

Digraphs

- A digraph is a graph whose edges are all directed
- Short for "directed graph"
- Applications
- one-way streets
- flights
- task scheduling

Digraph Properties

- A graph $G=(V, E)$ such that

- Each edge goes in one direction:
- Edge (a, b) goes from a to b , but not b to a
- If G is simple, $\boldsymbol{m} \leq \boldsymbol{n} \cdot \boldsymbol{n}-1)$
- If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of incoming edges and outgoing edges in time proportional to their size
© 2015 Goodrich and Tamassia
Directed Graphs
3

Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- In the directed DFS algorithm, we have four types of edges
- discovery edges
- back edges
- forward edges
- cross edges
- A directed DFS starting at a vertex s determines the vertices reachable from s

Digraph Application

- Scheduling: edge (a,b) means task a must be completed before b can be started

The Directed DFS Algorithm

```
Algorithm DirectedDFS(G,v):
    Label v}\mathrm{ as active // Every vertex is initially unexplored
    for each outgoing edge, e, that is incident to v}\mathrm{ in }G\mathrm{ do
        if e is unexplored then
            Let w}\mathrm{ be the destination vertex for }
            if w}\mathrm{ is unexplored and not active then
                Label e as a discovery edge
                DirectedDFS(G,w)
            else if w}\mathrm{ is active then
                Label e as a back edge
            else
                Label e as a forward/cross edge
    Label v}\mathrm{ as explored
```

© 2015 Goodrich and Tamassia Directed Graphs

Transitive Closure

- Given a digraph \boldsymbol{G}, the
transitive closure of \boldsymbol{G} is the digraph G^{*} such that
- G^{*} has the same vertices as \boldsymbol{G}
- if G has a directed path from u to $v(u \neq v), G^{*}$ has a directed edge from \boldsymbol{u} to \boldsymbol{v}
- The transitive closure provides reachability information about a digraph
© 2015 Goodrich and Tamassia
Directed Graphs

Strongly Connected Components

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in $O(n+m)$ time using DFS, but is more complicated (similar to biconnectivity).

$\{f, d, e, b\}$
© 2015 Goodrich and Tamassia Directed Graphs
10

Floyd-Warshall Example

Floyd-Warshall, Iteration 2

Floyd-Warshall, Iteration 1

Floyd-Warshall, Iteration 3

Floyd-Warshall, Iteration 4

Floyd-Warshall, Iteration 6

DAGs and Topological Ordering

Algorithm for Topological Sorting

- Note: This algorithm is different than the one in the book

```
Algorithm TopologicalSort(G)
    H}\leftarrow\boldsymbol{G}\quad// Temporary copy of \boldsymbol{G
    n}\leftarrow\boldsymbol{G.numVertices()
    while}H\mathrm{ is not empty do
        Let v}\mathrm{ be a vertex with no outgoing edges
        Label v}v~
            n\leftarrown-1
            Remove v from H
```

- Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$
© 2015 Goodrich and Tamassia \quad Directed Graphs

Topological Sorting Example

Topological Sorting Example

© 2015 Goodrich and Tamassia
Directed Graphs

