

Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent, distances, costs, etc
- Example:
- In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

[^0]
Shortest Path Properties

Property 1:
A subpath of a shortest path is itself a shortest path
Property 2:
There is a tree of shortest paths from a start vertex to all the other vertices
Example:
Tree of shortest paths from Providence

- Internet packet routing
- Flight reservations

Shortest Paths

- Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between u and v.
- Length of a path is the sum of the weights of its edges.

Example:

- Shortest path between Providence and Honolulu
- Applications

Edge Relaxation

- The distance of a vertex v from a vertex s is the length of a shortest path between s and v
- Dijkstra' s algorithm computes the distances of all the vertices from a given start vertex s
- Assumptions:
- the graph is connected
- the edges are
undirected
- the edge weights are nonnegative
© 2015 Goodrich and Tamassia
Shortest Paths

We grow a "cloud" of vertices beginning with s and eventually covering all the vertices
We store with each vertex v a label $D[v]$ representing the distance of v from s in the subgraph consisting of the cloud and its adjacent vertices

- At each step
- We add to the cloud the vertex outside the cloud with the smallest distance label, $D[u]$
- We update the labels of the vertices adjacent to \boldsymbol{u}

Consider an edge $e=(u, z)$
such that

- u is the vertex most recently added to the cloud
- z is not in the cloud
- The relaxation of edge e updates distance $d(z)$ as follows:
$\boldsymbol{D}[z] \leftarrow \min \{\boldsymbol{D}[z], \boldsymbol{D}[u]+$ weight $(e)\}$

Dijkstra's Algorithm: Details

```
Algorithm DijkstraShortestPaths(G,v):
```

 Input: A simple undirected weighted graph \(G\) with nonnegative edge weights,
 and a distinguished vertex \(v\) of \(G\)
 Output: A label, \(D[u]\), for each vertex \(u\) of \(G\), such that \(D[u]\) is the distance
 from \(v\) to \(u\) in \(G\)
 \(D[v] \leftarrow 0\)
 for each vertex \(u \neq v\) of \(G\) do
 \(D[u] \leftarrow+\infty\)
 Let a priority queue, \(Q\), contain all the vertices of \(G\) using the \(D\) labels as keys,
 while \(Q\) is not empty do
 1/ pull a new vertex \(u\) into the cloud
 \(\leftarrow \leftarrow Q\).removeMin()
 or each vertex \(z\) adjacent to \(u\) such that \(z\) is in \(Q\) do
 // perform the relaxation procedure on edge \((u, z)\)
 if \(D[u]+w((u, z))<D[z]\) then
 Change the key for vertex \(z\) in \(Q\) to \(D[z]\)
 return the label \(D[u]\) of each vertex \(u\)
 © 2015 Goodrich and Tamassia Shortest Paths

Analysis of Dijkstra's Algorithm

Example (cont.)

- Graph operations
- We find all the incident edges once for each vertex
- Label operations
- We set/get the distance and locator labels of vertex $z \boldsymbol{O}(\operatorname{deg}(z))$ times
- Setting/getting a label takes $\boldsymbol{O}(1)$ time
- Priority queue operations
- Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $\boldsymbol{O}(\log \boldsymbol{n})$ time
- The key of a vertex in the priority queue is modified at most $\operatorname{deg}(w)$ times, where each key change takes $\boldsymbol{O}(\log n)$ time
- Dijkstra's algorithm runs in $\boldsymbol{O}((\boldsymbol{n}+\boldsymbol{m}) \log \boldsymbol{n})$ time provided the graph is represented by the adjacency list/map structure
- Recall that $\sum_{r} \operatorname{deg}(v)=2 \boldsymbol{m}$
- The running time can also be expressed as $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{n})$ since the graph is connected

Why Dijkstra's Algorithm Works

. Dijkstra's algorithm is based on the greedy method. It adds vertices by increasing distance.

- Suppose it didn' t find all shortest distances. Let w be the first wrong vertex the algorithm processed.
- When the previous node, u, on the true shortest path was considered, its distance was correct
- But the edge (u, w) was relaxed at that time!
- Thus, so long as $D[w] \geq D[u]$, w's distance cannot be wrong. That is, there is no wrong vertex
c 2015 Goodrich and Tamassia
Shortest Paths

Why It Doesn' t Work for NegativeWeight Edges

- Dijkstra' s algorithm is based on the greedy method. It adds vertices by increasing distance.
- If a node with a negative incident edge were to be added late to the cloud, it could mess up distances for vertices already in the cloud.
© 2015 Goodrich and Tamassia
Shortest Paths

Bellman-Ford Algorithm

Works even with negative-weight edges

- Must assume directed edges (for otherwise we would have negative-weight cycles)
- Iteration i finds all shortest paths that use i edges.
- Running time: $\mathrm{O}(\mathrm{nm})$.
- Can be extended to detect a negative-weight cycle if it exists
- How?

Bellman-Ford Example

Nodes are labeled with their $\mathrm{D}[\mathrm{v}]$ values

Bellman-Ford Algorithm: Details
Algorithm BellmanFordShortestPaths (\vec{G}, v) :
Input: A weighted directed graph \vec{G} with n vertices, and a vertex v of \vec{G}
Output: A label $D[u]$, for each vertex u of \vec{G}, such that $D[u]$ is the distance from v to u in \vec{G}, or an indication that \vec{G} has a negative-weight cycle $D[v] \leftarrow 0$
for each vertex $u \neq v$ of G do
$D[u] \leftarrow+\infty$
for $i \leftarrow 1$ to $n-1$ do
for each (directed) edge (u, z) outgoing from u do // Perform the relaxation operation on (u, z) if $D[u]+w((u, z))<D[z]$ then $D[z] \leftarrow D[u]+w((u, z))$ if there are no edges left with potential relaxation operations then return the label $D[u]$ of each vertex u else return " \vec{G} contains a negative-weight cycle"
c 2015 Goodrich and Tamassia \quad Shortest Paths

DAG-based Algorithm

- We can produce a specialized shortestpath algorithm for directed acyclic graphs (DAGs)
- Works even with negative-weight edges
- Uses topological order
- Doesn't use any fancy data structures - Is much faster than Dijkstra's algorithm \square Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$.
c 2015 Goodrich and Tamassia Shortest Paths

DAG Example

All-Pairs Shortest Paths

- Find the distance between every pair of vertices in a weighted directed graph G.
- We can make n calls to Dijkstra' s algorithm (if no negative edges) which takes O(nmlog n) which
- Likewise, n calls to Bellman-Ford would take $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}\right)$ time.
- We can achieve $O\left(n^{3}\right)$
time using dynamic
Algorithm $\operatorname{AllPair}(\boldsymbol{G})\{$ assumes vertices $1, \ldots, \boldsymbol{n}\}$
for all vertex pairs (i, j)
if $i=j$
$D_{0}[i, i]$
else if (i, j) is a
else if (i, j) is an edge in G
$D_{0}[i, j] \leftarrow$ weight of edge (i, j)
else
for $k\left[D_{0}[i, j]+\infty\right.$
for $k \leftarrow 1$ to n do
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do
$D_{k}[i, j] \leftarrow \min \left\{D_{k-1}[i, j], D_{k-1}[i, k]+D_{k-1}[k, j]\right\}$
turn D return D_{n}

programming (similar to Uses only vertices
the Floyd-Warshall numbered $1, \ldots, k-1$ (k) Uses only vertices
algorithm).
© 2015 Goodrich and Tamassia
Shortest Paths

[^0]: c 2015 Goodrich and Tamassia

