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Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

‘Digraphs

o A digraph is a graph
Directed Graphs whose edges are all
directed

= Short for “directed graph”
o Applications

= one-way streets

= flights

= task scheduling
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‘Digraph Application

|'a Scheduling: edge (a,b) means task a must be
completed before b can be started

Digraph Properties

a A graph G=(V,E) such that
= Each edge goes in one direction:
= Edge (a,b) goes from a to b, but not b to a

o IfGis simple, m <n-(n—1)

o If we keep in-edges and out-edges in separate @

adjacency lists, we can perform listing of

incoming edges and outgoing edges in time
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proportional to their size

Directed DFS ‘The Directed DFS Algorithm

o We can specialize the traversal
algorithms (DFS and BFS) to
digraphs by traversing edges
only along their direction

a In the directed DFS algorithm,
we have four types of edges

= discovery edges
= back edges

= forward edges
= cross edges

o A directed DFS starting at a else
vertex s determines the vertices Label e as a forward/cross edge
reachable from s Label v as explored

Algorithm DirectedDFS(G, v):
Label v as active // Every vertex is initially unexplored
for each outgoing edge, e, that is incident to v in G do
if e is unexplored then
Let w be the destination vertex for e
if w is unexplored and not active then
Label e as a discovery edge
DirectedDFS(G, w)
else if w is active then
Label e as a back edge
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_Reachability Strong Connectivity g

4 DFS tree rooted at v: vertices reachable o Each vertex can reach all other verticés

from v via directed paths
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Strong Connectivity Strongly Connected %%5
Algorithm ‘Components L)

o Maximal subgraphs such that each vertex can reach
all other vertices in the subgraph

o Can also be done in O(n+m) time using DFS, but is
more complicated (similar to biconnectivity).

{a,c,g}
o |
0 {f,d,e,b}
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o Pick a vertex v in G
o Perform a DFS from v in G
= If there’s a w not visited, print “no”
o Let G’ be G with edges reversed
o Perform a DFS from v in G’
= If there’s a w not visited, print “no”
= Else, print “yes”
o Running time: O(n+m)

Computing the
‘Transitive Closure Transitive Closure

If there's a way to get

|a Given a digraph G, the Q @ o We can perform from A to B and from
transitive closure of G is the DFS starting at B to C, then there's a
digraph G such that 9 p each vertex way to get from A to C.

= G* has the same vertices (©
as G 0

= if G has a directed path
from u to v (u =v), G*

= O(n(n+m))

has a directed edge from Q e Alternatively ... Use
utoy dynamic programming:
o The transitive closure 9 The Floyd-Warshall
provides reachability e Algorithm
information about a digraph gori
&) G
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Floyd-Warshall
‘ Transitive Closure

" a Idea #1: Number the vertices 1, 2, ..., n. 2 Number vertices Viy e ¥,

o Idea #2: Consider paths that use only o Compute digraphs G, ..., G,
vertices numbered 1, 2, ..., k, as s G=G

intermediate vertices: = G, has directed edge (v, v) if G has a directed

Uses only vertices numbered 1,...,k path from v, to »; with intermediate vertices in
(add this edge if it’ s not already in) (V] eee Vi)

.......................... o We have that G, = G*

o In phase k, digraph G, is computed from G, _
1

Floyd-Warshall’ s Algorithm:
High-Level View

Uses only vertices

numbered 1,...,k-1 Uses only vertices

numbered 1. k-1 a Running time: O(r?), assuming areAdjacent is
reeiy . .
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The Floyd-Warshall Algorithm

Algorithm FloydWarshall(G):
Input: A digraph G with n vertices
Output: The transitive closure G* of G

Let vi, o, ..., v, be an arbitrary numbering of the vertices of G
Go G
for k < 1tondo

G+ Gy

fori « 1ton. i+#kdo

forj« 1ton,j#ikdo
if both edges (v;, v) and (vy,v;) are in Gj_q then
if Gy, does not contain directed edge (v;,v;) then
add directed edge (v;,v;) to ey

return G,,

o The running time is clearly O(n3).
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Floyd-Warshall, Iteration 4
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'Floyd-Warshall, Conclusion DAGs and Topological Ordering

a A directed acyclic graph (DAG) is a @—'®
digraph that has no directed cycles

o A topological ordering of a digraph .<
is a numbering

Vig ooy Vy G

of the vertices such that for every Q DAG G
edge (v;, v), we have i <j

o Example: in a task scheduling V4 Vs
digraph, a topological ordering a @_.®
task sequence that satisfies the v,
precedence constraints “

Theorem V3
A digraph_ admits a t_opol_ogical v G .
ordering if and only if it is a DAG 0 Topological

ordering of G
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dream about graphs
Directed Graphs
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Implementation with DFS

| a Simulate the algorithm by
using depth-first search
a  O(n+m) time.

Algorithm topological DFS(G, v)

Output labeling of the vertices of G'
in the connected component of v
setLabel(v, VISITED)
for all ¢ € G.outEdges(v)
{ outgoing edges }
w < opposite(v,e)
if getLabel(w) = UNEXPLORED
{ e is a discovery edge }
topological DFS(G, w)
else

Algorithm ropologicalDFS(G)
Input dag G
Output topological ordering of G
n « G.numVertices()
for all u e G.vertices()
setLabel(u, UNEXPLORED)
for all v e G.vertices()
if getLabel(v) = UNEXPLORED
topological DFS(G, v)

{ e is a forward or cross edge }
Label v with topological number n
nen-1

Input graph G and a start vertex v of G
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Algorithm for Topological Sorting

o Note: This algorithm is different than the
one in the book

Algorithm TopologicalSort(G)

He«G // Temporary copy of G

n < G.numVertices()

while H is not empty do
Let v be a vertex with no outgoing edges
Label ve—n
nen-1
Remove v from H

a Running time: O(n + m)
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. Topological Sorting Example
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. Topological Sorting Example
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. Topological Sorting Example
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. Topological Sorting Example
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. Topological Sorting Example
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. Topological Sorting Example
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. Topological Sorting Example
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. Topological Sorting Example
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. Topological Sorting Example
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_Topological Sorting Example
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