

The Selection Problem

Quick-Select

Given an integer k and n elements $x_{1}, x_{2}, \ldots, x_{n}$, taken from a total order, find the k-th smallest element in this set.

- Of course, we can sort the set in $O(n \log n)$ time and then index the k-th element.

```
k=3 74 9 6 2 T 2 4 6 7 9
```

- We want to solve the selection problem faster.
- Quick-select is a randomized selection algorithm based on the prune-and-search paradigm:
- Prune: pick a random element x (called pivot) and partition S into
- L : elements less than

E: elements equal x

- G : elements greater than x
- Search: depending on k , either answer is in E, or we need to recur in either L or G

$$
\text { recur in eltner } L \text { or } G
$$

$|\boldsymbol{L}|<\boldsymbol{k} \leq|\boldsymbol{L}|+|\boldsymbol{E}|$

(done)
© 2015 Goodrich and Tamassia Selection 4

Pseudo-code

Algorithm quickSelect (S, k) :
Input: Sequence S of n comparable elements, and an integer $k \in[1, n]$ Output: The k th smallest element of S
if $n=1$ then
return the (first) element of S
pick a random element x of

- L, storing the elements in S less than
- E, storing the elements in S equal to x
- G, storing the elements in S greater than x
$k \leq|L|$ then
quickSelect (L, k)
in $\leq|||+|E|$ then
return $x \quad / /$ each element in E is equal to x
quickSelect($G, k-|L|-|E|$)
- Note that each call to quickSelect takes $\boldsymbol{O}(\boldsymbol{n})$ time, not counting the recursive calls.
© 2015 Goodrich and Tamassia \quad Selection 5

Quick-Select Visualization

- An execution of quick-select can be visualized by a recursion path
- Each node represents a recursive call of quick-select, and stores k and the remaining sequence
$\left.\begin{array}{lllllllll}\hline k=5, S=\left(\begin{array}{lllllll}7 & 4 & 9 & \underline{3} & 2 & 6 & 5\end{array} 1\right. & 8\end{array}\right)$

Expected Running Time, Part 2

- Probabilistic Fact \#1: The expected number of coin tosses required in order to get one head is two
- Probabilistic Fact \#2: Expectation is a linear function:
- $E(X+Y)=E(X)+E(Y)$
- $E(c X)=c E(X)$
- Let $T(n)$ denote the expected running time of quick-select.
- By Fact \#2,
- $T(n) \leq T(3 n / 4)+b n^{*}($ expected \# of calls before a good call)
- By Fact \#1
- $T(n) \leq T(3 n / 4)+2 b n$
- That is, $T(n)$ is a geometric series:
- $T(n) \leq 2 b n+2 b(3 / 4) n+2 b(3 / 4)^{2} n+2 b(3 / 4)^{3} n+$
- So $T(n)$ is $O(n)$.
- We can solve the selection problem in $O(n)$ expected time.
© 2015 Goodrich and Tamassia \quad Selection

Deterministic Selection

- We can do selection in $\mathrm{O}(\mathrm{n})$ worst-case time
- Main idea: recursively use the selection algorithm itself to find a good pivot for quick-select:
- Divide S into $n / 5$ sets of 5 each
- Find a median in each set
- Recursively find the median of the "baby" medians.

Min size
for L

© 2015 Goodrich and Tamassia
Selection

Pseudo-code

```
Algorithm DeterministicSelect(S,k):
    Input: Sequence S of n comparable elements, and an integer }k\in[1,n
    Output: The kth smallest element of}
    if }n=1\mathrm{ then
    Dividurn he (lins) element of
```



```
    S
    Find the baby median, \mp@subsup{x}{i}{},\mathrm{ in 的(using any method)}
    x\leftarrow\mathrm{ DeterministicSelect {{, [x, ,_, , , }, [g/2})}
        - L, toring the elements in S less than }
        - L, storing the elements in S Sess than }
        : E, storing the elements in S equal to x
    if }k\leq|L| the
    else if }k\leq|L|+|E|\mathrm{ then 
    else return }x\quad//\mathrm{ each element in }E\mathrm{ is equal to
        \mathrm{ else DeterministicSelect(G,k-|L|-|E|}\\mp@code{\})
```

- Note that each call to DeterministicSelect takes $\boldsymbol{O}(\boldsymbol{n})$ time, not counting the recursive calls.
© 2015 Goodrich and Tamassia Selection

Analysis, Part 2

```
                T(n)\leqT(n/5+1)+T(7n/10+2)+bn
```

where $b>0$ is a constant.
To solve the recurrence, we guess that $T(n) \leq c n$, for some constant $c>0$. Expanding the recurrence, we have the following:
$T(n) \leq T(n / 5+1)+T(7 n / 10+2)+b n$
$\leq c n / 5+c+7 c n / 10+2 c+b n$
$=9 c n / 10+b n+3 c$.
Pick $c=11 b$. We obtain
$T(n) \leq 9 c n / 10+b n+3 c \leq 9 c n / 10+c n / 11+3 c$.
Thus, we have $T(n) \leq c n$ for n large enough such that
$c n / 11+3 c \leq c n / 10$,
that is, for $n \geq 330$. Therefore, the running time of the deterministic selection algorithm is $O(n)$.

We summarize the above analysis with the following theorem.
Theorem 9.4: Given an input sequence with n elements, the deterministic selection algorithm runs in $O(n)$ time.
(c) 2015 Goodrich and Tamassia \quad Selection

