
Selection 3/20/2017 6:09 PM

1

© 2015 Goodrich and Tamassia Selection 1

Selection

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

© 2015 Goodrich and Tamassia

Application: Finding Medians
A common data analysis tool is to compute a median, that is, a
value taken from among n values such that there are at most n/2
values larger than this one and at most n/2 elements smaller.
Of course, such a number can be found easily if we were to sort
the scores, but it would be ideal if we could find medians in O(n)
time without having to perform a sorting operation.

Selection 2
< 50% below < 50% above

Median

© 2015 Goodrich and Tamassia Selection 3

The Selection Problem
Given an integer k and n elements x1, x2, …, xn,
taken from a total order, find the k-th smallest
element in this set.
Of course, we can sort the set in O(n log n) time
and then index the k-th element.

We want to solve the selection problem faster.

7 4 9 6 2 2 4 6 7 9k=3

© 2015 Goodrich and Tamassia Selection 4

Quick-Select
Quick-select is a randomized
selection algorithm based on
the prune-and-search
paradigm:
 Prune: pick a random element x

(called pivot) and partition S into
 L: elements less than x
 E: elements equal x
 G: elements greater than x

 Search: depending on k, either
answer is in E, or we need to
recur in either L or G

x

x

L GE

k < |L|

|L| < k < |L|+|E|
(done)

k > |L|+|E|
k’ = k - |L| - |E|

© 2015 Goodrich and Tamassia Selection 5

Pseudo-code

Note that each call to quickSelect takes O(n) time, not
counting the recursive calls.

© 2015 Goodrich and Tamassia Selection 6

Quick-Select Visualization
An execution of quick-select can be visualized by a
recursion path
 Each node represents a recursive call of quick-select, and

stores k and the remaining sequence

k=5, S=(7 4 9 3 2 6 5 1 8)

5

k=2, S=(7 4 9 6 5 8)

k=2, S=(7 4 6 5)

k=1, S=(7 6 5)

Selection 3/20/2017 6:09 PM

2

© 2015 Goodrich and Tamassia Selection 7

Expected Running Time
Consider a recursive call of quick-select on a sequence of size s
 Good call: the sizes of L and G are each less than 3s/4
 Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2
 1/2 of the possible pivots cause good calls:

7 9 7 1 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

© 2015 Goodrich and Tamassia Selection 8

Expected Running Time,
Part 2

Probabilistic Fact #1: The expected number of coin tosses required in
order to get one head is two
Probabilistic Fact #2: Expectation is a linear function:
 E(X + Y) = E(X) + E(Y)
 E(cX) = cE(X)

Let T(n) denote the expected running time of quick-select.
By Fact #2,
 T(n) < T(3n/4) + bn*(expected # of calls before a good call)

By Fact #1,
 T(n) < T(3n/4) + 2bn

That is, T(n) is a geometric series:
 T(n) < 2bn + 2b(3/4)n + 2b(3/4)2n + 2b(3/4)3n + …

So T(n) is O(n).

We can solve the selection problem in O(n) expected
time.

© 2015 Goodrich and Tamassia Selection 9

Deterministic Selection
We can do selection in O(n) worst-case time.
Main idea: recursively use the selection algorithm itself to find a
good pivot for quick-select:
 Divide S into n/5 sets of 5 each
 Find a median in each set
 Recursively find the median of the “baby” medians.

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

Min size
for L

Min size
for G

© 2015 Goodrich and Tamassia Selection 10

Pseudo-code

Note that each call to DeterministicSelect takes O(n) time,
not counting the recursive calls.

© 2015 Goodrich and Tamassia

Analysis

Selection 11 © 2015 Goodrich and Tamassia

Analysis, Part 2

Selection 12

