
Bucket-Sort and Radix-Sort 3/15/2017 2:30 PM

1

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 1

Bucket-Sort and Radix-Sort

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

USGS NEIC. Public domain government image.

© 2015 Goodrich and Tamassia

Application:
Constructing Histograms

One common computation in data visualization and
analysis is computing a histogram.
For example, n students might be assigned integer
scores in some range, such as 0 to 100, and are then
placed into ranges or “buckets” based on these
scores.

Bucket-Sort and Radix-Sort 2

A histogram of scores from a recent Algorithms course taught by one of the authors
(with extra credit included).

© 2015 Goodrich and Tamassia

Application: An Algorithm for
Constructing Histograms

When we think about the algorithmic issues in constructing a
histogram of n scores, it is easy to see that this is a type of sorting
problem.
But it is not the most general kind of sorting problem, since the keys
being used to sort are simply integers in a given range.
So a natural question to ask is whether we can sort these values
faster than with a general comparison-based sorting algorithm.
The answer is “yes.” In fact, we can sort them in O(n) time.

Bucket-Sort and Radix-Sort 3

A histogram of scores from a recent Algorithms course taught by one of the authors
(with extra credit included).

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 4

Bucket-Sort
Let be S be a sequence of n
(key, element) items with keys
in the range [0, N - 1]
Bucket-sort uses the keys as
indices into an auxiliary array B
of sequences (buckets)
Phase 1: Empty sequence S by

moving each entry (k, o) into
its bucket B[k]

Phase 2: For i = 0, …, N - 1, move
the entries of bucket B[i] to the
end of sequence S

Analysis:
 Phase 1 takes O(n) time
 Phase 2 takes O(n + N) time

Bucket-sort takes O(n + N) time

Algorithm bucketSort(S):
Input: Sequence S of entries with
integer keys in the range [0, N − 1]
Output: Sequence S sorted in
nondecreasing order of the keys
let B be an array of N sequences,
each of which is initially empty
for each entry e in S do

k = the key of e
remove e from S
insert e at the end of bucket B[k]

for i = 0 to N−1 do
for each entry e in B[i] do

remove e from B[i]

insert e at the end of S

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 5

Example
Key range [0, 9]

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2
0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g3, b3, a 7, e

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 6

Properties and Extensions
Key-type Property
 The keys are used as

indices into an array
and cannot be arbitrary
objects

 No external comparator

Stable Sort Property
 The relative order of

any two items with the
same key is preserved
after the execution of
the algorithm

Extensions
 Integer keys in the range [a, b]

 Put entry (k, o) into bucket
B[k - a]

 String keys from a set D of
possible strings, where D has
constant size (e.g., names of
the 50 U.S. states)
 Sort D and compute the rank

r(k) of each string k of D in
the sorted sequence

 Put entry (k, o) into bucket
B[r(k)]

Bucket-Sort and Radix-Sort 3/15/2017 2:30 PM

2

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 7

Lexicographic Order
A d-tuple is a sequence of d keys (k1, k2, …, kd), where
key ki is said to be the i-th dimension of the tuple
Example:
 The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively
defined as follows

(x1, x2, …, xd) < (y1, y2, …, yd)

x1 < y1 x1 = y1 (x2, …, xd) < (y2, …, yd)

I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 8

Lexicographic-Sort
Let Ci be the comparator
that compares two tuples by
their i-th dimension
Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C
Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension
Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of
stableSort

Algorithm lexicographicSort(S)
Input sequence S of d-tuples
Output sequence S sorted in

lexicographic order

for i d downto 1
stableSort(S, Ci)

Example:
(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)

(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)

(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 9

Radix-Sort
Radix-sort is a
specialization of
lexicographic-sort that
uses bucket-sort as the
stable sorting algorithm
in each dimension.
Radix-sort is applicable
to tuples where the
keys in each dimension i
are integers in the
range [0, N - 1]

Radix-sort runs in time
O(d(n + N))

If d is constant and N is
O(n), then this is O(n).

Algorithm radixSort(S, N)
Input sequence S of d-tuples such

that (0, …, 0) (x1, …, xd) and
(x1, …, xd) (N - 1, …, N - 1)
for each tuple (x1, …, xd) in S

Output sequence S sorted in
lexicographic order

for i d downto 1
bucketSort(S, N)

