Bucket-Sort and Radix-Sort

3/15/2017 2:30 PM

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Bucket-Sort and Radix-Sort

‘Oklahoma Earthquakes Magnitude 3.0 and greater

0
AsofMayz, 2014
o
)
- Earthauakesin
alof 2003
I-
fa
i I
- I
N il 1
W am me s wo me oon o
Gl o —
USGS NEIC. Public domain government mage.
© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 1

Application:

Constructing Histograms

One common computation in data visualization and
analysis is computing a histogram.

For example, n students might be assigned integer
scores in some range, such as 0 to 100, and are then
placed into ranges or “buckets” based on these

scores. . (st otat seare)

:.I‘IFIHH

!

II..

3 % 40 4 48 % % 60 64 68 72 %6 f0 8 8 % % 0108
A histogram of scores from a recent Algorithms course taught by one of the authors
(with extra credit included).

© 2015 Goodrich and Tamassia

Bucket-Sort and Radix-Sort 2

Application: An Algorithm for
Constructing Histograms

'® When we think about the algorithmic issues in constructing a
histogram of n scores, it is easy to see that this is a type of sorting
problem.

But it is not the most general kind of sorting problem, since the keys
being used to sort are simply integers in a given range.
So a natural question to ask is whether we can sort these values
faster than with a general comparison-based sorting algorithm.
The answer is “yes.” In fact, we can sort them in O(n) time.
(Rigerivims o e

A histogram of scores from a recent
(with extra credit included),

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 3

Bucket-Sort

1 #® LetbeSbea sequence of n
(key, element) items with keys
in the range [0, N — 1]
@ Bucket-sort uses the keys as

indices into an auxiliary array B

of sequences (buckets)
Phase 1: Empty sequence S by
moving each entry (&, o) into
its bucket B[]

Phase 2: Fori=0, ..., N- 1, move
the entries of bucket B[i] to the

end of sequence §
@ Analysis:
= Phase 1 takes O(n) time
= Phase 2 takes O(n + N) time

Bucket-sort takes O(n + N) time

© 2015 Goodrich and Tamassia

«

Algorithm bucketSort(S):
Input: Sequence S of entries with
integer keys in the range [0, N — 1]
Output: Sequence S sorted in
nondecreasing order of the keys
let B be an array of N sequences,
each of which is initially empty
for each entry ein S do

k = the key of e

remove e from S

insert e at the end of bucket B[k]
fori=0toN-1do

for each entry e in B[i] do

remove e from B[i]

insert e at the end of S

Bucket-Sort and Radix-Sort 4

Example
J@ Key range [0, 9]

ﬂPhasel
96D
ENEINEIEIEIREI G

o 1 2 3 4 5 6 7 8 9

@Phasez

Bucket-Sort and Radix-Sort 5

© 2015 Goodrich and Tamassia

Properties and Extensions

4 Key-type Property
= The keys are used as
indices into an array
and cannot be arbitrary
objects
= No external comparator

@ Stable Sort Property

= The relative order of
any two items with the
same key is preserved

Extensions

= Integer keys in the range [a, b]
+ Put entry (k, o) into bucket
Blk —a]
= String keys from a set D of
possible strings, where D has
constant size (e.g., names of
the 50 U.S. states)
+ Sort D and compute the rank
r(k) of each string k of D in
the sorted sequence
+ Put entry (k, o) into bucket

after the execution of Blr(k)]
the algorithm
© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 6

Bucket-Sort and Radix-Sort

3/15/2017 2:30 PM

Lexicographic Order

A d-tuple is a sequence of d keys (k,, k, ..., k;), where
key k; is said to be the i-th dimension of the tuple
% Example:
= The Cartesian coordinates of a point in space are a 3-tuple
The lexicographic order of two d-tuples is recursively
defined as follows

(X1, X9, w00 X) <1, Y25 w00 V)
f=

X <PV X[=YIA (X s X)) < (P25 eens V)
I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 7

‘Lexicographic-Sort

@ Let C; be the comparator
that compares two tuples by
their i-th dimension

Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C

Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension

Lexicographic-sort runs in
0(dT(n)) time, where T(n) is
the running time of
stableSort

Algorithm lexicographicSor«(S)
Input sequence S of d-tuples
Output sequence S sorted in

lexicographic order

for i <— d downto |
stableSor((S, C;)

Example:

(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)
(2,1,4) (3,2, 4) (5,1,5) (7,4,6) (2,4,6)
(2, 1,4)(5,1,5) (3, 2, 4) (7,4,6) (2,4,6)
(2,1,4) (2,4,6) (3,2, 4) (5,1,5) (7,4,6)

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 8

Radix-Sort

Radix-sort is a
specialization of
lexicographic-sort that
uses bucket-sort as the

stable sorting algorithm
in each dimension.

Radix-sort is applicable
to tuples where the
keys in each dimension i
are integers in the
range [0, N— 1]

Radix-sort runs in time
O(d(n+N))

Algorithm radixSort(S, N)

Input sequence S of d-tuples such
that (0, ..., 0) < (x}, ..., x,) and
(X ey X)) S(N=1, oy, N— 1)
for each tuple (x, ..., x,) in §

Output sequence S sorted in
lexicographic order

for i <— d downto 1
bucketSort(S, N)

If dis constant and N is
O(n), then this is O(n).
© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 9

