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‘Scalability

a Scientists often have to deal
with differences in scale, from
the microscopically small to the
astronomically large.

a Computer scientists must also
deal with scale, but they deal
with it primarily in terms of data
volume rather than physical
object size.

o Scalability refers to the ability
of a system to gracefully
accommodate growing sizes of
inputs or amounts of workload.

© 2015 Goodrich and Tamassia Analysis of Algorithms 2

_Application: Job Interviews

a High technology companies tend to ask questions about
algorithms and data structures during job interviews.
a Algorithms questions can be short but often require critical
thinking, creative insights, and subject knowledge.
= All the “Applications” exercises in Chapter 1 of the Goodrich-
Tamassia textbook are taken from reports of actual job interview
questions.

AND OVER THERE WE HAVE THE LABYRWTH GUARDS,
ONE ALVAYS LIES, ONE ALWAYS TEUS THE TRUTH, AND
ONE STABS PEOPLE WHO ASK TRICKY QUESTIONS.
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'Algorithms and Data Structures

a An algorithm is a step-by-step procedure for
performing some task in a finite amount of
time.

= Typically, an algorithm takes input data and
produces an output based upon it.

&> % U

Input Algorithm Output

o A data structure is a systematic way of
organizing and accessing data.
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‘Running Time

o Most algorithms transform O best case
input objects into output Maverage case
. W worst case
objects. 120

o The running time of an 100
algorithm typically grows
with the input size.

o Average case time is often
difficult to determine.

o We focus primarily on the »
worst case running time. 0

= Easier to analyze

= Crucial to applications such as
games, finance and robotics

Running Time

1000 2000 3000 4000
Input Size
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Experimental Studies

9000 5
8000 [}
o Write a program 7000 s
implementing the 6000 ¢ e
algorithm £ 5000 | =

a Run the program with 2 4000 |
inputs of varying size

. = 3000 - L]
and composition, .
noting the time 2000 1 -
needed: 1000 - i’
o Plot the results o= 1 .
0 50 100
Input Size
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Limitations of Experiments

o It is necessary to implement the
algorithm, which may be difficult

o Results may not be indicative of the
running time on other inputs not included
in the experiment.

o In order to compare two algorithms, the
same hardware and software | |
environments must be used
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‘Theoretical Analysis

o Uses a high-level description of the
algorithm instead of an implementation

o Characterizes running time as a
function of the input size, n

o Takes into account all possible inputs

o Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment
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Pseudocode

o High-level description of an algorithm
o More structured than English prose
o Less detailed than a program

a Preferred notation for describing
algorithms

o Hides program design issues
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Pseudocode Details

o Control flow a
= if ... then ... [else ...]
= while ... do ... a
= repeat ... until ...
= for ... do .. Q

Indentation replaces braces

a Method declaration
Algorithm method (arg [, arg...])

Input ...

Output ...
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Method call
method (arg [, arg...])
Return value
return expression
Expressions:
<« Assignment

= Equality testing

n? Superscripts and other
mathematical
formatting allowed
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The Random Access Machine
‘,,(RAM) Model

A RAM consists of
a ACPU %

o An potentially unbounded bank o
of memory cells, each of which 12

CPU

can hold an arbitrary number or L
character
o Memory cells are numbered and -
accessing any cell in memory Memory
takes unit time
© 2015 Goodrich and Tamassia Analysis of Algorithms 11

Seven Important Functions

o Seven functions that

— Cubic

—Quadratic

— Linear

often appear in algorithm IE30 T
analysis: e
= Constant ~ 1 1E+24 1
ithmic ~ 1E+22 1
. Lpgarlthmlc ~logn LT
= Linear = n 1E+18
= N-Log-N ~ nlog n = 1E+I6
i~ n? = IE+14
. Qua_dratlcﬂw n = {53
= Cubic~n’ 1E+10
= Exponential ~ 2" 1E+8
1E+6
1E+4
o Ina log-log chart, the 1E#2
slope of the line 1E+0
corresponds to the 1E+0

growth rate
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1E+2 - 1E+4 - 1E+6 - - 1E+8 - -1E+10
n
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Slide by Matt Stallmann
included with permission.

Functions Graphed
Usmg “Normal” Scale

g(n) ; g(n)=nlgn

g(n) =n2
gn)=lgn
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Primitive Operations

¢ -
o Basic computations
performed by an algorithm  ° ExaEr:r;pl)::tsir:] an
o Identifiable in pseudocode ! expressio?\

o Largely independent from the = Assigning a value

X to a variable
programming language « Indexing into an

o Exact definition not important array
(we will see why later) = Calling a method
a Assumed to take a constant - ﬁt;:;'jng from a
amount of time in the RAM
model
© 2015 Goodrich and Tamassia Analysis of Algorithms 14

_Counting Primitive Operations

o Example: By inspecting the pseudocode, we can
determine the maximum number of primitive operations
executed by an algorithm, as a function of the input size

Algorithm arrayMax (A, n):
Input: An array A storing n > 1 integers.
Output: The maximum element in A.
currentMax < A[0]
fori < 1ton —1do
if currentMax < A[i] then
currentMax < Ali]
return currentMax
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'Estimating Running Time %

a Algorithm arrayMax executes 7n — 2 primitive
operations in the worst case, 5n in the best case.
Define:

a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation
a Let T(n) be worst-case time of arrayMax. Then
a(5n) < T(n) < b(7Tn —2)

o Hence, the running time T(n) is bounded by two

linear functions
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_Growth Rate of Running Time

a Changing the hardware/ software
environment
= Affects T(n) by a constant factor, but
= Does not alter the growth rate of 7(n)

a The linear growth rate of the running
time T(n) is an intrinsic property of
algorithm arrayMax

)
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Slide by Matt Stallmann
included with permission.

Why Growth Rate Matters

if runtime
is...

time forn + 1 | time for 2 n | time for 4 n

clgn clg(n+1) |c(gn+1)| c(lgn+2)
cn c(n+1) 2cn 4cn
| ~cnlgn 2cnign+ | 4cnign+ runtime
ik +cn 2cn 4cn quadruples
— when
cn? ~cn2+2cn 4c n? 16¢c n? problem
size doubles
cnd ~cn®+3cn? 8cnd 64c nd
c2n c2n c2n c24n
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“Analyzing Recursive Algorithms

a Use a function, T(n), to derive a recurrence
relation that characterizes the running time of
the algorithm in terms of smaller values of 7.

Algorithm recursiveMax (A, n):
Input: An array A storing n > 1 integers.
Qutput: The maximum element in A.

if n = 1 then
return A[0]
return max{recursiveMax(A4,n — 1), Aln — 1]}
3 ifn=1
)= { T(n—1)+7 otherwise,
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Constant Factors

1E+26
o The growth rateis  1E+24 *g"g:
] 1E+22 +{ — Quadratic
minimally affected by |:.5) - - -tinear
= constant factors or ~ 1E+18 79— Linear
lower-order term Es
= lower-order terms  ~ |,
o Examples = 1E+12
5 I . 1E+10
= 1022+ 10%is alinear  |gyg
function 1E+6
= 100+ 10%nis a IEH4
N A 1E+2
quadratic function 1E+0
1E+0.  1E+2  1E+4  1E+6 1E+8 1E+10
n
© 2015 Goodrich and Tamassia Analysis of Algorithms 20

'Big-Oh Notation

o 10,000
o Given functions fin) and ~3n
g(n), we say that fin) is 1000 ] —2ns10 L
O(g(n)) if there are '
positive constants - =
¢ and n, such that 100

filn) < cg(n) for n> n, /

o Example: 2u + 10 is O(n) ==
= 2n+10<cn
= (c-2)n210
n n>10/(c-2) n
» Pick ¢=3and ny=10
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1 10 100 1,000

‘Big-Oh Example

1,000,000

. —n"2
o Example: the function 100
5 100,000 H
n? is not O(n) - 10n
w n’<cn 10,000 +4_—n
m n<c¢
= The above inequality 1,000
cannot be satisfied
since ¢ must be a 100
constant
10
1
1 10 100 1,000
n
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More Big-Oh Examples &'L ’i

‘a 7n-2
7n-2is O(n)
needc>0andn;>1suchthat7n-2<cnfornxn,
this is true forc=7and ny = 1

a3n+20n2+5

3n3 +20n? + 5is O(n3)

need c >0and ny > 1suchthat3n3+20n2+5<cn3fornxn,
this is true for c = 4 and n, = 21

o 3logn+5
3log n + 5is O(log n)
need ¢ > 0 and ny > 1 such that 3 logn + 5 <clog nforn>n,
this is true for c = 8 and n, = 2
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‘Big-Oh and Growth Rate

a The big-Oh notation gives an upper bound on the
growth rate of a function

o The statement “f(n) is O(g(n))” means that the growth
rate of fin) is no more than the growth rate of g(n)

o We can use the big-Oh notation to rank functions
according to their growth rate

Sfln)is O(g(m) | g(n)is O(fln))
g(n) grows more Yes No
fn) grows more No Yes
Same growth Yes Yes
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Big-Oh Rules

o If is f{n) @ polynomial of degree d, then f(n) is
o(nY), i.e.,
1. Drop lower-order terms
2. Drop constant factors
a Use the smallest possible class of functions
» Say “2n is O(n)” instead of “2n is O(n?)”
a Use the simplest expression of the class
» Say “3n+5is O(n)” instead of “3n + 5 is O(3n)”
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Asymptotic Algorithm Analysis

o The asymptotic analysis of an algorithm determines
the running time in big-Oh notation
o To perform the asymptotic analysis
= We find the worst-case number of primitive operations
executed as a function of the input size
= We express this function with big-Oh notation
o Example:
= We say that algorithm arrayMax “runs in O(n) time”
Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard them
when counting primitive operations

o
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A Case Study in
_Algorithm Analysis

| a Given an array of nintegers,
find the subarray, A[j:k] that sum = 13 (the

A First (Slow) Solution

Algorithm MaxsubSlow(A )
Input: An n-clement array A of numbers, indexed from 1 to n.
Output: The maximum subarray sum of array A.

maximizes the sum

k
Sjk=0aj +aj41+ -+ ax :Za,u
i=j

Compute the maximum of
every possible subarray

40/ the maximum found so far
for j < 1tondo
for k < j ton do

a In addition to being an ,Z,I‘_lu CETE
interview question for testing -\ \ J [E—
the thinking skills of job S sum=1 U—sum=-1
candidates, this maximum 7 =~ T T T
subarray problem also has
applications in pattern
analysis in digitized images.
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summation of the array A 20 J/‘/o\lr:dltxl partial sum we are computing
s+ s+ A
separately. Pldatase
return m e

« The outer loop, for index j, will iterate n times, its
inner loop, for index k, will iterate at most n times,
and the inner-most loop, for index i, will iterate at

most n times.
+ Thus, the running time of the MaxsubSlow algorithm
is A(n3).
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An Improved Algorithm

a A more efficient way to calculate these
summations is to consider prefix sums

t
St:a1+a2+"‘+at:20i
i=1

o If we are given all such prefix sums (and
assuming S,=0), we can compute any
summation s; in constant time as

Sk = 5 = Gp-a
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An Improved Algorithm, cont.

o Compute all the prefix sums
o Then compute all the subarray sums

Algorithm MaxsubFaster(A4):
Input: An n-element array A of numbers, indexed from 1 to n.
Output: The maximum subarray sum of array A.
So =0 // the initial prefix sum
fori + 1tondo
Si + Si1 + Afi]
m <0 // the maximum found so far
for j + 1tondo
for k + j to n do
s=S8,— 51
if s > m then
mes

return m
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‘Arithmetic Progression

o The running time of

MaxsubFaster is
O(l+2+...+n)

o The sum of the first n
integersis n(n+1)/2
= There is a simple visual

proof of this fact

o Thus, algorithm

MaxsubFaster runs in

L L I N

N N
|

O(n?) time
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‘A Linear-Time Algorithm

o Instead of computing prefix sum S; = s, , let us
compute a maximum suffix sum, M,, which is the
maximum of 0 and the maximum s; forj=1,..., t.

M; = max{0, max t{sj’t}}
3=1-,

a if My > 0, then it is the summation value for a
maximum subarray that ends at t, and if M, = 0, then
we can safely ignore any subarray that ends at t.

a if we know all the M, values, fort = 1, 2, ..., n, then
the solution to the maximum subarray problem would
simply be the maximum of all these values.
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A Linear-Time Algorithm, cont.

7'\:\ for t > 2, if we have a maximum subarray that ends at t, and it has
a positive sum, then it is either A[t : t] or it is made up of the
maximum subarray that ends at t — 1 plus A[t]. So we can define
M, = 0 and

M = max{0, M;_1 + A[t]}

a If this were not the case, then we could make a subarray of even
larger sum by swapping out the one we chose to end at t — 1 with
the maximum one that ends at t — 1, which would contradict the
fact that we have the maximum subarray that ends at t.

o Also, if taking the value of maximum subarray that ends att — 1
and adding A[t] makes this sum no longer be positive, then M, = 0,
for there is no subarray that ends at t with a positive summation.
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‘A Linear-Time Algorithm, cont.

Algorithm MaxsubFastest(4):
Input: An n-clement array A of numbers, indexed from 1 to 7.
Output: The maximum subarray sum of array A.

My« 0 // the initial prefix maximum
fort « 1tondo

M, — max{0, My_; + Alt]}
m 40 // the maximum found so far
fort ¢ 1tondo

m ¢ max{m, M}
return m

o The MaxsubFastest algorithm consists of two loops,
which each iterate exactly n times and take O(1) time in
each iteration. Thus, the total running time of the
MaxsubFastest algorithm is O(n).
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‘Math you need to Review

o Summations a Properties of powers:
a(b+c) = gbg ¢
o Powers abe = (abyc
o Logarithms ab /ac = ab-o)
. b =a log_b
o Proof techniques be = g coap
o Basic probability Properties of logarithms:

logy(xy) = logyx + logyy
log, (x/y) = logpX - logpy
logyxa = alogyx

logya = log,a/log,b
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Relatives of Big-Oh

big-Omega
= f(n) is Q(g(n)) if there is a constant ¢ > 0
and an integer constant ny > 1 such that
f(n) > cg(n) forn > n,

big-Theta

= f(n) is ©(g(n)) if there are constants ¢’ > 0 and
c” > 0 and an integer constant n, > 1 such that

c’g(n) < f(n) < c"g(n) for n > ng
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2

Intuition for Asymptotic

_Notation

big-Oh

= f(n) is O(g(n)) if f(n) is asymptotically
less than or equal to g(n)

big-Omega

= f(n) is Q(g(n)) if f(n) is asymptotically
greater than or equal to g(n)

big-Theta

= f(n) is ©(g(n)) if f(n) is asymptotically
equal to g(n)
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Example Uses of the
_Relatives of Big-Oh

m 5nis Q(n?)
An) is Q(g(n)) if there is a constant ¢ > 0 and an integer constant 7y > 1
such that f{n) > ¢ g(n) for n > n,
letc=5andny=1
m Sn2is Q(n)
fn) is Q(g(n)) if there is a constant ¢ > 0 and an integer constant 72y > 1
such that f(n) > ¢ g(n) for n > n,
letc=1andn,=1
m 5n2is O(n?)

fin) is O(g(n)) if it is Q(n2) and O(n?). We have already seen the former,
for the latter recall that f{n) is O(g(n)) if there is a constant ¢ > 0 and an
integer constant n, > 1 such that f{(n) < ¢ g(n) for n > n,
Letc=5andn,=1
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Amortization

a The amortized running time of an operation within a
series of operations is the worst-case running time of
the series of operations divided by the number of
operations.

o Example: A growable array, S. When needing to grow:
a. Allocate a new array B of larger capacity.

b. Copy A[i] to B[i], fori =0, ...,n — 1, where n is size of A.
c. Let A = B, that is, we use B as the array now supporting A.
« + (o
p [TTTTTTT] » DT - DT
(@) (b) (©)
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‘Growable Array Description

' a Letadd(e) be the operation
that adds element e at the | Algorithm add(e)
end of the array if 1= A.length — | then

. B < new array of
a When the array is full, we

1Ze ...
replace the array with a fori (S_ Sm n—1 do
larger one Bli] « A[i]
a But how large should the A< B

new array be? n<n+l
« Incremental strategy: increase | A7~ < e

the size by a constant ¢
= Doubling strategy: double the

size
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Comparison of the Strategies

o We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n
add operations

o We assume that we start with an empty list
represented by a growable array of size 1

a We call amortized time of an add operation
the average time taken by an add operation
over the series of operations, i.e., T(n)/n
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Incremental Strategy Analysis

a Over n add operations, we replace the array k = n/c

times, where ¢ is a constant

a The total time 7(n) of a series of n add operations is
proportional to

n+c+2c+3ct+tdc+...+tkc=
nte(l+2+43+.. +k)=
n+ ck(k+1)2
a Since ¢ is a constant, T(n) is O(n + k), i.€., O(n?)
o Thus, the amortized time of an add operation is
O(n)
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'Doubling Strategy Analysis

a We replace the array k = log, n
times

o The total time T(n) of a series of n
push operations is proportional to

n+t1+2+4+8+ . +2k=
42k =
3n—1
a T(n) is O(n)
a The amortized time of an add
operation is O(1)
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geometric series
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Accounting Method Proof for

_the Doubling Strategy

a We view the computer as a coin-operated appliance that requires
the payment of 1 cyber-dollar for a constant amount of
computing time.

a We shall charge each add operation 3 cyber-dollars, that is, it will
have an amortized O(1) amortized running time.

= We over-charge each add operation not causing an overflow 2 cyber-dollars.

Think of the 2 cyber-dollars profited in an insertion that does not grow the

array as being “stored” at the element inserted.

An overflow occurs when the array A has 2/ elements.

Thus, doubling the size of the array will require 2/ cyber-dollars.

These cyber-dollars are at the elements stored in cells 2'-! through 21-1.

[olejolo]
OO0

@

®
(b) O
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