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Presentation for use with the textbook, Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Scalability
 Scientists often have to deal 

with differences in scale, from 
the microscopically small to the 
astronomically large. 

 Computer scientists must also 
deal with scale, but they deal 
with it primarily in terms of data 
volume rather than physical 
object size. 

 Scalability refers to the ability 
of a system to gracefully 
accommodate growing sizes of 
inputs or amounts of workload.

© 2015 Goodrich and Tamassia Analysis of Algorithms 2

Application: Job Interviews
 High technology companies tend to ask questions about 

algorithms and data structures during job interviews.
 Algorithms questions can be short but often require critical 

thinking, creative insights, and subject knowledge.
 All the “Applications” exercises in Chapter 1 of the Goodrich-

Tamassia textbook are taken from reports of actual job interview 
questions.
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xkcd “Labyrinth Puzzle.” http://xkcd.com/246/
Used with permission under Creative Commons 2.5 License. 

Algorithms and Data Structures
 An algorithm is a step-by-step procedure for 

performing some task in a finite amount of 
time.
 Typically, an algorithm takes input data and 

produces an output based upon it.

 A data structure is a systematic way of 
organizing and accessing data.
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Running Time
 Most algorithms transform 

input objects into output 
objects.

 The running time of an 
algorithm typically grows 
with the input size.

 Average case time is often 
difficult to determine.

 We focus primarily on the 
worst case running time.
 Easier to analyze
 Crucial to applications such as 

games, finance and robotics
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Experimental Studies

 Write a program 
implementing the 
algorithm

 Run the program with 
inputs of varying size 
and composition, 
noting the time 
needed:

 Plot the results

© 2015 Goodrich and Tamassia
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Limitations of Experiments

 It is necessary to implement the 
algorithm, which may be difficult

 Results may not be indicative of the 
running time on other inputs not included 
in the experiment. 

 In order to compare two algorithms, the 
same hardware and software 
environments must be used
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Theoretical Analysis

 Uses a high-level description of the 
algorithm instead of an implementation

 Characterizes running time as a 
function of the input size, n

 Takes into account all possible inputs
 Allows us to evaluate the speed of an 

algorithm independent of the 
hardware/software environment
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Pseudocode

 High-level description of an algorithm
 More structured than English prose
 Less detailed than a program
 Preferred notation for describing 

algorithms
 Hides program design issues
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Pseudocode Details

 Control flow
 if … then … [else …]

 while … do …

 repeat … until …

 for … do …

 Indentation replaces braces 

 Method declaration
Algorithm method (arg [, arg…])

Input …

Output …

 Method call
method (arg [, arg…])

 Return value
return expression

 Expressions:
Assignment

 Equality testing

n2 Superscripts and other 
mathematical 
formatting allowed
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The Random Access Machine 
(RAM) Model

A RAM consists of
 A CPU
 An potentially unbounded bank 

of memory cells, each of which 
can hold an arbitrary number or 
character

 Memory cells are numbered and 
accessing any cell in memory 
takes unit time

0
1
2
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Seven Important Functions
 Seven functions that 

often appear in algorithm 
analysis:
 Constant  1
 Logarithmic  log n
 Linear  n
 N-Log-N  n log n
 Quadratic  n2

 Cubic  n3

 Exponential  2n

 In a log-log chart, the 
slope of the line 
corresponds to the 
growth rate
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Functions Graphed 
Using “Normal” Scale

© 2015 Goodrich and Tamassia 13Analysis of Algorithms

g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3

Slide by Matt Stallmann 
included with permission.
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Primitive Operations
 Basic computations 

performed by an algorithm
 Identifiable in pseudocode
 Largely independent from the 

programming language
 Exact definition not important 

(we will see why later)
 Assumed to take a constant 

amount of time in the RAM 
model

 Examples:
 Evaluating an 

expression
 Assigning a value 

to a variable
 Indexing into an 

array
 Calling a method
 Returning from a 

method

© 2015 Goodrich and Tamassia
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Counting Primitive Operations
 Example: By inspecting the pseudocode, we can 

determine the maximum number of primitive operations 
executed by an algorithm, as a function of the input size
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Estimating Running Time

 Algorithm arrayMax executes 7n - 2 primitive 
operations in the worst case, 5n in the best case.  
Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

 Let T(n) be worst-case time of arrayMax. Then
a(5n)  T(n)  b(7n - 2)

 Hence, the running time T(n) is bounded by two 
linear functions

© 2015 Goodrich and Tamassia
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Growth Rate of Running Time

 Changing the hardware/ software 
environment 
 Affects T(n) by a constant factor, but
 Does not alter the growth rate of T(n)

 The linear growth rate of the running 
time T(n) is an intrinsic property of 
algorithm arrayMax

© 2015 Goodrich and Tamassia

Why Growth Rate Matters
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Slide by Matt Stallmann 
included with permission.
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Analyzing Recursive Algorithms
 Use a function, T(n), to derive a recurrence 

relation that characterizes the running time of 
the algorithm in terms of smaller values of n.
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Constant Factors

 The growth rate is 
minimally affected by
 constant factors or 
 lower-order terms

 Examples
 102n + 105 is a linear 

function
 105n2 + 108n is a 

quadratic function 1E+0
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Big-Oh Notation
 Given functions f(n) and 

g(n), we say that f(n) is 
O(g(n)) if there are 
positive constants
c and n0 such that

f(n)  cg(n)  for n  n0

 Example: 2n + 10 is O(n)
 2n + 10  cn

 (c - 2) n  10

 n  10/(c - 2)

 Pick c  3 and n0  10

1
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1 10 100 1,000
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3n
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Big-Oh Example

 Example: the function 
n2 is not O(n)
 n2  cn

 n  c

 The above inequality 
cannot be satisfied 
since c must be a 
constant 
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More Big-Oh Examples
 7n - 2

7n-2 is O(n)
need c > 0 and n0  1 such that 7 n - 2  c n for n  n0

this is true for c = 7 and n0 = 1

 3 n3 + 20 n2 + 5
3 n3 + 20 n2 + 5 is O(n3)
need c > 0 and n0  1 such that 3 n3 + 20 n2 + 5  c n3 for n  n0

this is true for c = 4 and n0 = 21

 3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n0  1 such that 3 log n + 5  c log n for n  n0

this is true for c = 8 and n0 = 2
© 2015 Goodrich and Tamassia Analysis of Algorithms 24

Big-Oh and Growth Rate
 The big-Oh notation gives an upper bound on the 

growth rate of a function
 The statement “f(n) is O(g(n))” means that the growth 

rate of f(n) is no more than the growth rate of g(n)

 We can use the big-Oh notation to rank functions 
according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes

© 2015 Goodrich and Tamassia
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Big-Oh Rules

 If is f(n) a polynomial of degree d, then f(n) is 
O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

 Use the smallest possible class of functions
 Say “2n is O(n)” instead of “2n is O(n2)”

 Use the simplest expression of the class
 Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”
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Asymptotic Algorithm Analysis
 The asymptotic analysis of an algorithm determines 

the running time in big-Oh notation
 To perform the asymptotic analysis

 We find the worst-case number of primitive operations 
executed as a function of the input size

 We express this function with big-Oh notation

 Example:
 We say that algorithm arrayMax “runs in O(n) time”

 Since constant factors and lower-order terms are 
eventually dropped anyhow, we can disregard them 
when counting primitive operations

© 2015 Goodrich and Tamassia

Analysis of Algorithms 27

A Case Study in 
Algorithm Analysis
 Given an array of n integers, 

find the subarray, A[j:k] that 
maximizes the sum

 In addition to being an 
interview question for testing 
the thinking skills of job 
candidates, this maximum 
subarray problem also has 
applications in pattern 
analysis in digitized images.
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A First (Slow) Solution

Compute the maximum of 
every possible subarray
summation of the array A
separately.

© 2015 Goodrich and Tamassia

• The outer loop, for index j, will iterate n times, its 
inner loop, for index k, will iterate at most n times, 
and the inner-most loop, for index i, will iterate at 
most n times. 

• Thus, the running time of the MaxsubSlow algorithm 
is O(n3).

An Improved Algorithm
 A more efficient way to calculate these 

summations is to consider prefix sums

 If we are given all such prefix sums (and 
assuming S0=0), we can compute any 
summation sj,k in constant time as

© 2015 Goodrich and Tamassia Analysis of Algorithms 29

An Improved Algorithm, cont.
 Compute all the prefix sums
 Then compute all the subarray sums

© 2015 Goodrich and Tamassia Analysis of Algorithms 30
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Arithmetic Progression

 The running time of 
MaxsubFaster is
O(1 + 2 + …+ n)

 The sum of the first n
integers is n(n + 1) / 2
 There is a simple visual 

proof of this fact

 Thus, algorithm 
MaxsubFaster runs in 
O(n2) time 
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A Linear-Time Algorithm
 Instead of computing prefix sum St = s1,t, let us 

compute a maximum suffix sum, Mt, which is the 
maximum of 0 and the maximum sj,t for j = 1,…, t.

 if Mt > 0, then it is the summation value for a 
maximum subarray that ends at t, and if Mt = 0, then 
we can safely ignore any subarray that ends at t.

 if we know all the Mt values, for t = 1, 2, …, n, then 
the solution to the maximum subarray problem would 
simply be the maximum of all these values.
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A Linear-Time Algorithm, cont.
 for t ≥ 2, if we have a maximum subarray that ends at t, and it has 

a positive sum, then it is either A[t : t] or it is made up of the 
maximum subarray that ends at t − 1 plus A[t]. So we can define 
M0 = 0 and

 If this were not the case, then we could make a subarray of even 
larger sum by swapping out the one we chose to end at t − 1 with 
the maximum one that ends at t − 1, which would contradict the 
fact that we have the maximum subarray that ends at t. 

 Also, if taking the value of maximum subarray that ends at t − 1 
and adding A[t] makes this sum no longer be positive, then Mt = 0, 
for there is no subarray that ends at t with a positive summation.
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A Linear-Time Algorithm, cont.

 The MaxsubFastest algorithm consists of two loops, 
which each iterate exactly n times and take O(1) time in 
each iteration. Thus, the total running time of the 
MaxsubFastest algorithm is O(n).
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Math you need to Review
 Properties of powers:

a(b+c) = aba c
abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

 Properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

 Summations
 Powers
 Logarithms
 Proof techniques
 Basic probability
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Relatives of Big-Oh

big-Omega

 f(n) is (g(n)) if there is a constant c > 0 
and an integer constant n0  1 such that 

f(n)  c g(n) for n  n0

big-Theta

 f(n) is (g(n)) if there are constants c’ > 0 and 
c’’ > 0 and an integer constant n0  1 such that

c’g(n)  f(n)  c’’g(n) for n  n0

© 2015 Goodrich and Tamassia
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Intuition for Asymptotic 
Notation

big-Oh
 f(n) is O(g(n)) if f(n) is asymptotically 

less than or equal to g(n)
big-Omega
 f(n) is (g(n)) if f(n) is asymptotically 

greater than or equal to g(n)
big-Theta
 f(n) is (g(n)) if f(n) is asymptotically 

equal to g(n)

© 2015 Goodrich and Tamassia Analysis of Algorithms 38

Example Uses of the 
Relatives of Big-Oh

f(n) is (g(n)) if it is (n2) and O(n2). We have already seen the former, 
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an 
integer constant n0  1 such that f(n) < c g(n) for n  n0 

Let c = 5 and n0 = 1

 5n2 is (n2)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1 
such that f(n)  c g(n) for n  n0

let c = 1 and n0 = 1

 5n2 is (n)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1 
such that f(n)  c g(n) for n  n0

let c = 5 and n0 = 1

 5n2 is (n2)

© 2015 Goodrich and Tamassia

Amortization

 The amortized running time of an operation within a 
series of operations is the worst-case running time of 
the series of operations divided by the number of 
operations.

 Example: A growable array, S. When needing to grow:
a. Allocate a new array B of larger capacity.
b. Copy A[i] to B[i], for i = 0, . . . , n − 1, where n is size of A.
c. Let A = B, that is, we use B as the array now supporting A.
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Growable Array Description
 Let add(e) be the operation 

that adds element e at the 
end of the array

 When the array is full, we 
replace the array with a 
larger one

 But how large should the 
new array be?
 Incremental strategy: increase 

the size by a constant c
 Doubling strategy: double the 

size

Algorithm add(e)
if t = A.length - 1 then

B  new array of
size …

for i  0 to n-1 do
B[i]  A[i]

A  B
n  n + 1
A[n-1]  e

© 2015 Goodrich and Tamassia
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Comparison of the Strategies

 We compare the incremental strategy and 
the doubling strategy by analyzing the total 
time T(n) needed to perform a series of n
add operations

 We assume that we start with an empty list 
represented by a growable array of size 1

 We call amortized time of an add operation 
the average time taken by an add operation 
over the series of operations, i.e.,  T(n)/n
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Incremental Strategy Analysis 
 Over n add operations, we replace the array k = n/c 

times, where c is a constant
 The total time T(n) of a series of n add operations is 

proportional to
n + c + 2c + 3c + 4c + … + kc =

n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2

 Since c is a constant, T(n) is O(n + k2), i.e., O(n2)

 Thus, the amortized time of an add operation is 
O(n)

© 2015 Goodrich and Tamassia
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Doubling Strategy Analysis
 We replace the array k = log2 n 

times
 The total time T(n) of a series of n

push operations is proportional to
n + 1 + 2 + 4 + 8 + …+ 2k =
n + 2k + 1 - 1 = 

3n - 1

 T(n) is O(n)

 The amortized time of an add 
operation is O(1)

geometric series

1

2

1
4

8
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Accounting Method Proof for 
the Doubling Strategy
 We view the computer as a coin-operated appliance that requires 

the payment of 1 cyber-dollar for a constant amount of 
computing time.

 We shall charge each add operation 3 cyber-dollars, that is, it will 
have an amortized O(1) amortized running time.
 We over-charge each add operation not causing an overflow 2 cyber-dollars.
 Think of the 2 cyber-dollars profited in an insertion that does not grow the 

array as being “stored” at the element inserted. 
 An overflow occurs when the array A has 2i elements.
 Thus, doubling the size of the array will require 2i cyber-dollars. 
 These cyber-dollars are at the elements stored in cells 2i−1 through 2i−1.

© 2015 Goodrich and Tamassia Analysis of Algorithms 44


