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Presentation for use with the textbook, Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Scalability
 Scientists often have to deal 

with differences in scale, from 
the microscopically small to the 
astronomically large. 

 Computer scientists must also 
deal with scale, but they deal 
with it primarily in terms of data 
volume rather than physical 
object size. 

 Scalability refers to the ability 
of a system to gracefully 
accommodate growing sizes of 
inputs or amounts of workload.
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Application: Job Interviews
 High technology companies tend to ask questions about 

algorithms and data structures during job interviews.
 Algorithms questions can be short but often require critical 

thinking, creative insights, and subject knowledge.
 All the “Applications” exercises in Chapter 1 of the Goodrich-

Tamassia textbook are taken from reports of actual job interview 
questions.
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xkcd “Labyrinth Puzzle.” http://xkcd.com/246/
Used with permission under Creative Commons 2.5 License. 

Algorithms and Data Structures
 An algorithm is a step-by-step procedure for 

performing some task in a finite amount of 
time.
 Typically, an algorithm takes input data and 

produces an output based upon it.

 A data structure is a systematic way of 
organizing and accessing data.
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Running Time
 Most algorithms transform 

input objects into output 
objects.

 The running time of an 
algorithm typically grows 
with the input size.

 Average case time is often 
difficult to determine.

 We focus primarily on the 
worst case running time.
 Easier to analyze
 Crucial to applications such as 

games, finance and robotics

0

20

40

60

80

100

120

R
u

n
n

in
g

 T
im

e

1000 2000 3000 4000

Input Size

best case
average case
worst case

© 2015 Goodrich and Tamassia Analysis of Algorithms 6

Experimental Studies

 Write a program 
implementing the 
algorithm

 Run the program with 
inputs of varying size 
and composition, 
noting the time 
needed:

 Plot the results
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Limitations of Experiments

 It is necessary to implement the 
algorithm, which may be difficult

 Results may not be indicative of the 
running time on other inputs not included 
in the experiment. 

 In order to compare two algorithms, the 
same hardware and software 
environments must be used
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Theoretical Analysis

 Uses a high-level description of the 
algorithm instead of an implementation

 Characterizes running time as a 
function of the input size, n

 Takes into account all possible inputs
 Allows us to evaluate the speed of an 

algorithm independent of the 
hardware/software environment
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Pseudocode

 High-level description of an algorithm
 More structured than English prose
 Less detailed than a program
 Preferred notation for describing 

algorithms
 Hides program design issues
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Pseudocode Details

 Control flow
 if … then … [else …]

 while … do …

 repeat … until …

 for … do …

 Indentation replaces braces 

 Method declaration
Algorithm method (arg [, arg…])

Input …

Output …

 Method call
method (arg [, arg…])

 Return value
return expression

 Expressions:
Assignment

 Equality testing

n2 Superscripts and other 
mathematical 
formatting allowed
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The Random Access Machine 
(RAM) Model

A RAM consists of
 A CPU
 An potentially unbounded bank 

of memory cells, each of which 
can hold an arbitrary number or 
character

 Memory cells are numbered and 
accessing any cell in memory 
takes unit time

0
1
2
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Seven Important Functions
 Seven functions that 

often appear in algorithm 
analysis:
 Constant  1
 Logarithmic  log n
 Linear  n
 N-Log-N  n log n
 Quadratic  n2

 Cubic  n3

 Exponential  2n

 In a log-log chart, the 
slope of the line 
corresponds to the 
growth rate
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Functions Graphed 
Using “Normal” Scale
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g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3

Slide by Matt Stallmann 
included with permission.
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Primitive Operations
 Basic computations 

performed by an algorithm
 Identifiable in pseudocode
 Largely independent from the 

programming language
 Exact definition not important 

(we will see why later)
 Assumed to take a constant 

amount of time in the RAM 
model

 Examples:
 Evaluating an 

expression
 Assigning a value 

to a variable
 Indexing into an 

array
 Calling a method
 Returning from a 

method
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Counting Primitive Operations
 Example: By inspecting the pseudocode, we can 

determine the maximum number of primitive operations 
executed by an algorithm, as a function of the input size

© 2015 Goodrich and Tamassia Analysis of Algorithms 16

Estimating Running Time

 Algorithm arrayMax executes 7n - 2 primitive 
operations in the worst case, 5n in the best case.  
Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

 Let T(n) be worst-case time of arrayMax. Then
a(5n)  T(n)  b(7n - 2)

 Hence, the running time T(n) is bounded by two 
linear functions
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Growth Rate of Running Time

 Changing the hardware/ software 
environment 
 Affects T(n) by a constant factor, but
 Does not alter the growth rate of T(n)

 The linear growth rate of the running 
time T(n) is an intrinsic property of 
algorithm arrayMax
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Why Growth Rate Matters
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Slide by Matt Stallmann 
included with permission.

if runtime 
is...

time for n + 1 time for 2 n time for 4 n

c lg n c lg (n + 1) c (lg n + 1) c(lg n + 2)

c n c (n + 1) 2c n 4c n

c n lg n
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c n2 ~ c n2 + 2c n 4c n2 16c n2

c n3 ~ c n3 + 3c n2 8c n3 64c n3

c 2n c 2 n+1 c 2 2n c 2 4n

runtime
quadruples
when 
problem
size doubles
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Analyzing Recursive Algorithms
 Use a function, T(n), to derive a recurrence 

relation that characterizes the running time of 
the algorithm in terms of smaller values of n.
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Constant Factors

 The growth rate is 
minimally affected by
 constant factors or 
 lower-order terms

 Examples
 102n + 105 is a linear 

function
 105n2 + 108n is a 

quadratic function 1E+0
1E+2
1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26
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n
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Linear
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Big-Oh Notation
 Given functions f(n) and 

g(n), we say that f(n) is 
O(g(n)) if there are 
positive constants
c and n0 such that

f(n)  cg(n)  for n  n0

 Example: 2n + 10 is O(n)
 2n + 10  cn

 (c - 2) n  10

 n  10/(c - 2)

 Pick c  3 and n0  10

1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n
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Big-Oh Example

 Example: the function 
n2 is not O(n)
 n2  cn

 n  c

 The above inequality 
cannot be satisfied 
since c must be a 
constant 

1
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More Big-Oh Examples
 7n - 2

7n-2 is O(n)
need c > 0 and n0  1 such that 7 n - 2  c n for n  n0

this is true for c = 7 and n0 = 1

 3 n3 + 20 n2 + 5
3 n3 + 20 n2 + 5 is O(n3)
need c > 0 and n0  1 such that 3 n3 + 20 n2 + 5  c n3 for n  n0

this is true for c = 4 and n0 = 21

 3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n0  1 such that 3 log n + 5  c log n for n  n0

this is true for c = 8 and n0 = 2
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Big-Oh and Growth Rate
 The big-Oh notation gives an upper bound on the 

growth rate of a function
 The statement “f(n) is O(g(n))” means that the growth 

rate of f(n) is no more than the growth rate of g(n)

 We can use the big-Oh notation to rank functions 
according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes

© 2015 Goodrich and Tamassia
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Big-Oh Rules

 If is f(n) a polynomial of degree d, then f(n) is 
O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

 Use the smallest possible class of functions
 Say “2n is O(n)” instead of “2n is O(n2)”

 Use the simplest expression of the class
 Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”
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Asymptotic Algorithm Analysis
 The asymptotic analysis of an algorithm determines 

the running time in big-Oh notation
 To perform the asymptotic analysis

 We find the worst-case number of primitive operations 
executed as a function of the input size

 We express this function with big-Oh notation

 Example:
 We say that algorithm arrayMax “runs in O(n) time”

 Since constant factors and lower-order terms are 
eventually dropped anyhow, we can disregard them 
when counting primitive operations

© 2015 Goodrich and Tamassia
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A Case Study in 
Algorithm Analysis
 Given an array of n integers, 

find the subarray, A[j:k] that 
maximizes the sum

 In addition to being an 
interview question for testing 
the thinking skills of job 
candidates, this maximum 
subarray problem also has 
applications in pattern 
analysis in digitized images.
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A First (Slow) Solution

Compute the maximum of 
every possible subarray
summation of the array A
separately.

© 2015 Goodrich and Tamassia

• The outer loop, for index j, will iterate n times, its 
inner loop, for index k, will iterate at most n times, 
and the inner-most loop, for index i, will iterate at 
most n times. 

• Thus, the running time of the MaxsubSlow algorithm 
is O(n3).

An Improved Algorithm
 A more efficient way to calculate these 

summations is to consider prefix sums

 If we are given all such prefix sums (and 
assuming S0=0), we can compute any 
summation sj,k in constant time as

© 2015 Goodrich and Tamassia Analysis of Algorithms 29

An Improved Algorithm, cont.
 Compute all the prefix sums
 Then compute all the subarray sums
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Arithmetic Progression

 The running time of 
MaxsubFaster is
O(1 + 2 + …+ n)

 The sum of the first n
integers is n(n + 1) / 2
 There is a simple visual 

proof of this fact

 Thus, algorithm 
MaxsubFaster runs in 
O(n2) time 
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A Linear-Time Algorithm
 Instead of computing prefix sum St = s1,t, let us 

compute a maximum suffix sum, Mt, which is the 
maximum of 0 and the maximum sj,t for j = 1,…, t.

 if Mt > 0, then it is the summation value for a 
maximum subarray that ends at t, and if Mt = 0, then 
we can safely ignore any subarray that ends at t.

 if we know all the Mt values, for t = 1, 2, …, n, then 
the solution to the maximum subarray problem would 
simply be the maximum of all these values.
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A Linear-Time Algorithm, cont.
 for t ≥ 2, if we have a maximum subarray that ends at t, and it has 

a positive sum, then it is either A[t : t] or it is made up of the 
maximum subarray that ends at t − 1 plus A[t]. So we can define 
M0 = 0 and

 If this were not the case, then we could make a subarray of even 
larger sum by swapping out the one we chose to end at t − 1 with 
the maximum one that ends at t − 1, which would contradict the 
fact that we have the maximum subarray that ends at t. 

 Also, if taking the value of maximum subarray that ends at t − 1 
and adding A[t] makes this sum no longer be positive, then Mt = 0, 
for there is no subarray that ends at t with a positive summation.
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A Linear-Time Algorithm, cont.

 The MaxsubFastest algorithm consists of two loops, 
which each iterate exactly n times and take O(1) time in 
each iteration. Thus, the total running time of the 
MaxsubFastest algorithm is O(n).
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Math you need to Review
 Properties of powers:

a(b+c) = aba c
abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

 Properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

 Summations
 Powers
 Logarithms
 Proof techniques
 Basic probability
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Relatives of Big-Oh

big-Omega

 f(n) is (g(n)) if there is a constant c > 0 
and an integer constant n0  1 such that 

f(n)  c g(n) for n  n0

big-Theta

 f(n) is (g(n)) if there are constants c’ > 0 and 
c’’ > 0 and an integer constant n0  1 such that

c’g(n)  f(n)  c’’g(n) for n  n0

© 2015 Goodrich and Tamassia
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Intuition for Asymptotic 
Notation

big-Oh
 f(n) is O(g(n)) if f(n) is asymptotically 

less than or equal to g(n)
big-Omega
 f(n) is (g(n)) if f(n) is asymptotically 

greater than or equal to g(n)
big-Theta
 f(n) is (g(n)) if f(n) is asymptotically 

equal to g(n)
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Example Uses of the 
Relatives of Big-Oh

f(n) is (g(n)) if it is (n2) and O(n2). We have already seen the former, 
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an 
integer constant n0  1 such that f(n) < c g(n) for n  n0 

Let c = 5 and n0 = 1

 5n2 is (n2)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1 
such that f(n)  c g(n) for n  n0

let c = 1 and n0 = 1

 5n2 is (n)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1 
such that f(n)  c g(n) for n  n0

let c = 5 and n0 = 1

 5n2 is (n2)
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Amortization

 The amortized running time of an operation within a 
series of operations is the worst-case running time of 
the series of operations divided by the number of 
operations.

 Example: A growable array, S. When needing to grow:
a. Allocate a new array B of larger capacity.
b. Copy A[i] to B[i], for i = 0, . . . , n − 1, where n is size of A.
c. Let A = B, that is, we use B as the array now supporting A.
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Growable Array Description
 Let add(e) be the operation 

that adds element e at the 
end of the array

 When the array is full, we 
replace the array with a 
larger one

 But how large should the 
new array be?
 Incremental strategy: increase 

the size by a constant c
 Doubling strategy: double the 

size

Algorithm add(e)
if t = A.length - 1 then

B  new array of
size …

for i  0 to n-1 do
B[i]  A[i]

A  B
n  n + 1
A[n-1]  e

© 2015 Goodrich and Tamassia
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Comparison of the Strategies

 We compare the incremental strategy and 
the doubling strategy by analyzing the total 
time T(n) needed to perform a series of n
add operations

 We assume that we start with an empty list 
represented by a growable array of size 1

 We call amortized time of an add operation 
the average time taken by an add operation 
over the series of operations, i.e.,  T(n)/n
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Incremental Strategy Analysis 
 Over n add operations, we replace the array k = n/c 

times, where c is a constant
 The total time T(n) of a series of n add operations is 

proportional to
n + c + 2c + 3c + 4c + … + kc =

n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2

 Since c is a constant, T(n) is O(n + k2), i.e., O(n2)

 Thus, the amortized time of an add operation is 
O(n)

© 2015 Goodrich and Tamassia
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Doubling Strategy Analysis
 We replace the array k = log2 n 

times
 The total time T(n) of a series of n

push operations is proportional to
n + 1 + 2 + 4 + 8 + …+ 2k =
n + 2k + 1 - 1 = 

3n - 1

 T(n) is O(n)

 The amortized time of an add 
operation is O(1)

geometric series

1

2

1
4

8
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Accounting Method Proof for 
the Doubling Strategy
 We view the computer as a coin-operated appliance that requires 

the payment of 1 cyber-dollar for a constant amount of 
computing time.

 We shall charge each add operation 3 cyber-dollars, that is, it will 
have an amortized O(1) amortized running time.
 We over-charge each add operation not causing an overflow 2 cyber-dollars.
 Think of the 2 cyber-dollars profited in an insertion that does not grow the 

array as being “stored” at the element inserted. 
 An overflow occurs when the array A has 2i elements.
 Thus, doubling the size of the array will require 2i cyber-dollars. 
 These cyber-dollars are at the elements stored in cells 2i−1 through 2i−1.
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