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Vector Filtering for

Color Imaging

Opening a world of possibilities

olor image processing systems [1] are used for a variety of purposes, ranging from

capturing scenes for posterity [2] to processing of imagery for feature extraction [3],

[4]. These systems often rely on filtering operations to, for example, suppress noise

that would inhibit the central functionality of the system or to actually perform the

central task itself. This article describes some modern color image filters that rely
on the trichromatic theory of color [5], [6]. Some of the varied applications for these filters will
also be covered; namely, noise removal, edge detection, spatial interpolation, and spectral inter-
polation (demosaicking). This list, while certainly not exhaustive, provides a good indication of
the usefulness and, often, necessity of color image filters in a color image processing system.

Noise removal is one of the main applications discussed in this article, since noise can
arise from numerous sources and is present in almost any image processing system. Two fun-
damental types are considered: noise produced during image formation (i.e., sensor noise)
and noise produced during transmission (i.e., channel noise). If destined for human con-
sumption, noise will reduce the perceptual quality of an image, and its inherent value will
thus be limited. Similarly, if an image is destined for numerical analysis, noise will usually
limit the performance of the system, if not defeat it altogether. Therefore, noise filtering—the
process of estimating the original image information from noisy data—is an essential part of
many image processing systems (Figure 1).

Edges convey essential information about a scene. Thus, edge detection is also a common
component in image processing systems. Numerous higher level functions, such as object
recognition, robot vision, and segmentation, rely on accurate edge detection. While mono-
chrome techniques may be applied in such situations, if the available trichromatic information
is exploited, imaging systems may better mimic the human perception of a visual environment.
Modern color image filters are thus ideal for this task.
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[FIG1] Image processing chain.

WINDOW-BASED FILTERING BASICS

Natural images are nonstationary. Filtering schemes operate on
the premise that an image can be subdivided into small regions,
each of which can be treated as station-
ary [1]. Small image regions are deter-

. . . . 4 Xo Y
mined using the supporting window A
W = {xq, X2, ..., Xy} With the pixels X;
centered around Xy.1)/2, @s shown in X3 Xs
Figure A. Operating at the pixel level,
spatial filtering operators replace X,
X412 With  the output pixel
XNtz = F(Xq, X2, ..., Xp).

The performance of a filtering scheme
is generally influenced by the size of the
local area inside W. Some applications
may require larger support to read local image features and com-
plete the task appropriately. On the other hand, a filter operating on
a smaller spatial neighborhood can better match image details [2].

A particular window (Figure B) can be designed to preserve
specifically oriented image edges. For example, unidi-
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details in one of the main four directions. Bidirectional windows
[Figure B(11) and (12)] follow the structural content of the
image in two directions. The most commonly used window is a
rectanqular shape [Figure B(1) and (4)] due to its versatility
and performance. To completely process the input image, the
filter window W is moved over the image domain to individually
affect all the image pixels (Figure C). This concept is commonly
known as a running (sliding) window.

Filtering schemes based on the ordering of the input samples
within W are nonlinear in nature [1]. In the case of reduced order-
ing scheme, aggregated distances D; = Z,’i, d(x;, x;) or aggre-
gated similarities D; = Zj’i 1 S(Xj, x;) associated with the vectorial
(color) inputs x; serve as the ordering criterion.
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rectional windows [Figure B(7)-(10)] preserve image
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[FIGB] Most popular window shapes: (1)-(6)
conventional spatial windows, (7)—(10)
unidirectional windows, (11) and (12) bidirectional
windows, (13)—(18) special window structures.
Other structures can be obtained by rotating those
shown in (13)(18).
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Interpolation can be performed on color images in either the
spatial domain or in the spectral domain. Spatial interpolation
involves increasing the apparent resolution of an image by
increasing the number of pixels representing the visual data.
Spectral interpolation, on the other hand, involves estimating
individual color components based on known components with-
in a processing window. This is a required operation in most digi-
tal cameras, since the image is formed using a monochromatic
sensor and a color filter array (CFA), hence producing only one of
the three required color components at each spatial location.

The basic filtering approach, described in “Window-Based
Filtering Basics,” is common to all the applications described
here. Namely, a sliding window will pass over the image to cap-
ture information in a localized area that will be used to deter-
mine the output value of the pixel at the center of the window.
This approach is chosen due to the localized nature of image
features and the point-wise model of noise formation. The fol-
lowing will discuss the specific filtering frameworks.
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COLOR FILTERING FRAMEWORKS

Since each individual channel of a color image can be consid-
ered a monochrome image, traditional image filtering tech-
niques often involved the application of scalar filters on each
channel separately. However, this disrupts the correlation that
exists between the color components of natural images repre-
sented in a correlated color space, such as SRGB [7]. Since each
processing step is usually accompanied by a certain inaccuracy,
the formation of the output color vector from the separately
processed color components usually produces color artifacts.
Thus, vector filtering techniques that treat the color image as a
vector field are more appropriate. With this approach, the filter
output Xn11)/2 is a function of the vectorial inputs
X1,X2, ..., Xy located within the supporting window W (see
“Window-Based Filtering Basics”). Assuming a color red, green,
blue (RGB) image x:Z2 — Z3 (Figure 2), each pixel
X; = [xi1, Xi2, x;3]T represents a three-component vector in a
color space [Figure 3(a)]. Thus, the color image x is a vector

Spatial Position i= (ky— 1)K+ k»

X =186 Image Sample x;= (186, 48, 42)

(Number of Color Channels)

[FIG2] Color image representation in the RGB color domain.
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[FIG3] (a) RGB color cube and (b), (c) the basic parameters related to the RGB color vector x; = [x;1, Xi2, X317 . (b) The magnitude V.

(c) The orientation defined as the point Oy, on unit sphere.
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DISTANCE AND SIMILARITY MEASURES

The most commonly used measure to quantify the distance between
two color vectors X; = [Xj, Xi2, X;31™ and X; = [X1, X2, X317 in the
magnitude domain the generalized weighted Minkowski metric
d(xi, %) = I1X; — XjllL = c(Xp_ &lXi — X|")E, described in [1].
The nonnegative scaling parameter ¢ is a measure of the
overall discrimination power. The exponent L defines the
nature of the distance metric. The most popular members of
this class are obtained when L =1 (city-block distance) and
when L = 2 (Euclidean distance). The chess-board distance
corresponds to L — oco. In this case, the distance between
the two 3-D vectors is considered equal to the maximum dis-
tance among their components. The parameter & measures
the proportion of attention allocated to the dimensional
component & and, therefore, >, & =1. Vectors having a
range of values greater than a desirable threshold can be
scaled down by the use of the weighting function &.

An alternative method to the Minkowski metric is the Canberra
distance d(x;, X;) = Zfﬂqx,»k — Xjkl/(Xik + Xj)). The summand
is defined to be zero if both xjx and x;, are zero [2].

Opposite to distance measures, a similarity measure s(x;, X)) is
defined as a symmetric function whose value is large when the
vectorial inputs x; and x; are similar. Similarity in orientation is
expressed through the normalized inner product
S(Xj, Xj) = (x,-xI.T/(|x,»| [x;]), which corresponds to the cosine of the
angle between x; and x;. Since similar colors have almost parallel
orientations and significantly different colors point in different
overall directions in a 3-D color space such as the RGB space, the
normalized inner product, or equivalently the angular distance
0= arccos(xiij/(|x,-||x,-|)), can be used instead of the
Minkowski metric to quantify the dissimilarity (here the orienta-
tion difference) between the two vectors [2].

It is obvious that a generalized similarity measure model that
can effectively quantify differences among color signals should
take into consideration both the magnitude and orientation of the

array or a two-dimensional (2-D) matrix of three component
samples x; with x;; denoting the R (k=1), G (k=2), or B
component (k = 3). The chromatic properties of x; as depicted
in Figure 3(b) and (c) relate to its magnitude
My, = |Ix;]l = v/(xi1)> + (x;2)% + (x;3)? and direction (ori-
entation in the vector space) Oy, = x;/||x;|| = x;/Mx,, with
IOkl = 1. Both the magnitude and the direction can be used
in classifying the differences between two vectorial inputs.

One of the most popular families of nonlinear filtering opera-
tors is based on robust order statistics [8]. These filters utilize
algebraic ordering of a windowed set of data to compute the out-
put signal. However, there is no universal method for defining the
ordering of multivariate data. Hence, a number of possibilities
arise, with the most common summarized as follows [9]-[11].

®m Marginal ordering (M-ordering): the vector’s components

are ordered along each dimension independently. Since the
M-ordering approach often produces output vectors that dif-
fer from the set of vectorial inputs, application of M-ordering
to natural color images often results in color artifacts.

color vectors. Thus, a generalized measure based on both the
magnitude and orientation of vectors should provide a robust
solution to the problem of similarity quantification between two
vectors. Such an idea is used in constructing the generalized con-
tent model family of measures that treat similarity between two
vectors as the degree of common content in relation to the total
content of the two vectors. Therefore, given the common quanti-
ty, commonality Cj, and the total quantity, totality Tj, the similari-
ty between x; and x; is defined as s(x;, X)) = C;/Tj.

Based on this general framework, different similarity measures
can be obtained by using different commonality and totality con-
cepts [2]:
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S(Xi, Xj) = hi + by i
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m Conditional ordering (C-ordering): the vector samples are
ordered based on the marginal ordering of one compo-
nent. C-ordering fails to take into consideration the full
vectorial nature of the input.

m Partial ordering (P-ordering): the samples are parti-
tioned into smaller groups that are then ordered. P-
ordering is difficult to perform in more than 2-D, and
therefore it is not appropriate for three-component sig-
nals such as RGB color images.

B Reduced or aggregated ordering (R-ordering): each vector
is reduced to a scalar representative, and then the vectorial
inputs are ordered in coincidence with the ranked scalars.
The R-ordering approach is the most attractive, since it
involves an overall ranking of the original set of input sam-
ples, and the output is selected from the same set.

To order the color vectors X1, Xa, ..., Xy located inside the
supporting window W, the R-ordering based vector filters
(Figure 4) use the aggregated distances or the aggregated
similarities (see “Distance and Similarity Measures”)
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Inputs: NumberOfRowsx NumberOfColumns image

Window size N

Moving window spawning the input set {x,.X,,...Xy}
Output:  NumberOfRowsx NumberOfColumns image

For a=1 to NumberOfRows
For b=1 to NumberOfColumns
Determine the input set W(a,b)={x,.x,,...X,}
For i=1 to N
Let the aggregated distance D,=d(x,,x,)+d(x,X,)+...+d(x,,X,)
End
Sort scalars D,,D,,...Dy to the ordered set Dy <Dy <..<Dy,
Apply the same ordering scheme to the vectors X,.X,,..,X,
Store the ordered sequence as Xj <Xg <..<Xy,
Let the filter output y(a,b)=x
End
End

[FIG4] Algorithm of the vector filters (e.g., VMF or BVDF)
outputting the lowest ranked vector.

[FIG5] Angular noise margins for a color signal.

[FIG6] Test image Parrots (512 x 512) corrupted by different
kinds of noise: (a) original image, (b) additive Gaussian noise
with o = 20, (c) 5% impulsive noise, (d) mixed noise (additive
Gaussian noise of o = 20 followed by 5% impulsive noise).

N N

D= dx,x) or Di= Yy s(x,x) @
=1 =1
associated with the vectorial input x;, for i =1, 2, ..., N. Thus,

the ordered sequence of scalars Dgy <Dg) <--- <
D¢y < -+ < Dy, implies the same ordering of the correspon-
ding vectors X;: X(1); X2); - .- ; X(r)5 - - - : X(V).

Many filters use the lowest ranked sample (lowest order sta-
tistic) x(1y as the output. This selection is due to the fact that vec-
tors that diverge greatly from the data population usually appear
in higher indexed locations in the ordered sequence [12], [13].

VECTOR MEDIAN FILTERS

The most popular vector filter is the vector median filter
(VMF) [14], [15]. The VMF is a vector processing operator
that has been introduced as an extension of the scalar median
filter. The VMF can be derived either as a maximum likeli-
hood estimate (MLE) when the underlying probability densi-
ties are double exponential or by using vector order—statistics
techniques.

In both definitions, the generalized Minkowski metric
Ix; — X;ll is used to quantify the distance between two color
pixels x; and X; in the magnitude domain. The VMF output is the
sample x(1) € W that minimizes the distance to the other sam-
ples inside W:

N
X(1) = arg min X; — Xillz. 2
M gx_ewj; % — 51l )

)

The vector median of a population can be also defined as the
minimal vector X1y € W according to the vector ordering
scheme shown in Figure 4. Since the ordering can be used to
determine the positions of the different input vectors without
any a priori information regarding the signal distributions, vec-
tor order-statistics filters, such as the VMF, are robust estimators.

Since the impulse response of the VMF is zero, it excellently
suppresses impulsive noise [14]. To improve its performance in
the suppression of additive Gaussian noise, the VMF has been
combined with linear filters [14]. Other important VMF exten-
sions include the weighted VMF [16] and VMF modifications fol-
lowing the properties of color spaces [17]. To speed up the
calculation of the distances between the color vectors, the VMF
based on the linear approximation of the Euclidean norm has
been proposed [15].

VECTOR DIRECTIONAL FILTERS

The family of vector directional filters (VDFs) [18] represents a
different type of vector processing filter. These filters operate
on the directions of image vectors, aiming at eliminating vec-
tors with atypical directions in the color space. Similar to the
VMF scheme, the basic vector directional filter (BVDF) [18]
can be derived either as the MLE or by using vector order-sta-
tistics techniques.
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Since the BVDF operates in the directional domain of a color
image, its output is the color vector x(1y € W whose direction is
the MLE of directions of the input vectors [19]. The BVDF out-
put x(1) minimizes the angular ordering criteria to other sam-
ples inside the sliding filtering window WW:

N
Xy =argmin 3 0(x;, X)), &)
1l j:l

where 60(x;, X;) represents the angle between two color vectors
x; and x;. Using the R-ordering scheme (Figure 4) based on the
similarity measure 0(x;, ), the BVDF
output can be equivalently expressed as
the lowest vector order-statistic.

The angular minimization approach is
useful for directional data such as color
pixels. Since a vector’s direction corre-
sponds to its color chromaticity, mini-
mizing the angular distances between
vector inputs may produce better per-
formance than the VMF-based approach-
es in terms of direction preservation. On
the other hand, the VDF filters do not
take into account the brightness of color
vectors. To utilize both features in color
image filtering [18], the generalized vec-
tor directional filters (GVDFs) and double
window GVDF first eliminate the color
vectors with atypical directions in the
vector space, and subsequently process
the vectors with the most similar orienta-
tion according to their magnitude. Thus,
the GVDF splits the color image process-
ing into directional processing and mag-
nitude processing.

Another approach, the directional-dis-
tance filter (DDF) [20], combines both
ordering criteria used in the VMF and the
BVDF schemes. Spherical medians [18]
minimize the angular criteria (3), exclud-
ing the constraint requiring the output
sample, and lie within the filtering win-
dow W. An orientation-based, image
enhancement technique for color images
has been developed as well [21]. Selection
weighted VDFs [22] minimize the aggre-
gated weighted angles between the color
vectors and improve the detail-preserving
filtering characteristics of the convention-
al VDF schemes. Another class of filters,
the generalized weighted vector filters
[23], allow for the simultaneous utiliza-
tion of both the magnitude and direction-
al characteristics of the color vectors.
These filters generalize a number of previ-

noisy input image.

ous filtering techniques including VMF, BVDF, DDF, and their
weighted modifications.

DATA ADAPTIVE FILTERS

Since standard color filters, such as VMF or BVDF, operating on
the supporting window are designed to perform a fixed amount
of smoothing, they cannot follow varying image statistics. Such
a filter may exhibit excessive smoothing, affecting texture and
blurring fine image details. To avoid such problems, local cor-
relation in the data is used by applying fuzzy rules directly on
the signal elements that lie within the processing window.

[FIG7] Additive Gaussian noise (o = 20) filtered output. (a) VMF, (b) BVDF, and (c)
data adaptive filter utilizing the angular distance measure. See Figure 6(a) for
original image and 6(b) for noisy input image.

[FIG8] 5% impulsive noise filtered output. (a) VMF, (b) BVDF, and (c) data adaptive filter
utilizing the angular distance measure. See Figure 6(a) for original image and 6(c) for

[FIG9] Mixed noise filtered output (Gaussian with o = 20 and 5% impulsive noise. (a)
VMF, (b) BVDF, and (c) data adaptive filter utilizing the angular distance measure. See
Figure 6(a) for original image and 6(d) for noisy input image.
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[FIG10] (a) Input (real noisy), (b) VMF and (c) BVDF output digitized
artwork images (256 x 256). (d) The adaptive filter uses aggregated
weighted angular distances as the ordering criterion [22].

(a) (b)
(c) (d)

[FIG11] (a) Input (real noisy) and output television images (720 x
480) [(b)VMF and (c) BVDFE]. (d) The adaptive filter utilizes the
angular distance measure.

Since the antecedents of fuzzy rules can be composed of several
local characteristics, it is possible for such a filter to adapt to
local data [24].

The most commonly used method to smooth high-frequen-
cy variations and transitions is averaging. Therefore, the gen-
eral form of the data-dependent filter is given as a fuzzy
weighted average [24] of the input vectors inside the support-
ing window W:

N N N
K12 = f(Z w;‘x,) = f(Z wixi/z wi) “4)
i=1 i=1

=1

where £(-) is a nonlinear function that operates over the weight-
ed average of the input set, and wy; is the filter weight equivalent
to the fuzzy membership function associated with the input
color vector x;. Note that the two constraints w} > 0 and
Z?;l w; =1 are necessary to ensure that the filter output is an
unbiased estimator and produces the samples within the desired
intensity range.

Operating on the vectorial inputs x;,the weights w; of (4) are
determined adaptively using functions of a distance criterion
between the input vectors. Using a distance d(x;, x;) between
input vectors and the sigmoidal membership function, the
weight adaptation in (4) can be performed [24] by w; =
B+ exp{Zﬁ-V:l d(x;,X)})~", where r is a parameter adjusting
the weighting effect of the membership function, and B is a nor-
malizing constant. Note that the distance measure d(x;, x;) can
be replaced with any similarity measure s(x;, x;) discussed in
“Distance and Similarity Measures.”

Within the general fuzzy adaptive filter framework (4),
numerous filters may be constructed [24] by changing the form
of the nonlinear function 7(-), as well as the way the fuzzy
weights are calculated. The choice of these two parameters
determines the filter characteristics.

APPLICATION OF THE
FILTERING FRAMEWORKS

NOISE REMOVAL

In real-world scenarios, noise may result from many sources,
such as electronic interference, flaws in the data transmission
procedure, sensor malfunction, and simply the underlying physics
of the imaging sensor itself. Based on the difference between the
observation (noisy) color vector x; = [xi1, Xj2, x;3]7 and the orig-
inal (desired) sample o; = [0;1, 02, 0;3]7, the noise corruption is
modeled via the additive noise model [14] defined as follows:

X; = 0; +V;, 6)

where v; = [vj1, vj2, v3]T is the vector describing the noise
process and 7 denotes the spatial position of the samples in the
image. Note that v; can describe either signal-dependent or
independent noise.

A charge-coupled device (CCD) is commonly used as the sen-
sor in many imaging devices [6] and is accompanied by a whole
host of noise sources such as photon shot noise, dark current
shot noise, on-chip and off-chip amplifier noise, and fixed pat-
tern noise [25]. Through appropriate system design choices and
the availability of necessary resources, many sources of noise
can be significantly reduced. However, shot noise resulting from
the photo-electric process can never be removed through cam-
era design.

The photo-electric process is governed by Poisson statistics
[25]. However, considering the likely presence of many noise
sources, it is reasonable to assume that the overall noise process
can be modeled as a zero mean white Gaussian, affecting each
color component and pixel position independently [24], [26]. It is
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also assumed that the noise variance o is the same for all three

color components in a correlated color space, such as RGB.
Given this model, the noise can be reduced to a scalar pertur-

bation, the magnitude of the noise vector p; = ||vi|| =

/ ”?1 + ”12'2 + ,%_ It follows that the distribution of the p;s is [26]:

3 2
Pr(p) = < ) drpPe 2. (6)

1
V202

As shown in Figure 5, this perturbation results in a “noise cone”
in the RGB color space. Using basic geometry, this vector mag-
nitude perturbation can be translated into an angular perturba-
tion A. Assuming that ||o;]| > o for most pixels, A can be
approximated to have the distribution [26] Pr(4) ~ A(||o||%/o%)
exp{—(]|0]242/(202))}. This is in the form of a Rayleigh distri-
bution with mean 4 ~ /o257 /(2]|0]?).

Using this concept of color noise as an angular perturbation
of the original color vector represented in a correlated vector
color space, the effect of the median operator can be roughly
derived. Assuming that the median vector x(1y chosen from a
window of size NV is the sample that is closest to the original sig-
nal o;, the average angular per-
turbation is reduced to
Ay ~ /o?x /@2N|o|?). This
reduction by a factor of VN
represents a rough upper
bound on the smoothing capa-
bility of the median operator. Of
course, NV should not be too
large so as to corrupt the non-
stationary features of the original image.

Aside from acquisition noise, noise generated during image
transmission must also be considered. Transmission noise has
been found to be mostly impulsive in nature with sources rang-
ing from human-made (e.g., switching and interference) to nat-
ural (e.g., lightning) [24], [27], [28]. This noise can be simply
modeled by replacing the original color vector o; with the
impulse noise vector v; with probability p (typically expressed as
a percentage). The impulse vector v; is independent from pixel
to pixel and generally has significantly deviating characteristics
(e.g., amplitude in at least one of the components) compared to
those of the neighboring samples.

Figure 6 shows some simulated examples of both individual
and mixed noise corruption. The results obtained from applying
the VMFE, BVDF, and a data adaptive filter to various noisy images
(both simulated and real) are shown in Figures 7-11. Note that
the data adaptive filter uses the angular distance criterion and a
sigmoidal membership function. The typical 3 x 3 filter window
(Figure 15) was used in all cases. For the Gaussian, impulsive, and
mixed noise (Figures 7-9), it can be generally said that the VMF
and BVDF perform best under impulsive noise, while the data
adaptive filter is able to remove both types of noise at the cost of
some reduced sharpness. Figure 10 shows output from applying
the filtering schemes to digitized artwork for the purposes of
restoration [29]. Figure 11 shows the results where the input is a

TWO FUNDAMENTAL TYPES OF NOISE
ARE CONSIDERED: NOISE PRODUCED
DURING IMAGE FORMATION AND NOISE
PRODUCED DURING TRANSMISSION.

television image. Finally, “Vector Processing of cDNA Microarray
Images” shows results from applying the filters to a cDNA
microarray image.

EDGE DETECTION
In monochrome images, edges can be simply modeled as dis-
continuities in intensity. However, the situation is much more
complex for color images. Although it is not common, the edge
of an object may be characterized by a change in chromaticity
with the intensity remaining constant. Numerous operators
have been devised, such as the vector gradient operator, for the
detection of edges in color images [24], [30]. Following the
theme of this article, the vector order statistics operators for
color edge detection are discussed.

The simplest edge detector designed within this framework
is the vector range (VR) detector [24]:

VR = d(X(N), X(l)) . (7)

The vectors x(1y and x(x, correspond to the extremes of the R-
ordered list and d(-, -) is some distance measure correspon-
ding to the same measure
used to order the vectors.
Thus, VR quantitatively ex-
presses the deviation of values
within the processing window.
By thresholding VR, the pres-
ence of edges may be detected.
However, VR is rather sensi-
tive to noise. In order to
resolve this, the concept is generalized by using a linear com-
bination of the ordered vectors. As a result, the vector disper-
sion edge detectors (VDEDs) are created as follows [24]:

N
L
i=1

where ||-|| is some appropriate norm. Using a1 = —1, ay =1,
and o; =0,7=2,3,... ,N—1 the special case of the VR
detector is obtained. A further generalization is achieved by con-
sidering & sets of coefficients «; and then processing the set of
resulting vector magnitudes. One useful example is the mini-
mum vector dispersion (MVD) operator defined as follows [24]:

VDED = , ®)

[
. 0]
MVD = min | ||Xnv—ir1) — E —1),
J < ey i=1 [ )
j=12,...k kl<N, )

where the parameters & and / control the tradeoff between com-
plexity and noise attenuation.

For demonstration purposes, the simple VR detector is
applied under noiseless conditions. This is shown in Figure 12
with (b) and (c) corresponding to the use of the Euclidean and
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VECTOR PROCESSING OF cDNA MICROARRAY IMAGES

c¢DNA Microarray Technology

Microarray technology [1], [2] is the most popular function-
al genomic tool used to effectively analyze changes in
human genome, which are caused by carcinogens, reproduc-
tive toxins, and genetic diseases. Using a Cy3/Cy5 system,
complementary deoxyribonucleic acid (cDNA) microarrays
are formed as red-green (RG) images indicating particular
genes expressed as spots [2]. The vast number of spots
contained in microarray images necessitates the develop-
ment of an automated image processing pipeline for parallel
analysis of thousands of genes [1]-[3].

cDNA Microarray Image Formation

Control  ——— S Experimental
Population - - Population (Patient)
L RNA lIsolation $
3% =24

Cy3 a4 TS Cy5
Yo _\ Reverse Transcription K_". ¥
o b %68 8000
SR IR

80,000 Probes cDNAs’ Mixing

75-100 mm Probe
Diameter 150 mm Spacing
Between Probes

Application to Array
Microscope Glass Slide (2x4 cm?)

B

Hybridization
16-24 Hour Long Washing
65 °C Temperature

DNA Chi
2 Scanning
Laser Microscope
~540 nm for Green
~630 nm for Red

Genes Expressed as Spots in:
Control (Cy3) Channel
Experimental (Cy5) Channel

@ Both Cy3 and Cy5 Channels|

i cDNA Microarray
Image Red-Green (RG) [T REEEE
Image TIFF Format, G Channel
16-b Per Channel

R Channel

Two-color (Cy3/Cy5) system [2], [3]. Control (Cy3) and
experimental (Cy5) channels.

Problem Formulation

Due to variations in the image background and the spot sizes
and positions, microarray image analysis task is complicated
and challenging. Noise contamination caused by photon
noise, electronic noise, laser light reflection, and dust on the
glass slide significantly contributes to the overall noise con-
tributions v;, [2]:

Xj =0; +V;

Impairments present in microarray images prohibit the
extraction of absolute or relative intensity values from each
spot and identification of the genes expressed in a particular

cell type. Since each error is propagated down through
analysis steps, image filtering prior to subsequent analysis
is necessary [2].

Differences Between two cDNA Vectors
m Effective quantification of the differences between cDNA
vectors:
— differences in magnitude
— differences in orientation (direction)

[0) 4

B Euclidean metric (to quantify the magnitude difference)

I — %2 = (= 31)? + (Xi2 — %2)°

® Angular distance (to quantify the difference in vector direc-
tionality)

A(Xj i) = arccos Xix'iT
9= COC A

Aggregated Distances (AD)
B Used to determine centroid (associated with the minimum
AD) or outlier (associated with the maximum AD) in the pop-
ulation of cDNA vectorial inputs
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Both magnitude and directional information can be used to
process the cDNA image vectors [2].

Vector Processing: A Framework
m Supporting running window based vector filtering scheme
input set of cDNA vectors W = {xy, X2, ..., Xy}

3x3 Supporting Window
Window Size N=9

A=

Image Lattice

- 4
" *—#’R Image

m Eachvector x;, fori =1, 2, ..., N, is associated with the AD [2]
N
D= IIxi — Xl
j=1
B Noise can be removed using the vector median filter [2]

y = minarg, D; ©)

m or data-dependent adaptive filtering [4]
N N N
y=f (Z wlvx,'/Zw,> = f( u/Tx,) 2)
i=1 i=1 i=1
with the weights adapted as follows [4]:
wi = B(1+exp(D))~"
B Microarray spots are localized using vector range detector

[2]
dve =[x — Xa) |, 3)

Experimental Results

Achieved results: (a) input; (b) output of (1); (c) output of
(2); (d)-(f) edge maps corresponding to (a)-(c) are produced
using (3).

Conclusions

Vector processing operations [2], [4] use essential spectral and
spatial information to remove noise and localize microarray
spots. The proposed fully automated vector technique can be
easily implemented in either hardware or software; and incorpo-
rated in any existing microarray image analysis and gene expres-
sion tool.
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[FIG12] Edge detection input and output (512 x 512). (a) Input,
(b) VR (Euclidean), (c) VR (angular), and (d) MVD (Euclidean)
detector using k=3 and / = 4.

angular distance measures, respectively. Figure 12(d) shows the
output using the MVD detector using the Euclidean distance
and parameters £ = 3 and / = 4.

SPATIAL INTERPOLATION

Spatial interpolation of a digital image is the process of increas-
ing the number of pixels representing the image data. It is
required for tasks such as zooming and displaying on high reso-
lution display devices [31]. Increasing the spatial resolution of
digital camera output is an important application of spatial
interpolation, which is currently of great interest [32]. Due to
the commercial proliferation of single-sensor digital cameras,
spatial interpolation closely relates to demosaicking [33], and
therefore, some new solutions combine both demosaicking and
zooming concepts to provide the enlarged, demosaicked camera
output [32]. As with most other color imaging applications,
scalar techniques performed on the individual color channels
are insufficient, since the correlation between the channels is
not considered. Also, many conventional methods such as near-
est neighbor pixel replication, bilinear interpolation, and spline
based techniques often cause excessive blurring or geometric
artifacts [31]. This begs for the more sophisticated vector based,
nonlinear approaches discussed in this article.

A 2-D factor K interpolation involves the estimation of
K% — 1 pixels in the region of every one original pixel. Multiple
options are open in terms of the arrangement of the original
pixels in the new, high-resolution image. For the sake of brevity,
the simple case of K = 2 and a uniform upsampling pattern is
considered here. Using a 3 x 3 processing window (Figure A in
“Window-Based Filtering Basics”) on the upsampled image, the
following three pixel configurations are obtained when the win-
dow is centered on an empty pixel position: 1)
{x1,0,x3,0,0,0,x7,0,x9}, 2) {0,0,0,x4,0,x6,0,0, 0}, and 3)

{0,x2,0,0,0,0,0, xg, 0}, where 0 represents an empty position.
Configurations 2) and 3) provide an insufficient number of orig-
inal pixels for the estimation of the unknown vector at the cen-
ter of the window. Consequently, a two-pass procedure is
employed. The first pass requires positioning the window to
achieve all possible type 1) configurations and estimating the
unknown vector using some operator on the four known values.
After the first pass, all configurations become
{0, x9, 0, x4, 0, X4, 0, xg, 0}, with the center of the window to be
interpolated. Thus, the second pass is performed on all remain-
ing positions with unknown pixels by using an operator on the
two known and two estimated pixels within the window.

Using this methodology, the VMF, BVDF, and a data adaptive
filter are applied with the input and output shown in Figure 13.
The data adaptive filter uses the Euclidean distance measure and
a sigmoidal membership function. During each pass, the four
color vectors available at each window position are used as input
to the filters. As can be seen in Figure 13(b) and (c), the VMF
and BVDF are able to maintain sharp edges. The data adaptive
output in Figure 13(d) is not as sharp but provides an excellent
tradeoff between sharpness and the reduction of artifacts.

SPECTRAL INTERPOLATION

In the domain of digital color imagery, spectral interpolation or
demosaicking refers to the process of estimating individual
color components [32], [33]. Since the imaging sensor is a
monochrome device, most consumer level digital cameras use
either a CCD or CMOS sensor in conjunction with a CFA in
order to obtain a mosaic of color components [32], [33]. The
sensor values constitute the so-called CFA image, which is a
low-resolution color image due to the fact that only one spectral
component is available at each spatial location [32]. These indi-
vidual color components must be combined to produce an
image with a full color vector at each position.

The common Bayer pattern CFA [34] is used here to demon-
strate how the vector-based filtering approach may be applied to
create the interpolated full color image. Following the principles of
window based filtering, it is assumed that the image is stationary
within the window, and so adjacent color components can be com-
bined into color vectors. Thus, the vector filtering frameworks are
not directly applied to a Bayer CFA image [Figure 14(a)],
but instead, a set of “pseudopixels” is used as the vector filters’
input [35]. For example, having a 3 x 3 window with the CFA
inputs 1) {g1, 71, g2, b1, g3, b2, ga, 72, g5} or 2) {r1, g1, 12,
&, b1, g3, 13, g4, 14}, the procedure results in four color
vectors {[r1, g3. 0117, [r1, g3.b2)7, [r2, g3, 0117, [r2. g3, 0217}
or eight color vectors {[r1, g1, 6117, [r1, go. 6117, [r2, g1, 117,
[r2. 93,0117, [, 90,0017, [r3.9a. 0117, [r4, 93,0117,
(74, gu, 6117}, respectively. If a G CFA component is located at the
window center, then the population of four vectors is used as the
input for the vector filtering frameworks. Otherwise, the window
center is an R (or B) CFA component, and eight vectors are used to
estimate the color pixel at the center of the window.

The images shown in Figure 14(b)—(d) were generated using
the VMF, BVDF, and a data adaptive filter based on the angular
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[FIG13] Spatial interpolation input (256 x 256) and output
(512 x 512). (a) Input, (b) VMF, (c) BVDF, and (d) adaptive filter
utilizing the Euclidean distance measure.

distance, respectively. The VMF and BVDF generate sharp
results with some color artifacting around sharp, high contrast
edges. The data adaptive method is able to reduce some of the
color artifacts at the cost of some minor blurring.

CONCLUSION

Vector filtering of color images is a rich and expanding field.
Noise removal and the correct perception of desired color is of
paramount importance in emerging applications related to bio-
medical science, earth science, cultural heritage preservation,
video communications, image postprocessing, robotic inspec-
tion and surveillance. From the presented examples, it is clear
that vector image filtering techniques open up a world with
almost endless possibilities.

Selected sets of vector filtering techniques are being intro-
duced as standard tools in sophisticated graphics/image process-
ing software tools available to practitioners as well as end-users.
A growing expanse of Internet applications will include color
image processing tools in the form of active scripts automatical-
ly running when browsing the Web. Images appearing in the
Web will be automatically filtered and displayed in high resolu-
tion quality. Other processing steps (e.g., edge detection, image
segmentation, and adjusting operations such as histogram mod-
ification and changes of color appearance) will be performed in
the same manner.

It is no overstatement to claim that color image filtering
techniques have an extremely valuable position in modern color
image science, communication, and multimedia applications. As
our insatiable thirst for rich, meaningful graphical information
is not likely to subside any time soon, neither will the need for
effective filtering techniques.

[FIG14] Spectral interpolation input and output (512 x 512). (a)
Input (color version of the Bayer CFA sensor image), (b) VMIF, (c)
BVDF, and (d) adaptive filter utilizing the angular distance measure.
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