

Scalability

- Scientists often have to deal with differences in scale, from the microscopically small to the astronomically large.
- Computer scientists must also deal with scale, but they deal with it primarily in terms of data volume rather than physical object size.
- Scalability refers to the ability of a system to gracefully accommodate growing sizes of

Application: Job Interviews

. High technology companies tend to ask questions about algorithms and data structures during job interviews.

- Algorithms questions can be short but often require critical thinking, creative insights, and subject knowledge.
- All the "Applications" exercises in Chapter 1 of the GoodrichTamassia textbook are taken from reports of actual job interview questions.

© 2015 Goodrich and Tamassia 3

Algorithms and Data Structures

an algorithm is a step-by-step procedure for performing some task in a finite amount of time.

- Typically, an algorithm takes input data and produces an output based upon it.

- A data structure is a systematic way of organizing and accessing data.

[^0]
Experimental Studies

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used
© 2015 Goodrich and Tamassia
Analysis of Algorithms

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n
- Takes into account all possible inputs
\square Allows us to evaluate the speed of an algorithm independent of the hardware/software environment
© 2015 Goodrich and Tamassia \quad Analysis of Algorithms 8

Pseudocode Details
 Pseudocode Detals

```
```

 a Control flow a Method call
    ```
```

```
    a Control flow a Method call
```

 - if ... then ... [else ...] method (arg [, arg...])
    ```
    - while ... do ... \(\square\) a Return value
    - repeat ... until ... return expression
    - for ... do ... a Expressions:
        - Indentation replaces braces \(\quad \leftarrow\) Assignment
    - Method declaration \(\quad\) Algorithm method (arg [arg ..]) = Equality testing
        Algorithm method \((\arg [, \arg \ldots])=\) Equality testing
    Algorithm method \((\arg [, \arg \ldots]) \ldots \ldots\).................. \(n^{2}\) Superscripts and other
Input \(\ldots\)
        Output ... .......................... \(\begin{aligned} & \text { mathematical }\end{aligned}\)
                                formatting allowed
        Analysis of Algorithms
    © 2015 Goodrich and Tamassia \(\quad\) Analysis of Algorithms

\section*{Seven Important Functions}
- Seven functions that
    \begin{tabular}{l} 
often appear in algorithm \\
analysis: \\
\(\substack{\mathrm{E}+30 \\
1 \mathrm{E}+28 \\
1+26}\) \\
\hline -Cubic
\end{tabular}
        - Constant \(\approx 1\)
        - Logarithmic \(\approx \log n\)
        - Linear \(\approx n\)
        - \(\mathrm{N}-\log -\mathrm{N} \approx n \log n\)
        - Quadratic \(\approx n^{2}\)
        - Cubic \(\approx n^{3}\)
        - Exponential \(\approx 2^{n}\)
    - In a log-log chart, the
        slope of the line
        corresponds to the
        growth rate

- Seven functions that often appear in algorithm \({ }_{1 \mathrm{E}+28}^{1 \mathrm{E}+30}\) analysis:
- Constant \(\approx 1\)
- Logarithmic \(\approx \log n\)
- \(\mathrm{N}-\log -\mathrm{N} \approx n \log n\)
- Quadratic \(\approx\)
- Exponential \(\approx\)

In a log-log chart, the to the growth rate
© 2015 Goodrich and Tamassia
Analysis of Algorithms
12
        11
The Random Access Machine
(RAM) Model

A RAM consists of
- A CPU
- An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character
- Memory cells are numbered and accessing any cell in memory

Memory takes unit time
© 2015 Goodrich and Tamassia
Analysis of Algorithms 11


Counting Primitive Operations
- Example: By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size
```

Algorithm arrayMax(A,n):
Input: An array A storing $n \geq 1$ integers.
Output: The maximum element in A.
currentMax $\leftarrow A[0]$
for $i \leftarrow 1$ to $n-1$ do if currentMax $<A[i]$ then currentMax $\leftarrow A[i]$
return currentMax

```

\section*{Estimating Running Time}

- Algorithm arrayMax executes \(7 \boldsymbol{n}-2\) primitive operations in the worst case, \(5 n\) in the best case. Define:
\(a=\) Time taken by the fastest primitive operation \(b=\) Time taken by the slowest primitive operation
- Let \(T(n)\) be worst-case time of arrayMax. Then \(\boldsymbol{a}(5 n) \leq \boldsymbol{T}(\boldsymbol{n}) \leq \boldsymbol{b}(7 \boldsymbol{n}-2)\)
- Hence, the running time \(\boldsymbol{T}(\boldsymbol{n})\) is bounded by two linear functions
© 2015 Goodrich and Tamassia \(\quad\) Analysis of Algorithms
16
\(\left.\begin{array}{|c|c|c|c|c|}\hline & \begin{array}{c}\text { Slide by Matt Stallmann } \\ \text { included with permission. }\end{array} \\ \text { Why Growth Rate Matters }\end{array}\right]\).

\section*{Analyzing Recursive Algorithms}

\section*{Constant Factors}
- Use a function, \(\mathrm{T}(n)\), to derive a recurrence relation that characterizes the running time of the algorithm in terms of smaller values of \(n\).

> \begin{tabular}{l}  Algorithm recursive \(\operatorname{Max}(A, n)\) : \\ Input: An array \(A\) storing \(n \geq 1\) integers. \\ Output: The maximum element in \(A\). \\ if \(n=1\) then \\ \(\quad\) return \(A[0]\) \\ return max \(\{\) recursiveMax \((A, n-1), A[n-1]\}\) \\ \hline \end{tabular}
\(T(n)= \begin{cases}3 & \text { if } n=1 \\ T(n-1)+7 & \text { otherwise },\end{cases}\)
© 2015 Goodrich and Tamassia
- The growth rate is minimally affected by
- constant factors or
- lower-order terms - Examples
- \(10^{2} \boldsymbol{n}+10^{5}\) is a linear function
- \(10^{5} \boldsymbol{n}^{2}+10^{8} \boldsymbol{n}\) is a quadratic function

© 2015 Goodrich and Tamassia

\section*{Big-Oh Example}

- \(7 n-2\)
\(7 n-2\) is \(O(n)\)
need \(\mathrm{c}>0\) and \(\mathrm{n}_{0} \geq 1\) such that \(7 \mathrm{n}-2 \leq \mathrm{c}\) for \(\mathrm{n} \geq \mathrm{n}_{0}\)
this is true for \(\mathrm{c}=7\) and \(\mathrm{n}_{0}=1\)
- \(3 n^{3}+20 n^{2}+5\)
\(3 n^{3}+20 n^{2}+5\) is \(O\left(n^{3}\right)\)
need \(\mathrm{c}>0\) and \(\mathrm{n}_{0} \geq 1\) such that \(3 \mathrm{n}^{3}+20 \mathrm{n}^{2}+5 \leq \mathrm{c} \mathrm{n}^{3}\) for \(\mathrm{n} \geq \mathrm{n}_{0}\)
this is true for \(\mathrm{c}=4\) and \(\mathrm{n}_{0}=21\)
- \(3 \log n+5\)
\(3 \log n+5\) is \(O(\log n)\)
need \(\mathrm{c}>0\) and \(\mathrm{n}_{0} \geq 1\) such that \(3 \log \mathrm{n}+5 \leq \mathrm{c} \log \mathrm{n}\) for \(\mathrm{n} \geq n_{0}\)
this is true for \(\mathrm{c}=8\) and \(\mathrm{n}_{0}=2\)
© 2015 Goodrich and Tamassia Analysis of Algorithms

\section*{Big-Oh and Growth Rate}

23

\begin{tabular}{l} 
a The big-Oh notation gives an upper bound on the \\
growth rate of a function \\
- The statement " \(f(\boldsymbol{n})\) is \(\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n})\) )" means that the growth \\
rate of \(f(\boldsymbol{n})\) is no more than the growth rate of \(\boldsymbol{g}(\boldsymbol{n})\) \\
a We can use the big-Oh notation to rank functions \\
according to their growth rate \\
\begin{tabular}{|l|c|c|}
\hline & \(\boldsymbol{f}(\boldsymbol{n})\) is \(\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))\) & \(\boldsymbol{g}(\boldsymbol{n})\) is \(\boldsymbol{O}(\boldsymbol{f}(\boldsymbol{n}))\) \\
\hline \(\boldsymbol{g}(\boldsymbol{n})\) grows more & Yes & No \\
\hline\(f(\boldsymbol{n})\) grows more & No & Yes \\
\hline Same growth & Yes & Yes \\
\hline
\end{tabular} \\
© 2015 Goodrich and Tamassia \\
Analysis of Algorithms \\
\hline
\end{tabular}

\section*{Big-Oh Rules}

- If is \(f(n)\) a polynomial of degree \(d\), then \(f(n)\) is \(\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)\), i.e.,
1. Drop lower-order terms
2. Drop constant factors
- Use the smallest possible class of functions
- Say " \(2 \boldsymbol{n}\) is \(\boldsymbol{O}(n)\) " instead of " \(2 \boldsymbol{n}\) is \(\boldsymbol{O}\left(n^{2}\right)\) "
- Use the simplest expression of the class
- Say " \(3 n+5\) is \(\boldsymbol{O}(\boldsymbol{n})\) " instead of " \(3 n+5\) is \(\boldsymbol{O}(3 n)\) "
© 2015 Goodrich and Tamassia
Analysis of Algorithms
Asymptotic Algorithm Analysis
- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
- We find the worst-case number of primitive operations executed as a function of the input size
- We express this function with big-Oh notation
- Example:
- We say that algorithm arrayMax "runs in \(\boldsymbol{O}(\boldsymbol{n})\) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

\section*{A First (Slow) Solution}

- The outer loop, for index j , will iterate n times, its inner loop, for index \(k\), will iterate at most \(n\) times, and the inner-most loop, for index i, will iterate at most \(n\) times.
- Thus, the running time of the MaxsubSlow algorithm is \(O\left(n^{3}\right)\).
© 2015 Goodrich and Tamassia \(\quad\) Analysis of Algorithms 28

An Improved Algorithm, cont.
- Compute all the prefix sums
- Then compute all the subarray sums
\[
S_{t}=a_{1}+a_{2}+\cdots+a_{t}=\sum_{i=1}^{t} a_{i}
\]
- If we are given all such prefix sums (and assuming \(\mathrm{S}_{0}=0\) ), we can compute any summation \(\mathrm{s}_{\mathrm{j}, \mathrm{k}}\) in constant time as
\[
s_{j, k}=S_{k}-S_{j-1}
\]
© 2015 Goodrich and Tamassia
Analysis of Algorithms


\section*{An Improved Algorithm}

A more efficient way to calculate these summations is to consider prefix sums
```

Algorithm MaxsubFaster(A):
IN
Output: The maximum subarray sum of array }A\mathrm{ .
So\leftarrow0 // the initial prefix sum
for }i\leftarrow
S
m\leftarrow0 // the maximum found so far
for }j\leftarrow1\mathrm{ to }n\mathrm{ do
for k\leftarrowj to n do
|
|rsm
return m

```
© 2015 Goodrich and Tamassia \(\quad\) Analysis of Algorithms

\section*{Arithmetic Progression}
- The running time of MaxsubFaster is \(\boldsymbol{O}(1+2+\ldots+\boldsymbol{n})\)
- The sum of the first \(n\) integers is \(\boldsymbol{n}(\boldsymbol{n}+1) / 2\)
- There is a simple visual proof of this fact
- Thus, algorithm MaxsubFaster runs in \(\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)\) time


\section*{A Linear-Time Algorithm}
- Instead of computing prefix sum \(S_{t}=s_{1, t}\), let us compute a maximum suffix sum, \(\mathrm{M}_{\mathrm{t}}\), which is the maximum of 0 and the maximum \(\mathrm{s}_{\mathrm{i} . \mathrm{t}}\) for \(\mathrm{j}=1, \ldots, \mathrm{t}\).
\[
M_{t}=\max \left\{0, \max _{j=1, \cdots, t}\left\{s_{j, t}\right\}\right\}
\]
- if \(M_{t}>0\), then it is the summation value for a maximum subarray that ends at \(t\), and if \(M_{t}=0\), then we can safely ignore any subarray that ends at t .
- if we know all the \(M_{t}\) values, for \(t=1,2, \ldots, n\), then the solution to the maximum subarray problem would simply be the maximum of all these values.

\section*{A Linear-Time Algorithm, cont.}
- for \(t \geq 2\), if we have a maximum subarray that ends at \(t\), and it has a positive sum, then it is either \(A[t: t]\) or it is made up of the maximum subarray that ends at \(t-1\) plus \(A[t]\). So we can define \(M_{0}=0\) and
\[
M_{t}=\max \left\{0, M_{t-1}+A[t]\right\}
\]
- If this were not the case, then we could make a subarray of even larger sum by swapping out the one we chose to end at \(t-1\) with the maximum one that ends at \(\mathrm{t}-1\), which would contradict the fact that we have the maximum subarray that ends at t .
- Also, if taking the value of maximum subarray that ends at \(t-1\) and adding \(A[t]\) makes this sum no longer be positive, then \(M_{t}=0\), for there is no subarray that ends at \(t\) with a positive summation.
```

Input: An n-element array A of numbers, indexed from 1 to }n\mathrm{ .
Output: The maximum subarray sum of array A.
M}\mp@subsup{M}{0}{}\leftarrow0\quad// the initial prefix maximum
for t\&1 to n do
Mt\leftarrowmax{0, Mt-1 +A[t]}
m\leftarrow0 // the maximum found so far
fort\leftarrow\&\&\mp@code{tondo}
~

```
- The MaxsubFastest algorithm consists of two loops, which each iterate exactly \(n\) times and take \(O(1)\) time in each iteration. Thus, the total running time of the MaxsubFastest algorithm is \(\mathrm{O}(\mathrm{n})\).
© 2015 Goodrich and Tamassia
Analysis of Algorithms

\section*{Relatives of Big-Oh}

\section*{big-Omega}
- \(f(n)\) is \(\Omega(g(n))\) if there is a constant \(c>0\) and an integer constant \(n_{0} \geq 1\) such that
\[
f(n) \geq c g(n) \text { for } n \geq n_{0}
\]
big-Theta
- \(f(n)\) is \(\Theta(g(n))\) if there are constants \(c^{\prime}>0\) and \(\mathrm{c}^{\prime \prime}>0\) and an integer constant \(\mathrm{n}_{0} \geq 1\) such that \(c^{\prime} g(n) \leq f(n) \leq c^{\prime \prime} g(n)\) for \(n \geq n_{0}\)
© 2015 Goodrich and Tamassia \(\quad\) Analysis of Algorithms
36

Math you need to Review
- Summations
- Powers
- Logarithms
- Proof techniques
- Basic probability
- Properties of logarithms: \(\log _{b}(x y)=\log _{b} x+\log _{b} y\) \(\log _{b}(x / y)=\log _{b} x-\log _{b} y\) \(\log _{b} x a=a \log _{b} x\) \(\log _{b} a=\log _{x} a / \log _{x} b\)
- Properties of powers: \(a^{(b+c)}=a^{b} a^{c}\) \(a^{b c}=\left(a^{b}\right)^{c}\) \(a^{b} / a^{c}=a^{(b-c)}\) \(b=a \log _{a} b\) \(b^{c}=a^{*} \log _{a} b\)

\begin{abstract}
y
\end{abstract} Y


\section*{Example Uses of the Relatives of Big-Oh}
- \(5 n^{2}\) is \(\Omega\left(n^{2}\right)\)

\(f(n)\) is \(\Omega(g(n))\) if there is a constant \(c>0\) and an integer constant \(n_{0} \geq 1\) such that \(f(n) \geq c g(n)\) for \(n \geq n_{0}\).
let \(c=5\) and \(n_{0}=1\)
- \(5 \boldsymbol{n}^{\mathbf{2}}\) is \(\Omega(n)\)
\(f(n)\) is \(\Omega(g(n))\) if there is a constant \(c>0\) and an integer constant \(n_{0} \geq 1\) such that \(\mathrm{f}(n) \geq c g(n)\) for \(n \geq n_{0}\)
let \(c=1\) and \(n_{0}=1\)
- \(5 n^{2}\) is \(\Theta\left(n^{2}\right)\)
\(f(n)\) is \(\Theta(g(n))\) if it is \(\Omega\left(n^{2}\right)\) and \(O\left(n^{2}\right)\). We have already seen the former, for the latter recall that \(f(n)\) is \(O(g(n))\) if there is a constant \(c>0\) and an integer constant \(n_{0} \geq 1\) such that \(\mathrm{f}(n) \leq c g(n)\) for \(n \geq n_{0}\)
Let \(c=5\) and \(n_{0}=1\)
© 2015 Goodrich and Tamassia \(\quad\) Analysis of Algorithms

\section*{Amortization}

- The amortized running time of an operation within a series of operations is the worst-case running time of the series of operations divided by the number of operations.
- Example: A growable array, S. When needing to grow: a. Allocate a new array B of larger capacity.
b. Copy \(A[i]\) to \(B[i]\), for \(i=0, \ldots, n-1\), where \(n\) is size of \(A\). c. Let \(A=B\), that is, we use \(B\) as the array now supporting \(A\).


\section*{Comparison of the Strategies}
- We compare the incremental strategy and the doubling strategy by analyzing the total time \(T(n)\) needed to perform a series of \(n\) add operations
- We assume that we start with an empty list represented by a growable array of size 1
- We call amortized time of an add operation the average time taken by an add operation over the series of operations, i.e., \(T(\boldsymbol{n}) / \boldsymbol{n}\)

\section*{Incremental Strategy Analysis}
- Over \(\boldsymbol{n}\) add operations, we replace the array \(\boldsymbol{k}=\boldsymbol{n} / \boldsymbol{c}\) times, where \(c\) is a constant
- The total time \(\boldsymbol{T}(\boldsymbol{n})\) of a series of \(n\) add operations is proportional to
\[
\begin{gathered}
n+c+2 c+3 c+4 c+\ldots+\boldsymbol{k} c= \\
n+c(1+2+3+\ldots+\boldsymbol{k})= \\
n+c k(k+1) / 2
\end{gathered}
\]
- Since \(\boldsymbol{c}\) is a constant, \(\boldsymbol{T}(\boldsymbol{n})\) is \(\boldsymbol{O}\left(\boldsymbol{n}+\boldsymbol{k}^{2}\right)\), i.e., \(\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)\)
- Thus, the amortized time of an add operation is \(O(n)\)
© 2015 Goodrich and Tamassia \(\quad\) Analysis of Algorithms
42
```

Doubling Strategy Analysis
- We replace the array }k=\mp@subsup{\operatorname{log}}{2}{}
times
- The total time T(n) of a series of }\boldsymbol{n push operations is proportional to $n+1+2+4+8+\ldots+2^{k}=$ $\boldsymbol{n}+2^{k+1}-1=$ $3 n-1$

- $\boldsymbol{T}(n)$ is $\boldsymbol{O}(n)$


```
- The amortized time of an add operation is \(\boldsymbol{O}(1)\)

\section*{Accounting Method Proof for the Doubling Strategy}
- We view the computer as a coin-operated appliance that requires the payment of 1 cyber-dollar for a constant amount of computing time.
- We shall charge each add operation 3 cyber-dollars, that is, it will have an amortized \(O(1)\) amortized running time.
- We over-charge each add operation not causing an overflow 2 cyber-dollars.
- Think of the 2 cyber-dollars profited in an insertion that does not grow the array as being "stored" at the element inserted.
- An overflow occurs when the array A has \(2^{i}\) elements.
- Thus, doubling the size of the array will require \(2^{i}\) cyber-dollars.
- These cyber-dollars are at the elements stored in cells \(2^{i-1}\) through \(2^{i-1}\).
\(\stackrel{\text { ®®®®(3) }}{9}\)
411111
```


[^0]: © 2015 Goodrich and Tamassia \quad Analysis of Algorithms

