
1

Analysis of Algorithms

AlgorithmInput Output

© 2015 Goodrich and Tamassia 1Analysis of Algorithms

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Scalability
 Scientists often have to deal

with differences in scale, from
the microscopically small to the
astronomically large.

 Computer scientists must also
deal with scale, but they deal
with it primarily in terms of data
volume rather than physical
object size.

 Scalability refers to the ability
of a system to gracefully
accommodate growing sizes of
inputs or amounts of workload.

© 2015 Goodrich and Tamassia Analysis of Algorithms 2

Application: Job Interviews
 High technology companies tend to ask questions about

algorithms and data structures during job interviews.
 Algorithms questions can be short but often require critical

thinking, creative insights, and subject knowledge.
 All the “Applications” exercises in Chapter 1 of the Goodrich-

Tamassia textbook are taken from reports of actual job interview
questions.

© 2015 Goodrich and Tamassia Analysis of Algorithms 3

xkcd “Labyrinth Puzzle.” http://xkcd.com/246/
Used with permission under Creative Commons 2.5 License.

Algorithms and Data Structures
 An algorithm is a step-by-step procedure for

performing some task in a finite amount of
time.
 Typically, an algorithm takes input data and

produces an output based upon it.

 A data structure is a systematic way of
organizing and accessing data.

© 2015 Goodrich and Tamassia Analysis of Algorithms 4

AlgorithmInput Output

Analysis of Algorithms 5

Running Time
 Most algorithms transform

input objects into output
objects.

 The running time of an
algorithm typically grows
with the input size.

 Average case time is often
difficult to determine.

 We focus primarily on the
worst case running time.
 Easier to analyze
 Crucial to applications such as

games, finance and robotics

0

20

40

60

80

100

120

R
u

n
n

in
g

 T
im

e

1000 2000 3000 4000

Input Size

best case
average case
worst case

© 2015 Goodrich and Tamassia Analysis of Algorithms 6

Experimental Studies

 Write a program
implementing the
algorithm

 Run the program with
inputs of varying size
and composition,
noting the time
needed:

 Plot the results

© 2015 Goodrich and Tamassia

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

T
im

e
 (

m
s)

2

Analysis of Algorithms 7

Limitations of Experiments

 It is necessary to implement the
algorithm, which may be difficult

 Results may not be indicative of the
running time on other inputs not included
in the experiment.

 In order to compare two algorithms, the
same hardware and software
environments must be used

© 2015 Goodrich and Tamassia Analysis of Algorithms 8

Theoretical Analysis

 Uses a high-level description of the
algorithm instead of an implementation

 Characterizes running time as a
function of the input size, n

 Takes into account all possible inputs
 Allows us to evaluate the speed of an

algorithm independent of the
hardware/software environment

© 2015 Goodrich and Tamassia

Analysis of Algorithms 9

Pseudocode

 High-level description of an algorithm
 More structured than English prose
 Less detailed than a program
 Preferred notation for describing

algorithms
 Hides program design issues

© 2015 Goodrich and Tamassia Analysis of Algorithms 10

Pseudocode Details

 Control flow
 if … then … [else …]

 while … do …

 repeat … until …

 for … do …

 Indentation replaces braces

 Method declaration
Algorithm method (arg [, arg…])

Input …

Output …

 Method call
method (arg [, arg…])

 Return value
return expression

 Expressions:
Assignment

 Equality testing

n2 Superscripts and other
mathematical
formatting allowed

© 2015 Goodrich and Tamassia

Analysis of Algorithms 11

The Random Access Machine
(RAM) Model

A RAM consists of
 A CPU
 An potentially unbounded bank

of memory cells, each of which
can hold an arbitrary number or
character

 Memory cells are numbered and
accessing any cell in memory
takes unit time

0
1
2

© 2015 Goodrich and Tamassia

Memory

CPU

Analysis of Algorithms 12

Seven Important Functions
 Seven functions that

often appear in algorithm
analysis:
 Constant 1
 Logarithmic log n
 Linear n
 N-Log-N n log n
 Quadratic n2

 Cubic n3

 Exponential 2n

 In a log-log chart, the
slope of the line
corresponds to the
growth rate

1E+0
1E+2
1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26
1E+28
1E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n

)

Cubic

Quadratic

Linear

© 2015 Goodrich and Tamassia

3

Functions Graphed
Using “Normal” Scale

© 2015 Goodrich and Tamassia 13Analysis of Algorithms

g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3

Slide by Matt Stallmann
included with permission.

Analysis of Algorithms 14

Primitive Operations
 Basic computations

performed by an algorithm
 Identifiable in pseudocode
 Largely independent from the

programming language
 Exact definition not important

(we will see why later)
 Assumed to take a constant

amount of time in the RAM
model

 Examples:
 Evaluating an

expression
 Assigning a value

to a variable
 Indexing into an

array
 Calling a method
 Returning from a

method

© 2015 Goodrich and Tamassia

Analysis of Algorithms 15

Counting Primitive Operations
 Example: By inspecting the pseudocode, we can

determine the maximum number of primitive operations
executed by an algorithm, as a function of the input size

© 2015 Goodrich and Tamassia Analysis of Algorithms 16

Estimating Running Time

 Algorithm arrayMax executes 7n - 2 primitive
operations in the worst case, 5n in the best case.
Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

 Let T(n) be worst-case time of arrayMax. Then
a(5n) T(n) b(7n - 2)

 Hence, the running time T(n) is bounded by two
linear functions

© 2015 Goodrich and Tamassia

Analysis of Algorithms 17

Growth Rate of Running Time

 Changing the hardware/ software
environment
 Affects T(n) by a constant factor, but
 Does not alter the growth rate of T(n)

 The linear growth rate of the running
time T(n) is an intrinsic property of
algorithm arrayMax

© 2015 Goodrich and Tamassia

Why Growth Rate Matters

© 2015 Goodrich and Tamassia 18Analysis of Algorithms

Slide by Matt Stallmann
included with permission.

if runtime
is...

time for n + 1 time for 2 n time for 4 n

c lg n c lg (n + 1) c (lg n + 1) c(lg n + 2)

c n c (n + 1) 2c n 4c n

c n lg n
~ c n lg n

+ c n
2c n lg n +

2cn
4c n lg n +

4cn

c n2 ~ c n2 + 2c n 4c n2 16c n2

c n3 ~ c n3 + 3c n2 8c n3 64c n3

c 2n c 2 n+1 c 2 2n c 2 4n

runtime
quadruples
when
problem
size doubles

4

Analyzing Recursive Algorithms
 Use a function, T(n), to derive a recurrence

relation that characterizes the running time of
the algorithm in terms of smaller values of n.

© 2015 Goodrich and Tamassia Analysis of Algorithms 19 Analysis of Algorithms 20

Constant Factors

 The growth rate is
minimally affected by
 constant factors or
 lower-order terms

 Examples
 102n + 105 is a linear

function
 105n2 + 108n is a

quadratic function 1E+0
1E+2
1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n

)

Quadratic

Quadratic

Linear

Linear

© 2015 Goodrich and Tamassia

Analysis of Algorithms 21

Big-Oh Notation
 Given functions f(n) and

g(n), we say that f(n) is
O(g(n)) if there are
positive constants
c and n0 such that

f(n) cg(n) for n n0

 Example: 2n + 10 is O(n)
 2n + 10 cn

 (c - 2) n 10

 n 10/(c - 2)

 Pick c 3 and n0 10

1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

© 2015 Goodrich and Tamassia Analysis of Algorithms 22

Big-Oh Example

 Example: the function
n2 is not O(n)
 n2 cn

 n c

 The above inequality
cannot be satisfied
since c must be a
constant

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2

100n

10n

n

© 2015 Goodrich and Tamassia

Analysis of Algorithms 23

More Big-Oh Examples
 7n - 2

7n-2 is O(n)
need c > 0 and n0 1 such that 7 n - 2 c n for n n0

this is true for c = 7 and n0 = 1

 3 n3 + 20 n2 + 5
3 n3 + 20 n2 + 5 is O(n3)
need c > 0 and n0 1 such that 3 n3 + 20 n2 + 5 c n3 for n n0

this is true for c = 4 and n0 = 21

 3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n0 1 such that 3 log n + 5 c log n for n n0

this is true for c = 8 and n0 = 2
© 2015 Goodrich and Tamassia Analysis of Algorithms 24

Big-Oh and Growth Rate
 The big-Oh notation gives an upper bound on the

growth rate of a function
 The statement “f(n) is O(g(n))” means that the growth

rate of f(n) is no more than the growth rate of g(n)

 We can use the big-Oh notation to rank functions
according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes

© 2015 Goodrich and Tamassia

5

Analysis of Algorithms 25

Big-Oh Rules

 If is f(n) a polynomial of degree d, then f(n) is
O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

 Use the smallest possible class of functions
 Say “2n is O(n)” instead of “2n is O(n2)”

 Use the simplest expression of the class
 Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

© 2015 Goodrich and Tamassia Analysis of Algorithms 26

Asymptotic Algorithm Analysis
 The asymptotic analysis of an algorithm determines

the running time in big-Oh notation
 To perform the asymptotic analysis

 We find the worst-case number of primitive operations
executed as a function of the input size

 We express this function with big-Oh notation

 Example:
 We say that algorithm arrayMax “runs in O(n) time”

 Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard them
when counting primitive operations

© 2015 Goodrich and Tamassia

Analysis of Algorithms 27

A Case Study in
Algorithm Analysis
 Given an array of n integers,

find the subarray, A[j:k] that
maximizes the sum

 In addition to being an
interview question for testing
the thinking skills of job
candidates, this maximum
subarray problem also has
applications in pattern
analysis in digitized images.

© 2015 Goodrich and Tamassia Analysis of Algorithms 28

A First (Slow) Solution

Compute the maximum of
every possible subarray
summation of the array A
separately.

© 2015 Goodrich and Tamassia

• The outer loop, for index j, will iterate n times, its
inner loop, for index k, will iterate at most n times,
and the inner-most loop, for index i, will iterate at
most n times.

• Thus, the running time of the MaxsubSlow algorithm
is O(n3).

An Improved Algorithm
 A more efficient way to calculate these

summations is to consider prefix sums

 If we are given all such prefix sums (and
assuming S0=0), we can compute any
summation sj,k in constant time as

© 2015 Goodrich and Tamassia Analysis of Algorithms 29

An Improved Algorithm, cont.
 Compute all the prefix sums
 Then compute all the subarray sums

© 2015 Goodrich and Tamassia Analysis of Algorithms 30

6

Analysis of Algorithms 31

Arithmetic Progression

 The running time of
MaxsubFaster is
O(1 + 2 + …+ n)

 The sum of the first n
integers is n(n + 1) / 2
 There is a simple visual

proof of this fact

 Thus, algorithm
MaxsubFaster runs in
O(n2) time

0

1

2

3

4

5

6

7

1 2 3 4 5 6

© 2015 Goodrich and Tamassia

A Linear-Time Algorithm
 Instead of computing prefix sum St = s1,t, let us

compute a maximum suffix sum, Mt, which is the
maximum of 0 and the maximum sj,t for j = 1,…, t.

 if Mt > 0, then it is the summation value for a
maximum subarray that ends at t, and if Mt = 0, then
we can safely ignore any subarray that ends at t.

 if we know all the Mt values, for t = 1, 2, …, n, then
the solution to the maximum subarray problem would
simply be the maximum of all these values.

© 2015 Goodrich and Tamassia Analysis of Algorithms 32

A Linear-Time Algorithm, cont.
 for t ≥ 2, if we have a maximum subarray that ends at t, and it has

a positive sum, then it is either A[t : t] or it is made up of the
maximum subarray that ends at t − 1 plus A[t]. So we can define
M0 = 0 and

 If this were not the case, then we could make a subarray of even
larger sum by swapping out the one we chose to end at t − 1 with
the maximum one that ends at t − 1, which would contradict the
fact that we have the maximum subarray that ends at t.

 Also, if taking the value of maximum subarray that ends at t − 1
and adding A[t] makes this sum no longer be positive, then Mt = 0,
for there is no subarray that ends at t with a positive summation.

© 2015 Goodrich and Tamassia Analysis of Algorithms 33

A Linear-Time Algorithm, cont.

 The MaxsubFastest algorithm consists of two loops,
which each iterate exactly n times and take O(1) time in
each iteration. Thus, the total running time of the
MaxsubFastest algorithm is O(n).

© 2015 Goodrich and Tamassia Analysis of Algorithms 34

Math you need to Review
 Properties of powers:

a(b+c) = aba c
abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

 Properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

 Summations
 Powers
 Logarithms
 Proof techniques
 Basic probability

© 2015 Goodrich and Tamassia Analysis of Algorithms 35 Analysis of Algorithms 36

Relatives of Big-Oh

big-Omega

 f(n) is (g(n)) if there is a constant c > 0
and an integer constant n0 1 such that

f(n) c g(n) for n n0

big-Theta

 f(n) is (g(n)) if there are constants c’ > 0 and
c’’ > 0 and an integer constant n0 1 such that

c’g(n) f(n) c’’g(n) for n n0

© 2015 Goodrich and Tamassia

7

Analysis of Algorithms 37

Intuition for Asymptotic
Notation

big-Oh
 f(n) is O(g(n)) if f(n) is asymptotically

less than or equal to g(n)
big-Omega
 f(n) is (g(n)) if f(n) is asymptotically

greater than or equal to g(n)
big-Theta
 f(n) is (g(n)) if f(n) is asymptotically

equal to g(n)

© 2015 Goodrich and Tamassia Analysis of Algorithms 38

Example Uses of the
Relatives of Big-Oh

f(n) is (g(n)) if it is (n2) and O(n2). We have already seen the former,
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an
integer constant n0 1 such that f(n) < c g(n) for n n0

Let c = 5 and n0 = 1

 5n2 is (n2)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0 1
such that f(n) c g(n) for n n0

let c = 1 and n0 = 1

 5n2 is (n)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0 1
such that f(n) c g(n) for n n0

let c = 5 and n0 = 1

 5n2 is (n2)

© 2015 Goodrich and Tamassia

Amortization

 The amortized running time of an operation within a
series of operations is the worst-case running time of
the series of operations divided by the number of
operations.

 Example: A growable array, S. When needing to grow:
a. Allocate a new array B of larger capacity.
b. Copy A[i] to B[i], for i = 0, . . . , n − 1, where n is size of A.
c. Let A = B, that is, we use B as the array now supporting A.

© 2015 Goodrich and Tamassia Analysis of Algorithms 39 Analysis of Algorithms 40

Growable Array Description
 Let add(e) be the operation

that adds element e at the
end of the array

 When the array is full, we
replace the array with a
larger one

 But how large should the
new array be?
 Incremental strategy: increase

the size by a constant c
 Doubling strategy: double the

size

Algorithm add(e)
if t = A.length - 1 then

B new array of
size …

for i 0 to n-1 do
B[i] A[i]

A B
n n + 1
A[n-1] e

© 2015 Goodrich and Tamassia

Analysis of Algorithms 41

Comparison of the Strategies

 We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n
add operations

 We assume that we start with an empty list
represented by a growable array of size 1

 We call amortized time of an add operation
the average time taken by an add operation
over the series of operations, i.e., T(n)/n

© 2015 Goodrich and Tamassia Analysis of Algorithms 42

Incremental Strategy Analysis
 Over n add operations, we replace the array k = n/c

times, where c is a constant
 The total time T(n) of a series of n add operations is

proportional to
n + c + 2c + 3c + 4c + … + kc =

n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2

 Since c is a constant, T(n) is O(n + k2), i.e., O(n2)

 Thus, the amortized time of an add operation is
O(n)

© 2015 Goodrich and Tamassia

8

Analysis of Algorithms 43

Doubling Strategy Analysis
 We replace the array k = log2 n

times
 The total time T(n) of a series of n

push operations is proportional to
n + 1 + 2 + 4 + 8 + …+ 2k =
n + 2k + 1 - 1 =

3n - 1

 T(n) is O(n)

 The amortized time of an add
operation is O(1)

geometric series

1

2

1
4

8

© 2015 Goodrich and Tamassia

Accounting Method Proof for
the Doubling Strategy
 We view the computer as a coin-operated appliance that requires

the payment of 1 cyber-dollar for a constant amount of
computing time.

 We shall charge each add operation 3 cyber-dollars, that is, it will
have an amortized O(1) amortized running time.
 We over-charge each add operation not causing an overflow 2 cyber-dollars.
 Think of the 2 cyber-dollars profited in an insertion that does not grow the

array as being “stored” at the element inserted.
 An overflow occurs when the array A has 2i elements.
 Thus, doubling the size of the array will require 2i cyber-dollars.
 These cyber-dollars are at the elements stored in cells 2i−1 through 2i−1.

© 2015 Goodrich and Tamassia Analysis of Algorithms 44

