

Pseudocode	
 High-level description of an algorithm More structured than English prose Less detailed than a program Preferred notation for describing algorithms 	
u Hides program design issues	
© 2015 Goodrich and Tamassia Analysis of Algorithms	9

Pseudocode Details			
Control flow if then [else] while do reproduct until	Method call method (arg [, arg]) Return value return expression		
 for do Indentation replaces b 	□ Expressions: races ←Assignment		
 Method declaration Algorithm method (arg [, 	= Equality testing		
Input Output	n ² Superscripts and other mathematical formatting allowed		
© 2015 Goodrich and Tamassia	Analysis of Algorithms 10		

Estimating R	lunning Time	
 Algorithm arrayM operations in the Define: 	ax executes $7n - 2$ pri worst case, $5n$ in the	mitive best case.
a = Time taken by b = Time taken by \Box Let $T(n)$ be worst	the fastest primitive oper the slowest primitive oper- case time of arrayMa	ation ration ax. Then
$a(5n) \leq$ \Box Hence, the runnin linear functions	$T(n) \le b(7n-2)$ ng time $T(n)$ is bound	ed by two
© 2015 Goodrich and Tamassia	Analysis of Algorithms	16

			Slide by Ma included wi	tt Stallmann th permission.
Why G	rowth Rat	te Matte	ers	
if runtime is	time for n + 1	time for 2 n	time for 4 n	
c lg n	c lg (n + 1)	c (lg n + 1)	c(lg n + 2)	
c n	c (n + 1)	2c n	4c n	
c n lg n	∼cnlgn +cn	2c n lg n + 2cn	4c n lg n + 4cn	runtime quadruples ↔ when problem size doubles
c n²	~ c n² + 2c n	4c n ²	16c n ²	
c n³	~ c n ³ + 3c n ²	8c n ³	64c n ³	
c 2 ⁿ	c 2 ⁿ⁺¹	c 2 ²ⁿ	c 2 ⁴ⁿ	
Goodrich and Ta	massia	Analysis of Algor	ithms	18

More Big-Oh Examples	
$\label{eq:constraint} \begin{array}{ c c c } \hline & 7n-2 \\ \hline & 7n-2 \text{ is } O(n) \\ need c > 0 \text{ and } n_0 \geq 1 \text{ such that } 7n-2 \leq cn \text{ for } n \geq n_0 \\ \hline & \text{this is true for } c=7 \text{ and } n_0 = 1 \end{array}$	
$\label{eq:2.1} \begin{array}{c} \square & 3 \ n^3 + 20 \ n^2 + 5 \\ 3 \ n^3 + 20 \ n^2 + 5 \ is \ O(n^3) \\ need \ c > 0 \ and \ r_0 \ge 1 \ such \ that \ 3 \ n^3 + 20 \ n^2 + 5 \le c \ n^3 \ for \ n \ge r \\ this \ is \ true \ for \ c = 4 \ and \ r_0 = 21 \end{array}$	1 ₀
$\label{eq:stars} \begin{array}{ c c c c } \hline & 3 & log & n + 5 \\ \hline & 3 & log & n + 5 & is & O(log & n) \\ & need & c & > 0 & and & n_0 \geq 1 & such that & 3 & log & n + 5 \leq c & log & n & for & n \geq n_0 \\ \hline & this & is & true & for & c & = 8 & and & n_0 & = 2 \\ \hline & @ & 2015 & Goodrich and Tamassia & Analysis of Algorithms \\ \hline \end{array}$	23

Big-On and	Growth Ra	ate
 The big-Oh notati growth rate of a f 	ion gives an upper function	bound on the
The statement "f rate of f(n) is no r	(n) is $O(g(n))$ " mean more than the group of the grou	ns that the grown with rate of $q(n)$
 We can use the b according to their 	ig-Oh notation to r growth rate	ank functions
 We can use the b according to their 	ig-Oh notation to r growth rate $f(n)$ is $O(g(n))$	ank functions $g(n)$ is $O(f(n))$
• We can use the b according to their g(n) grows more	ig-Oh notation to r growth rate f(n) is $O(g(n))Yes$	ank functions $g(n) \text{ is } O(f(n))$ No
We can use the b according to their g(n) grows more f(n) grows more	ig-Oh notation to r growth rate f(n) is $O(g(n))YesNo$	ank functions $g(n)$ is $O(f(n))$ No Yes

Big-Oh Ru	ıles	
□ If is <i>f</i> (<i>n</i>) a polyr <i>O</i> (<i>n</i> ^d), i.e., 1. Drop lower-o	nomial of degree	<i>d</i> , then <i>f</i> (<i>n</i>) is
 Use the smalles Say "2n is O(Use the simples Say "3n + 5 is 	it possible class of $(n)^n$ instead of $(2n)^n$ is expression of the solution of the solutio	f functions $O(n^2)$ " ne class O(3n)"
© 2015 Goodrich and Tamassia	Analysis of Algorithms	25

Asymptotic A	Algorithm Ana	alysis
 The asymptotic ar the running time i 	alysis of an algorithm d n big-Oh notation	letermines
 To perform the as We find the work executed as a find the work executed as a find the work of the wo	ymptotic analysis st-case number of primitive unction of the input size function with big-Oh notati	operations
 Example: We say that alg 	orithm arrayMax "runs in O ((<i>n</i>) time"
 Since constant fac eventually droppe when counting pri 	tors and lower-order te d anyhow, we can disre mitive operations	rms are gard them
© 2015 Goodrich and Tamassia	Analysis of Algorithms	26

Algorithm Maxsub	Fastest(A):
Input: An n-eler	ent array A of numbers, indexed from 1 to n.
Output: The max	imum subarray sum of array A.
$M_0 \leftarrow 0 //$ the	nitial prefix maximum
$ \begin{array}{c} \text{for } t \leftarrow 1 \text{ to } n \text{ do} \\ M_t \leftarrow \max\{ \{ m \leftarrow 0 // \text{ the } n \\ \text{for } t \leftarrow 1 \text{ to } n \text{ do} \\ m \leftarrow \max\{ m \max\{ m \\ \text{return } m \end{array} \right. $	$M_{t-1} + A[t]$ aximum found so far M_t
 The MaxsubFastes	t algorithm consists of two loops,
which each iterate	exactly n times and take O(1) tim
each iteration. Thu	s, the total running time of the
MaxsubFastest alg	prithm is O(n).

Image: Summations Image: Properties of powers: $a^{(b+c)} = a^b a^c$ $a^{(b+c)} = a^b a^c$ $a^{bc} = (a^b)^c$ Image: Logarithms $a^b / a^c = a^{(b-c)}$ Image: Proof techniques Image: Basic probability Image: Properties of logarithms: $log_b(xy) = log_b x + log_b y$ $log_b(xy) = log_b x + log_b y$	ons	Properties of powers: a ^(b+c) = a ^b a ^c
$log_b xa = alog_b x$ $log_b a = log_x a/log_x b$	niques pability	$a^{bc} = (a^{c})^{c}$ $a^{b} / a^{c} = a^{(b-c)}$ $b = a^{\log_{a} b}$ $b^{c} = a^{c^{slog} b}$ $Properties of logarithms:$ $\log_{b}(xy) = \log_{b} x + \log_{b} y$ $\log_{b} (x/y) = \log_{b} x + \log_{b} y$ $\log_{b} x = a\log_{b} x$ $\log_{b} a = \log_{x} a / \log_{x} b$

Relatives of	Big-Oh	
 f(n) is Ω(g(n)) and an integer 	if there is a constant (constant $n_0 \ge 1$ such (c > 0 that
	$n) \ge c g(n)$ for $n \ge n_0$	
big-Theta		
 f(n) is Θ(g(n)) c" > 0 and an 	if there are constants integer constant $n_0 \ge 1$	c' > 0 and I such that
c′g(n) :	$\leq f(n) \leq c''g(n)$ for $n \geq 0$	n _o
© 2015 Goodrich and Tamassia	Analysis of Algorithms	36

Growable Array Des	scription
 Let add(e) be the operation that adds element e at the end of the array When the array is full, we replace the array with a larger one But how large should the new array be? Incremental strategy: increase the size by a constant c Doubling strategy: double the size 	Algorithm add(e) if $t = A.length - 1$ then $B \leftarrow$ new array of size for $i \leftarrow 0$ to $n-1$ do $B[i] \leftarrow A[i]$ $A \leftarrow B$ $n \leftarrow n + 1$ $A[n-1] \leftarrow e$
© 2015 Goodrich and Tamassia Analysis of Algori	ithms 40

Doubling Strategy Analysis				
 We replace the ar times The total time T(n) 	ray $k = \log_2 n$ a) of a series of n	geo	metri	c series
push operations is n + 1 + 2 + 4 + 4 + 2k + 1 - 1 = 1	s proportional to 8++2 ^k =	1	2	4
3n - 1 T(n) is O(n)	3n - 1 $T(n) is O(n)$		8	
 The amortized time of an add operation is <i>O</i>(1) 				
© 2015 Goodrich and Tamassia	Analysis of Algorithms			43

