertices and m
edges, and a distinguished vertex s in el
Output: A label D[u], for each vertex u of G, such that D[u] is the distance
fromvtou in G
Compute a topological ordering (vy, vz, .. .,v,) for G
D[s] +0
for each vertex u # s of G do
Dlu] + +o0
fori< 1ton—1do
/1 Relax each outgoing edge from v;
for each edge (v;, u) outgoing from v; do
if D[v;] + w((v;,u)) < D[u] then
D[u] + Dlv;] +w((v;,u))
Output the distance labels D as the distances from s.

© 2015 Goodrich and Tamassia Shortest Paths 17

'DAG Example

Nodes are labeled with theirld(v) values

6 5 6 5
© 2015 Goodrich and Tamassia Shortest Paths (two steps) 18

Shortest Path

o Find the distance
between every pair of
vertices in a weighted
directed graph G.

o We can make n calls to
Dijkstra’ s algorithm (if
no negative edges),
which takes O(nmlog n)
time.

Likewise, n calls to

Bellman-Ford would take

0O(n2m) time.

o We can achieve O(n3)
time using dynamic
programming (similar to
the Floyd-Warshall

[}

algorithm).
© 2015 Goodrich and Tamassia

All-Pairs Shortest Paths

Algorithm AllPair(G) {assumes vertices 1,....n}
for all vertex pairs (i,j)
if i=j
Dyliil <0
else if (i,f) is an edge in G
Dli,j] < weight of edge (i,j)
else
D,lij] < + 0
for k <~ 1 to n do
for i < 1 to n do
for j < I to n do
Dylijl < min{Dy lifl, Dy 1K1+, 1hefl}
return D,

Uses only vertices numbered 1,...,k
ute weight of this edge)
>()

Uses only vertices
numbered 1,... k-1 Uses only vertices
numbered 1,... k-1

Shortest Paths 19

5/2/2017 6:10 PM

