Selection

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Selection

Antarctica Gentoo Penguins, US. gover
Crit: Li. Elizabeth Crapa/NOAA.

© 2015 Goodrich and Tamassia Selection 1

3/20/2017 6:09 PM

‘Application: Finding Medians

# A common data analysis tool is to compute a median, that is, a
value taken from among n values such that there are at most n/2
values larger than this one and at most n/2 elements smaller.

# Of course, such a number can be found easily if we were to sort
the scores, but it would be ideal if we could find medians in O(n)
time without having to perform a sorting operation.

Median ~
¢ | / T
< 50% below < 50% above
© 2015 Goodrich and Tamassia Selection 2

‘The Selection Problem

# Given an integer k and n elements Xy, X, ..., X,
taken from a total order, find the k-th smallest
element in this set.

@ Of course, we can sort the set in O(n log n) time
and then index the k-th element.

k=3 (74962 5>24679]

@ We want to solve the selection problem faster.

© 2015 Goodrich and Tamassia Selection 3

Quick-Select

]O Quick-select is a randomized
selection algorithm based on D U
the prune-and-search D o [l
paradigm:

= Prune: pick a random element x
(called pivot) and partition S into
+ L: elements less than x |:| O |:|
+ E: elements equal x H—/ LY—} H_)
+ G: elements greater than x L E G
= Search: depending on k, either k< IL| | k> |LIH|E|

answer is in E, or we need to k’=k-|L|-|E|
recur in either L or G
IL| <k <|LI+E|
(done)
© 2015 Goodrich and Tamassia Selection 4

Pseudo-code

Algorithm quickSelect(S. k):
Input: Sequence S of n comparable elements, and an integer k € [1,n]
Output: The kth smallest element of S
if n = 1 then
return the (first) element of S
pick a random element x of S
remove all the elements from S and put them into three sequences:
o I, storing the elements in S less than
e [ storing the elements in S equal to x
e (3, storing the elements in S greater than z.
if 1o < |L| then
quickSelect(L, k)
else if k < |T| + |F| then
return = // each element in E is equal to &
else
quickSelect(G, k — |L| — [E|)

# Note that each call to quickSelect takes O(n) time, not
counting the recursive calls.
© 2015 Goodrich and Tamassia Selection 5

“Quick-Select Visualization

| @ An execution of quick-select can be visualized by a
recursion path
= Each node represents a recursive call of quick-select, and
stores k and the remaining sequence

(k=5,5=(7 4 93265 1 8)
[

(k=2,5=(7 496538 ]
k=2,5=(7 4 6 5

© 2015 Goodrich and Tamassia Selection 6




Selection

3/20/2017 6:09 PM

Expected Running Time @@

| @ Consider a recursive call of quick-select on a sequence of size s
= Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

72943761 72943761
- ~ -
7294376

(2431 ) (B )

Good call Bad call
# A call is good with probability 1/2
= 1/2 of the possible pivots cause good calls:
(12345678910111213141516 |
——

Bad pivots Good pivots Bad pivots

© 2015 Goodrich and Tamassia Selection 7

Expected Running Time,

Part 2 ® s

|# Probabilistic Fact #1: The expected number of coin tosses required in

order to get one head is two

# Probabilistic Fact #2: Expectation is a linear function:

s EX+Y)=EX)+EY)

s E(cX)=cEX)
# Let T(n) denote the expected running time of quick-select.
# By Fact #2,

n T(n) < T(3n/4) + bn*(expected # of calls before a good call)
# By Fact #1,

u 7(n) <T(3n/4) + 2bn
# That is, T(n) is a geometric series:

u T(n) <2bn + 2b(3/4)n + 2b(3/4)*n + 2b(3/4)°n + ...
@ So T(n) is O(n).
@ \We can solve the selection problem in O(n) expected

time.
© 2015 Goodrich and Tamassia Selection 8

'Deterministic Selection

# We can do selection in O(n) worst-case time.
# Main idea: recursively use the selection algorithm itself to find a
good pivot for quick-select:
= Divide S into n/5 sets of 5 each
= Find a median in each set
= Recursively find the median of the “baby

medians.

Min size |
forL |
i Min size

for G

BRSNS
(LR TR TN

© 2015 Goodrich and Tamassia Selection 9

Pseudo-code

Algorithm DeterministicSelect(s, k):
Input: Sequence S of n comparable elements, and an integer k € [1. ]
Output: The kth smallest clement of S
ifn=1then

return the (first) element of §

ino g = [n/5] growps, Sy

1 has 5 elements and group S I

fori + 1t0gdo

Find the haby median, ;. in S (using any method)
i + DeterministicSelect({x1, ..., g}, [g/2])
remove all the elements from S and put them into three sequences:

such that each of groups
at most 5 elements.

o L, storing the elements in S less than
toring the elements in S cqual to «
7, storing the elements in ' greater than .

if k < |L| then
DeterministicSelect(.. 1)
elseif k < |L| 1 |E] then
returnz  / each element in F is equal (o
else
DeterministicSelect(C:, & — | L| — | )

@ Note that each call to DeterministicSelect takes O(n) time,
not counting the recursive calls.
© 2015 Goodrich and Tamassia Selection 10

_Analysis

We now show that the above deterministic selection algorithm runs in linear time.

The algorithm has two recursive calls. The first one is performed on the set of
baby medians, which has size

9= [n/5]

The second recursive call is made on either set L (elements smaller than the pivot,
) or set G (elements larger than the pivot, ). Recall that each group but one
contains 5 elements and our pivot, . is the median of the baby medians from all
of these groups. Thus, we have that for [g/2] groups, at least half of the group
elements are less than or equal to 7. Since group Sy could be part of this half, we
have that number of elements in S that are less than or equal to  is at least

s([3]-0) rr=sfy 3] 222

With a similar argument, we obtain that the above value is also a lower bound on
the number of elements of S less than or equal to
‘We conclude that the second recursive call is performed on a sel of size al most

3n
n-(=-2) =
( 10 )
Overall, for a sufficiently large value of n. the running time for the determin-

istic selection algorithm, T(n), can be characterized by the following recurrence
relation:

T(n) < T(n/5+1) + T(Tn/10 + 2) + bn
where b > 0 is a constant.
© 2015 Goodrich and Tamassia Selection 11

‘Analysis, Part 2

T(n) < T(n/5+ 1) + T(7n/10 + 2) + bn.
where b > 0 is a constant.
To solve the recurrence, we guess that T'(n) < cn, for some constant ¢ > 0.
Expanding the recurrence, we have the following:

T(n) < T(n/5+ 1)+T(Tn/10 + 2) +bn
< en/54c+Ten/1042c+bn
= 9en/10 + bn + 3c.
Pick ¢ = 11b. We obtain
T(n) < 9en/10 + bn + 3¢ < 9en/10 + en/11 + 3c.
Thus, we have T'(n) < cn for n large enough such that
en/11 + 3¢ < en /10,
. Therefore, the running time of the deterministic selection

that is, for n > 3:

algorithm is O(n).
We summarize the above analysis with the following theorem.

Theorem 9.4: Given an input sequence with n. elements, the deterministic selec-

tion algorithm runs in O(n) time.

© 2015 Goodrich and Tamassia Selection 12




