
1

Analysis of Algorithms

AlgorithmInput Output

© 2015 Goodrich and Tamassia 1Analysis of Algorithms

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Scalability
 Scientists often have to deal

with differences in scale, from
the microscopically small to the
astronomically large.

 Computer scientists must also
deal with scale, but they deal
with it primarily in terms of data
volume rather than physical
object size.

 Scalability refers to the ability
of a system to gracefully
accommodate growing sizes of
inputs or amounts of workload.

© 2015 Goodrich and Tamassia Analysis of Algorithms 2

Application: Job Interviews
 High technology companies tend to ask questions about

algorithms and data structures during job interviews.
 Algorithms questions can be short but often require critical

thinking, creative insights, and subject knowledge.
 All the “Applications” exercises in Chapter 1 of the Goodrich-

Tamassia textbook are taken from reports of actual job interview
questions.

© 2015 Goodrich and Tamassia Analysis of Algorithms 3

xkcd “Labyrinth Puzzle.” http://xkcd.com/246/
Used with permission under Creative Commons 2.5 License.

Algorithms and Data Structures
 An algorithm is a step-by-step procedure for

performing some task in a finite amount of
time.
 Typically, an algorithm takes input data and

produces an output based upon it.

 A data structure is a systematic way of
organizing and accessing data.

© 2015 Goodrich and Tamassia Analysis of Algorithms 4

AlgorithmInput Output

Analysis of Algorithms 5

Running Time
 Most algorithms transform

input objects into output
objects.

 The running time of an
algorithm typically grows
with the input size.

 Average case time is often
difficult to determine.

 We focus primarily on the
worst case running time.
 Easier to analyze
 Crucial to applications such as

games, finance and robotics

0

20

40

60

80

100

120

R
u

n
n

in
g

 T
im

e

1000 2000 3000 4000

Input Size

best case
average case
worst case

© 2015 Goodrich and Tamassia Analysis of Algorithms 6

Experimental Studies

 Write a program
implementing the
algorithm

 Run the program with
inputs of varying size
and composition,
noting the time
needed:

 Plot the results

© 2015 Goodrich and Tamassia

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

T
im

e
 (

m
s)

2

Analysis of Algorithms 7

Limitations of Experiments

 It is necessary to implement the
algorithm, which may be difficult

 Results may not be indicative of the
running time on other inputs not included
in the experiment.

 In order to compare two algorithms, the
same hardware and software
environments must be used

© 2015 Goodrich and Tamassia Analysis of Algorithms 8

Theoretical Analysis

 Uses a high-level description of the
algorithm instead of an implementation

 Characterizes running time as a
function of the input size, n

 Takes into account all possible inputs
 Allows us to evaluate the speed of an

algorithm independent of the
hardware/software environment

© 2015 Goodrich and Tamassia

Analysis of Algorithms 9

Pseudocode

 High-level description of an algorithm
 More structured than English prose
 Less detailed than a program
 Preferred notation for describing

algorithms
 Hides program design issues

© 2015 Goodrich and Tamassia Analysis of Algorithms 10

Pseudocode Details

 Control flow
 if … then … [else …]

 while … do …

 repeat … until …

 for … do …

 Indentation replaces braces

 Method declaration
Algorithm method (arg [, arg…])

Input …

Output …

 Method call
method (arg [, arg…])

 Return value
return expression

 Expressions:
Assignment

 Equality testing

n2 Superscripts and other
mathematical
formatting allowed

© 2015 Goodrich and Tamassia

Analysis of Algorithms 11

The Random Access Machine
(RAM) Model

A RAM consists of
 A CPU
 An potentially unbounded bank

of memory cells, each of which
can hold an arbitrary number or
character

 Memory cells are numbered and
accessing any cell in memory
takes unit time

0
1
2

© 2015 Goodrich and Tamassia

Memory

CPU

Analysis of Algorithms 12

Seven Important Functions
 Seven functions that

often appear in algorithm
analysis:
 Constant  1
 Logarithmic  log n
 Linear  n
 N-Log-N  n log n
 Quadratic  n2

 Cubic  n3

 Exponential  2n

 In a log-log chart, the
slope of the line
corresponds to the
growth rate

1E+0
1E+2
1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26
1E+28
1E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n

)

Cubic

Quadratic

Linear

© 2015 Goodrich and Tamassia

3

Functions Graphed
Using “Normal” Scale

© 2015 Goodrich and Tamassia 13Analysis of Algorithms

g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3

Slide by Matt Stallmann
included with permission.

Analysis of Algorithms 14

Primitive Operations
 Basic computations

performed by an algorithm
 Identifiable in pseudocode
 Largely independent from the

programming language
 Exact definition not important

(we will see why later)
 Assumed to take a constant

amount of time in the RAM
model

 Examples:
 Evaluating an

expression
 Assigning a value

to a variable
 Indexing into an

array
 Calling a method
 Returning from a

method

© 2015 Goodrich and Tamassia

Analysis of Algorithms 15

Counting Primitive Operations
 Example: By inspecting the pseudocode, we can

determine the maximum number of primitive operations
executed by an algorithm, as a function of the input size

© 2015 Goodrich and Tamassia Analysis of Algorithms 16

Estimating Running Time

 Algorithm arrayMax executes 7n - 2 primitive
operations in the worst case, 5n in the best case.
Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

 Let T(n) be worst-case time of arrayMax. Then
a(5n)  T(n)  b(7n - 2)

 Hence, the running time T(n) is bounded by two
linear functions

© 2015 Goodrich and Tamassia

Analysis of Algorithms 17

Growth Rate of Running Time

 Changing the hardware/ software
environment
 Affects T(n) by a constant factor, but
 Does not alter the growth rate of T(n)

 The linear growth rate of the running
time T(n) is an intrinsic property of
algorithm arrayMax

© 2015 Goodrich and Tamassia

Why Growth Rate Matters

© 2015 Goodrich and Tamassia 18Analysis of Algorithms

Slide by Matt Stallmann
included with permission.

if runtime
is...

time for n + 1 time for 2 n time for 4 n

c lg n c lg (n + 1) c (lg n + 1) c(lg n + 2)

c n c (n + 1) 2c n 4c n

c n lg n
~ c n lg n

+ c n
2c n lg n +

2cn
4c n lg n +

4cn

c n2 ~ c n2 + 2c n 4c n2 16c n2

c n3 ~ c n3 + 3c n2 8c n3 64c n3

c 2n c 2 n+1 c 2 2n c 2 4n

runtime
quadruples
when
problem
size doubles

4

Analyzing Recursive Algorithms
 Use a function, T(n), to derive a recurrence

relation that characterizes the running time of
the algorithm in terms of smaller values of n.

© 2015 Goodrich and Tamassia Analysis of Algorithms 19 Analysis of Algorithms 20

Constant Factors

 The growth rate is
minimally affected by
 constant factors or
 lower-order terms

 Examples
 102n + 105 is a linear

function
 105n2 + 108n is a

quadratic function 1E+0
1E+2
1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n

)

Quadratic

Quadratic

Linear

Linear

© 2015 Goodrich and Tamassia

Analysis of Algorithms 21

Big-Oh Notation
 Given functions f(n) and

g(n), we say that f(n) is
O(g(n)) if there are
positive constants
c and n0 such that

f(n)  cg(n) for n  n0

 Example: 2n + 10 is O(n)
 2n + 10  cn

 (c - 2) n  10

 n  10/(c - 2)

 Pick c  3 and n0  10

1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

© 2015 Goodrich and Tamassia Analysis of Algorithms 22

Big-Oh Example

 Example: the function
n2 is not O(n)
 n2  cn

 n  c

 The above inequality
cannot be satisfied
since c must be a
constant

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2

100n

10n

n

© 2015 Goodrich and Tamassia

Analysis of Algorithms 23

More Big-Oh Examples
 7n - 2

7n-2 is O(n)
need c > 0 and n0  1 such that 7 n - 2  c n for n  n0

this is true for c = 7 and n0 = 1

 3 n3 + 20 n2 + 5
3 n3 + 20 n2 + 5 is O(n3)
need c > 0 and n0  1 such that 3 n3 + 20 n2 + 5  c n3 for n  n0

this is true for c = 4 and n0 = 21

 3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n0  1 such that 3 log n + 5  c log n for n  n0

this is true for c = 8 and n0 = 2
© 2015 Goodrich and Tamassia Analysis of Algorithms 24

Big-Oh and Growth Rate
 The big-Oh notation gives an upper bound on the

growth rate of a function
 The statement “f(n) is O(g(n))” means that the growth

rate of f(n) is no more than the growth rate of g(n)

 We can use the big-Oh notation to rank functions
according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes

© 2015 Goodrich and Tamassia

5

Analysis of Algorithms 25

Big-Oh Rules

 If is f(n) a polynomial of degree d, then f(n) is
O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

 Use the smallest possible class of functions
 Say “2n is O(n)” instead of “2n is O(n2)”

 Use the simplest expression of the class
 Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

© 2015 Goodrich and Tamassia Analysis of Algorithms 26

Asymptotic Algorithm Analysis
 The asymptotic analysis of an algorithm determines

the running time in big-Oh notation
 To perform the asymptotic analysis

 We find the worst-case number of primitive operations
executed as a function of the input size

 We express this function with big-Oh notation

 Example:
 We say that algorithm arrayMax “runs in O(n) time”

 Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard them
when counting primitive operations

© 2015 Goodrich and Tamassia

Analysis of Algorithms 27

A Case Study in
Algorithm Analysis
 Given an array of n integers,

find the subarray, A[j:k] that
maximizes the sum

 In addition to being an
interview question for testing
the thinking skills of job
candidates, this maximum
subarray problem also has
applications in pattern
analysis in digitized images.

© 2015 Goodrich and Tamassia Analysis of Algorithms 28

A First (Slow) Solution

Compute the maximum of
every possible subarray
summation of the array A
separately.

© 2015 Goodrich and Tamassia

• The outer loop, for index j, will iterate n times, its
inner loop, for index k, will iterate at most n times,
and the inner-most loop, for index i, will iterate at
most n times.

• Thus, the running time of the MaxsubSlow algorithm
is O(n3).

An Improved Algorithm
 A more efficient way to calculate these

summations is to consider prefix sums

 If we are given all such prefix sums (and
assuming S0=0), we can compute any
summation sj,k in constant time as

© 2015 Goodrich and Tamassia Analysis of Algorithms 29

An Improved Algorithm, cont.
 Compute all the prefix sums
 Then compute all the subarray sums

© 2015 Goodrich and Tamassia Analysis of Algorithms 30

6

Analysis of Algorithms 31

Arithmetic Progression

 The running time of
MaxsubFaster is
O(1 + 2 + …+ n)

 The sum of the first n
integers is n(n + 1) / 2
 There is a simple visual

proof of this fact

 Thus, algorithm
MaxsubFaster runs in
O(n2) time

0

1

2

3

4

5

6

7

1 2 3 4 5 6

© 2015 Goodrich and Tamassia

A Linear-Time Algorithm
 Instead of computing prefix sum St = s1,t, let us

compute a maximum suffix sum, Mt, which is the
maximum of 0 and the maximum sj,t for j = 1,…, t.

 if Mt > 0, then it is the summation value for a
maximum subarray that ends at t, and if Mt = 0, then
we can safely ignore any subarray that ends at t.

 if we know all the Mt values, for t = 1, 2, …, n, then
the solution to the maximum subarray problem would
simply be the maximum of all these values.

© 2015 Goodrich and Tamassia Analysis of Algorithms 32

A Linear-Time Algorithm, cont.
 for t ≥ 2, if we have a maximum subarray that ends at t, and it has

a positive sum, then it is either A[t : t] or it is made up of the
maximum subarray that ends at t − 1 plus A[t]. So we can define
M0 = 0 and

 If this were not the case, then we could make a subarray of even
larger sum by swapping out the one we chose to end at t − 1 with
the maximum one that ends at t − 1, which would contradict the
fact that we have the maximum subarray that ends at t.

 Also, if taking the value of maximum subarray that ends at t − 1
and adding A[t] makes this sum no longer be positive, then Mt = 0,
for there is no subarray that ends at t with a positive summation.

© 2015 Goodrich and Tamassia Analysis of Algorithms 33

A Linear-Time Algorithm, cont.

 The MaxsubFastest algorithm consists of two loops,
which each iterate exactly n times and take O(1) time in
each iteration. Thus, the total running time of the
MaxsubFastest algorithm is O(n).

© 2015 Goodrich and Tamassia Analysis of Algorithms 34

Math you need to Review
 Properties of powers:

a(b+c) = aba c
abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

 Properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

 Summations
 Powers
 Logarithms
 Proof techniques
 Basic probability

© 2015 Goodrich and Tamassia Analysis of Algorithms 35 Analysis of Algorithms 36

Relatives of Big-Oh

big-Omega

 f(n) is (g(n)) if there is a constant c > 0
and an integer constant n0  1 such that

f(n)  c g(n) for n  n0

big-Theta

 f(n) is (g(n)) if there are constants c’ > 0 and
c’’ > 0 and an integer constant n0  1 such that

c’g(n)  f(n)  c’’g(n) for n  n0

© 2015 Goodrich and Tamassia

7

Analysis of Algorithms 37

Intuition for Asymptotic
Notation

big-Oh
 f(n) is O(g(n)) if f(n) is asymptotically

less than or equal to g(n)
big-Omega
 f(n) is (g(n)) if f(n) is asymptotically

greater than or equal to g(n)
big-Theta
 f(n) is (g(n)) if f(n) is asymptotically

equal to g(n)

© 2015 Goodrich and Tamassia Analysis of Algorithms 38

Example Uses of the
Relatives of Big-Oh

f(n) is (g(n)) if it is (n2) and O(n2). We have already seen the former,
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an
integer constant n0  1 such that f(n) < c g(n) for n  n0

Let c = 5 and n0 = 1

 5n2 is (n2)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1
such that f(n)  c g(n) for n  n0

let c = 1 and n0 = 1

 5n2 is (n)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1
such that f(n)  c g(n) for n  n0

let c = 5 and n0 = 1

 5n2 is (n2)

© 2015 Goodrich and Tamassia

Amortization

 The amortized running time of an operation within a
series of operations is the worst-case running time of
the series of operations divided by the number of
operations.

 Example: A growable array, S. When needing to grow:
a. Allocate a new array B of larger capacity.
b. Copy A[i] to B[i], for i = 0, . . . , n − 1, where n is size of A.
c. Let A = B, that is, we use B as the array now supporting A.

© 2015 Goodrich and Tamassia Analysis of Algorithms 39 Analysis of Algorithms 40

Growable Array Description
 Let add(e) be the operation

that adds element e at the
end of the array

 When the array is full, we
replace the array with a
larger one

 But how large should the
new array be?
 Incremental strategy: increase

the size by a constant c
 Doubling strategy: double the

size

Algorithm add(e)
if t = A.length - 1 then

B  new array of
size …

for i  0 to n-1 do
B[i]  A[i]

A  B
n  n + 1
A[n-1]  e

© 2015 Goodrich and Tamassia

Analysis of Algorithms 41

Comparison of the Strategies

 We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n
add operations

 We assume that we start with an empty list
represented by a growable array of size 1

 We call amortized time of an add operation
the average time taken by an add operation
over the series of operations, i.e., T(n)/n

© 2015 Goodrich and Tamassia Analysis of Algorithms 42

Incremental Strategy Analysis
 Over n add operations, we replace the array k = n/c

times, where c is a constant
 The total time T(n) of a series of n add operations is

proportional to
n + c + 2c + 3c + 4c + … + kc =

n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2

 Since c is a constant, T(n) is O(n + k2), i.e., O(n2)

 Thus, the amortized time of an add operation is
O(n)

© 2015 Goodrich and Tamassia

8

Analysis of Algorithms 43

Doubling Strategy Analysis
 We replace the array k = log2 n

times
 The total time T(n) of a series of n

push operations is proportional to
n + 1 + 2 + 4 + 8 + …+ 2k =
n + 2k + 1 - 1 =

3n - 1

 T(n) is O(n)

 The amortized time of an add
operation is O(1)

geometric series

1

2

1
4

8

© 2015 Goodrich and Tamassia

Accounting Method Proof for
the Doubling Strategy
 We view the computer as a coin-operated appliance that requires

the payment of 1 cyber-dollar for a constant amount of
computing time.

 We shall charge each add operation 3 cyber-dollars, that is, it will
have an amortized O(1) amortized running time.
 We over-charge each add operation not causing an overflow 2 cyber-dollars.
 Think of the 2 cyber-dollars profited in an insertion that does not grow the

array as being “stored” at the element inserted.
 An overflow occurs when the array A has 2i elements.
 Thus, doubling the size of the array will require 2i cyber-dollars.
 These cyber-dollars are at the elements stored in cells 2i−1 through 2i−1.

© 2015 Goodrich and Tamassia Analysis of Algorithms 44

