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dhe field of image restoration began primarily

with the efforts of scientists involved in the
space programs of both the United States
and the former Soviet Union in the 1950s and early
1960s. These programs were responsible for pro-
ducing many incredible images of the Earth and our
solar system that, at that time, were unimaginable.
Such images held untold scientific benefits which
only became clear in the ensuing years as the race
for the moon began to consume more and more of
our scientific efforts and budgets. However, the
images obtained from the various planetary mis-
sions of the time, such as the Ranger, Lunar Orbiter,
and Mariner missions, were subject to many photo-
graphic degradations. These were a result of sub-
standard imaging environments, the vibration in
machinery and the spinning and tumbling of the
spacecraft. Pictures from the later manned space
missions were also blurred due to the inability of the
astronaut to steady himself in a gravitationless en-
vironment while taking photographs. The degrada-
tion of images was no small problem, considering
the enormous expense required to obtain such pic-
tures in the first place. The loss of information due
to image degradation could be devastating. For
example, the 22 pictures produced during the Mari-
ner IV flight to Mars in 1964 were later estimated
to cost almost $10 million just in terms of the
number of bits transmitted alone [83]. Any degra-
dations reduced the scientific value of these images
considerably and clearly cost the space agencies money.

This was probably the first instance in the engineering
community where the extreme need for the ability to retrieve
meaningful information from degraded images was encoun-
tered. As a result, it was not long before some of the most
common algorithms from one-dimensional signal processing
and estimation theory found their way into the realm of what
is today known as “digital image restoration.”

The goal of this article is to introduce digital image resto-
ration to the reader who is just beginning in this field, and to
provide areview and analysis for the reader who may already
be well-versed in image restoration. The perspective on the
topic offered here is one that comes primarily from work done
in the field of signal processing. Thus, many of the techniques
and works cited here relate to classical signal processing
approaches to estimation theory, filtering, and numerical
analysis. In particular, the emphasis here is placed primarily
on digital image restoration algorithms that grow out of an
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area known as “regularized least squares” methods. It should
be noted, however, that digital image restoration is a very
broad field, as we will discuss, and thus contains many other
successful approaches that have been developed from differ-
ent perspectives, such as optics, astronomy, and medical
imaging, just to name a few.

In the process of reviewing this topic, we hope to address
a number of very important issues in this field that are not
typically discussed in the technical literature. The nature of
these issues may be accurately summed up in these open
questions to the image restoration research community:
“Where have we been?”, “Where are we now?”, and “Where
are we going?” Although these may seem questions too large
to tackle in this forum, they are ones that warrant discussion
now because of the relative maturity of the image restoration
field. One indicator of this maturity is that reported improve-
ments over tried-and-true algorithms in recent years mightbe
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considered quite small. Because of this, we would be well
served now to take a step back and try to understand the
contributions of the past and the needs of the future in order
to best take advantage of the wealth of experience and knowl-
edge in the area of digital image restoration.

Applications of Digital Image Restoration

The first encounters with digital image restoration in the
engineering community were in the area of astronomical
imaging, as previously mentioned. Ground-based imaging
systems were subject to blurring due to the rapidly changing
index of refraction of the atmosphere. Extraterrestrial obser-
vations of the Earth and the planets were degraded by motion
blur as a result of slow camera shutter speeds relative to rapid
spacecraft motion. Images obtained were often subject to
noise of one form or another. For example, the astronomical
imaging degradation problem is often characterized by Pois-
son noise, which is signal-dependent and has its roots in the
photon-counting statistics involved with low light sources.
Another type of noise found in other digital imaging applica-
tions is Gaussian noise, which often arises from the electronic
components in the imaging system and broadcast transmis-
sion effects.

Not surprisingly, astronomical imaging is still one of the
primary applications of digital image restoration today. Not
only is it still necessary to restore various pictures obtained
from spacecraft such as the space shuttle, but the well-publi-
cized problems with the initial Hubble Space Telescope
(HST) main mirror imperfections [87, 125] have provided an
inordinate amount of material for the restoration community
over the last few years. For example, Fig. 1 shows an HST
picture of Saturn using the
original Wide Field Plane-
tary Camera (WFPC-I). The
severe blurring was removed
in Fig. 2 through digital res-
toration [42].

In the area of medical im-
aging, image restoration has
certainly played a very im-
portant part. Restoration has
been used for filtering of
Poisson distributed film-
grain noise in chest X-rays,
mammograms, and digital
angiographic images 12,32,
113], and for the removal of
additive noise in Magnetic
Resonance Imaging (MRI)
[13, 88, 114]. Another
emerging application of im-
age restoration in medicine
is in the area of quantitative
autoradiography (QAR). In
this field, images are ob-
tained by exposing X-ray-

1. Original Hubble Telescope
Wide Field Planetary Camera
image of Saturn.

2. Digitally restored image of Sat-
urn, using the algorithm in [42].
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3.(a) Original QAR image of Cr-51 microspheres; (b) Restored
QAR image (60% resolution improvement), using the algorithm
in [30]; (c) Line profiles of original and restored images.

sensitive film to a radioactive specimen. QAR is performed
on post-mortem studies, and provides a higher resolution than
techniques such as positron emission tomography (PET),
X-ray computed tomography (CAT), and MRI, but still needs
to be improved in resolution in order to study drug diffusion
and cellular uptake in the brain. This can be accomplished
through digital image restoration techniques [30]. Figure 3
shows a medical example of digital image restoration applied
to an autoradiographic image of Cr-51 microspheres that are
10 microns in diameter. Figure 3(a) is the original image, and
Fig. 3(b) is the restored image. The plot in Fig. 3(c) shows a
line profile through the images demonstrating the improve-
ment obtained through restoration. Here, an iterative restora-
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tion algorithm that was formulated to consider the signal-de-
pendent nature of film grain noise was used [30]. The full-
width half maximum (FWHM) resolution of the
microspheres was improved by 60% from about 259 microns
to 103 microns.

Image restoration has also received some notoriety in the
media, and particularly in the movies of the last decade. Ten
years ago, the climax of the 1987 film “No Way Out,” starring
Kevin Costner, was based on the digital restoration of a blurry
Polaroid negative image. The 1991 movie “JFK” made sub-
stantial use of a version of the famous Zapruder 8mm film of
the assassination of President Kennedy, which has been
enhanced and restored many times over the years. Similar
restoration ideas showed up in the Michael Crichton book and
subsequent 1993 film “Rising Sun,” where researchers were
needed to help restore the shadowy picture of a murderer from
a surveillance videotape. Although some of these fictional
uses of restoration were far-fetched, it is no surprise that
digital image restoration has been used in law enforcement
and forensic science for a number of years. For example, one
of the most frequent needs for image restoration arises when
viewing poor-quality security videotapes. In addition, the
restoration of blurry photographs of license plates and crime
scenes are often needed when such photographs can provide
the only link for solving a crime. Such use of restoration is
becoming more and more prevalent is our society. In fact,
images restored in our laboratory were recently presented and
accepted into evidence in a court of law for the first time by
Dr. W. R. Oliver of the Office of the Armed Forces Medical
Examiner [89]. Clearly, law enforcement agencies all over
the world have made, and continue to make use of digital
image restoration ideas in many forms.

Another application of this field which is especially im-
portant to our popular culture is the use of digital techniques
to restore aging and deteriorated films. The idea of motion
picture restoration is probably most often associated with the
digital techniques used not only to eliminate scratches and
dust from old movies, but also to colorize black-and-white
films. For the purposes of this article, only a small subset of
the vast amount of work being done in this area can be
classified under the category of image restoration. Much of
this work belongs to the field of computer graphics and
enhancement. Nonetheless, some very important work has
been done recently in the area of digital restoration of films.
Some of the most interesting has been accomplished on
animated films, such as the recent digital restoration of the
film “Snow White and the Seven Dwarfs” by Walt Disney,
which originally premiered in 1937 [22]. Though not restor-
ing for blur degradation, the process used to correct for the
cell dust, scratch and color fading problems with this original
film could be classified as a form of spatially adaptive image
restoration. There has been significant work in the area of
restoration of image sequences in general as well, as dis-
cussed in [9, 10].

Perhaps the most exciting and expanding area of applica-
tion for digital image restoration is that in the field of image
and video coding: As techniques are developed to improve
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4.(a) JPEG encoded image from sequence “Carphone” (28:1);
(b) Restored image, using the algorithm in [91].

coding efficiency, and reduce the bit rates of coded images,
artifacts such as blocking become quite a problem. Blocking
artifacts are a result of the coarse quantization of transform
coefficients used in typical image and video compression
techniques. Usually, a discrete cosine transform (DCT) will
be applied to prediction errors on blocks of 8§ x 8 pixels.
Intensity transitions between these blocks become more and
more apparent when the high-frequency data is eliminated
due to heavy quantization. Already, much has been accom-
plished to model these types of artifacts, and develop ways
of restoring coded images as a post-processing step to be
performed after decompression [70, 91, 102, 90, 129, 130].
In particular, very low bit rate coding applications such as
mobile video communications impose bandwidth restrictions
that require high compression. An example showing a still
JPEG compressed image from a mobile video sequence at a
compression ratio of 28:1 is shown in Fig. 4(a). Using a
process based on mean field annealing and Markov Random
Fields [91], a post-processed (restored) image is seen in Fig.
4(b). This image has most of the blocking artifacts removed,
while still maintaining the important edges around the face
in the picture. This idea of trading off smoothness and sharp-
ness of an image in a spatially adaptive way forms:the basis
of regularization theory which is applied to the solution.of
the ill-posed restoration problem [118].

Digital image restoration is being used in many other
applications as well. Just to name a few, restoration has been
used to restore blurry X-ray images of aircraft wings to
improve federal aviation inspection procedures [61]. Tt is
used for restoring the motion induced effects present in still
composite frames (produced by the superposition of two
temporally spaced fields of a video image [77]), and, more
generally, for restoring uniformly blurred television pictures
[71]. Printing applications often require the use of restoration
to ensure that halftone reproductions of continuous images
are of high quality. In addition, restoration can improve the
quality of continuous images generated from halftone images
[34]. Digital restoration is also used to restore images of
electronic piece parts taken in assembly-line manufacturing
environments. Many defense-oriented applications require
restoration, such as that of guided missiles, which may obtain
distorted images due to the effects of pressure differences
around a camera mounted on the missile. All in all, it is clear
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that there is a very real and important place for image resto-
ration technology today. Our task at hand now is to evaluate
what types of applications may arise in the future and demand
further innovation in this field. As a means of achieving this
task, however, it is best to first understand the accomplish-
ments of the past.

Where Have We Been?

A useful place to start is with a comprehensive definition of
what digital image restoration is, and what it is not. Given
such a definition, it will be easier to address the development
of the various signal processing algorithms used for restora-
tion, and to study how they affect the current trends in
research.

Digital image restoration is a field of engineering that
studies methods used to recover an original scene from de-
graded observations. It is an area that has been explored
extensively in the signal processing, astronomical, and optics
communities for some time. Many of the algorithms used in
this area have their roots in well-developed areas of mathe-
matics, such as estimation theory, the solution of ill-posed
inverse problems, linear algebra and numerical analysis.
Techniques used for image restoration are oriented toward
modeling the degradations, usually blur and noise, and apply-
ing an inverse procedure to obtain an approximation of the
original scene.

Image restoration is distinct from image enhancement
techniques, which are designed to manipulate an image in
order to produce results more pleasing to an observer, without
making use of any particular degradation models. Image
reconstruction techniques are also generally treated sepa-
rately from restoration techniques, since they operate on a set
of image projections and not on a full image. Restoration and
reconstruction techniques do share the same objective, how-
ever, which is that of recovering the original image, and they
end up solving the same mathematical problem, which is that
of finding a solution to a set of linear or nonlinear equations.
Some excellent treatment and review of different restoration
and recovery techniques from a signal processing perspective
can be found in these books and articles: [2, 8, 46, 48, 67,
109]. Much of the review material discussed here can be
found with further detail in these references.

Developing techniques to perform the image restoration
task requires the use of models not only for the degradations,
but also for the images themselves. It will be valuable to study
how some such models were used in the early applications
and solutions in this field. Here, we will concern ourselves
only with approaches based on digital techniques, although
there have been significant efforts to restore degraded images
through strictly optical and photographic means. There are a
number of different ways in which to classify the many
approaches to digital image restoration. One useful classifi-
cation based on Deterministic and Stochastic approaches was
given in Chapter 1 of [48]. In the second subsection below,
we classify the well-known approaches to regularized least-
squares restoration from the viewpoint of implementation
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technique, using the major categories: Direct, Iterative, and
Recursive.

Sources of Image Degradation

In digital image processing, the general, discrete model for a
linear degradation caused by blurring and additive noise can
be given by the following superposition summation,

y(i )=, 3 Al sk D (k, D)+ (i, /),

I=

M
k

—
—

@

where f{i,f) represents an original M x N image, and y(i,j) is
the degraded image which is acquired by the imaging system.
In this formulation, n(i,j) represents an additive noise intro-
duced by the system, and is usually taken to be a zero mean
Gaussian distributed white noise term. In this article, we deal
only with additive Gaussian noise, as it effectively models
the noise in many different imaging scenarios. Many methods
not detailed in this article utilize signal-dependent noise and
lead to non-linear approaches to image restoration (see, for
example, [62]).

In Equation (1), h(i.j;m.n) represents the two-dimensional
point spread function (PSF) of the imaging system, which, in
general, can be spatially varying. The difficulty in solving the
restoration problem with a spatially varying blur commonly
motivates the use of a stationary model for the blur. This leads
to the following expression for the degradation system,

Mx
M=

y(i, j)= ) hi—k, j=1)f(k, 1)+n(i. j)

= (i, j) /(0. j)+n(i, j)

=
]
il

@)

where ** indicates two-dimensional convolution. The use of
linear techniques for solving the restoration problem is facili-
tated by using this shift-invariant model. Models that utilize
space-variant degradations are also common, but lead to
more complex solutions.

An important aspect of image processing that deserves
some mention here is that of the treatment of borders. The
blurring process described by Equation (2) is linear. How-
ever, we often approximate this linear convolution by circular
convolution, for mathematical reasons discussed later. This
involves treating the image as one period from a two-dimen-
sional periodic signal. The borders of an image are also often
treated as symmetric extensions of the image, or as repeated
instances of the edge pixel values. Such approaches seek to
minimize the distortion at the borders caused by filtering
algorithms which must perform deconvolution over the entire
image. When implementing image restoration algorithms, it
is very important to consider how the borders of the image
are treated, as different approaches can result in very different
restored images [2].

The following analytical models are frequently used in
Equation (2) to represent the shift-invariant image degrada-
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tion operator [44, 67]. The first two are encountered in the

application of astronomical imaging mentioned before.

¢ Motion Blur: Represents the 1-D uniform local averaging
of neighboring pixels, a common result of camera panning
or fast object motion, shown here for horizontal motion,

1 L L
N if—gig S
W)= " "2 770

0, otherwise. 3)

o Atmospheric Turbulence Blur: Common in remote sensing

and aerial imaging, the blur due to long-term exposure
though the atmosphere can be modeled by a Gaussian PSF,

- 2+
h(l, ]) = Kexp(—— ' 205 s

where K is a normalizing constant ensuring that the blur is

“

of unit volume, and o2 is the variance that determines the
severity of the blur.

Photographic defocusing is a also problem in many differ-
ent imaging situations. This type of blurring is primarily due
to effects at the camera aperture that result in the spreading
of a point of incoming light across a circle of confusion. A
complete model of the camera’s focusing system depends on
many parameters. These parameters include the focal length,
the camera aperture size and shape, the distance between
object and camera, the wavelength of the incoming light, and
the effects due to diffraction [7, 29]. Accurate knowledge of
all of these parameters is not frequently available after a
picture has been taken. When the blur due to poor focusing
is large, however, the following uniform models have been
used as approximations of the PSF.

o Uniform Out-of-Focus Blur: This models the simple de-
focusing found in a variety of imaging systems as a uniform
intensity distribution within a circular disk,

1 e 2 2
h(hj):{gc_R_z_’ if /i +7J <R

otherwise. s)

o Uniform 2-D Blur: This is a more severe form of degrada-
tion that approximates an out-of-focus blur, and is used in
many research simulations. This is the model for the blur
used in the examples throughout this article,

(L)Z’ if — ~—Jj$§
0, otherwise, (6)

hi, )=

where L is assumed to be an odd integer.

Usually, all blur-degraded images exhibit similar charac-
teristics, namely a lowpass smoothing of the original image,
attenuating the edge information which is very important for
human visual perception [86]. In the process of trying to
invert Equation (1) to obtain an estimate of f{i,j), different
artifacts may be introduced as a result of the characteristics
of each blur operator. This issue will be discussed later. First,
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(a) (b)

5.(a) Original “Cameraman” image (256 x 256); (b) Degraded
by a 7x7 Uniform 2-D Blur, 40 dB BSNR.

we will review some of the early or “classical” ways to
perform the required inversion. As a tool for demonstrating
these techniques, we can utilize an example of a synthetically
blurred image which is often used for comparing results in
the research literature. This image is referred to asthe “Cam-
eraman’” image, and is seen in Fig. 5(a). Figure 5(b) shows
the effects of a 7x7 uniform 2-D blur, at 40dB BSNR (Blurred
Signal-to-Noise Ratio).

Some Classical Image Restoration Techniques

In this section, we review a some of the many common
approaches to image restoration that utilize minimum mean
square error as an optimization criterion. The image degra-
dation process is often represented in terms of a matrix-vector
formulation of Equation (1). This is given by

y=Hf+n, ®

where y, f, and » are the observed, original, and noise images,
ordered lexicographically by stacking either the rows or the
columns of each image into a vector. Assuming that the original
image is of support N x N, then these vectors have support N x
1, and H represents the N’ x N° superposition blur operator.
‘When utilizing the stationary model of Equation (2), H becomes
a block-Toeplitz matrix representing the linear convolution
operator A(i,j). Toeplitz, and block-Toeplitz matrices have spe-
cial “banded” properties which make their use desirable for
representing linear shift-invariant operators (see [2] for further
explanation of these matrices). By padding y and f appropriately
with zeros so that the results of linear and circular convolution
are the same, H becomes a block circulant matrix. This special
matrix structure has the form

HO) HN-1) - HQ)
po| HOHO e HG)
H(N-1) H(N-2) H(0)

(10)
where each sub-matrix H(f) is itself a circulant matrix,

MARCH 1997



BSNR

In most image restoration studies, the degradation mod-
eled by blurring and additive noise is referred Lo in terms
of a metric called the Blurred Signal-to-Noise Ratio
(BSNR). This figure is defined in terms of the additive

noise variance, 0',21, according to

ey

Gp

BSNR =10-log;,

)

for an M x N image, where g(ij) = y(i.j) - n(if) in Equation
(1), and g(m, n)=E{g}, which represents the expected
value, or the mean, of g.

For the purpose of objectively testing the performance
of image restoration algorithms, the Improvement in SNR
(ISNR) is often used. This metric is given by

316 )=t )
ISNR = 10-log;o{ = —— 1,
7. )~ 76, )]
ij 3

where f(ij) and y(i,j) are the original and degraded inten-
sity components, respectively, and f(i, j) is the corre-
sponding restored intensity field. Obviously, this metriccan
only be used for simulation cases when the original image is
available. While mean squared error (MSE) metrics such as
ISNR do not always reflect the perceptual properties of the
human visual system, they serve (o provide an objective
standard by which to compare different techniques. How-
ever, in all cases presented here, it is important to consider
the behavior of the various algorithms from the viewpoint of
ringing and noise amplification, which can be akey indicator
of improvement in quality for subjective comparisons of
restoration algorithms,

h(i,0)  h(i, N-1) h(i, 1)
o] M0
h(i, N-1} h(i, N-2) h(i. 0)

(11)

Notice that each block-row of H and each row of H(i) is a circular
shift of the prior block-row or row, respectively. Representing
H with a block circulant matrix could be further justified by
using the result that the asymptotic distribution of the eigenval-
ues of a block Toeplitz and a block circulant matrix are the same
[31]. The use of the block circulant approximation is important
because it leads to desirable discrete frequency domain proper-
ties that can be used in solving Equation (9) [2]. These properties
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lead to efficient computation of inverse matrices, as discussed
in the next section.

Inverse Filtering. Classical direct approaches to solving
Equation (9) have dealt with finding an estimate f‘ which
minimizes the norm

2

~Hf
|y-57 (12)
thus providing a least squares fit to the data. This leads
directly to the generalized inverse filter, which is given by
the solution to

T\7- T
(H"H)f=Hy. (13)

The critical issue that arises in this approach is that of noise
amplification. This is due to the fact that the spectral proper-
ties of the noise are not taken into account. In order to
examine this, consider the case when H (and, therefore, H")
is block circulant, as described above. Such matrices can be
diagonalized with the use of the 2-D Discrete Fourier Trans-
form (DFT) [36]. This is because the eigenvalues of a block
circulant matrix are the 2-D discrete Fourier coefficients of
the impulse response of the degradation system which is used
in uniquely defining H, and the eigenvectors are the complex
exponential basis functions of this transform. In matrix form,
this relationship can be expressed by

H=WHW! (14)
where #is a diagonal matrix comprising the 2-D DFT coef-
ficients of /(i,j), and W' is a matrix containing the compo-
nents of the complex exponential basis functions of the 2-D
DFT. Pre-multiplication of both sides of Equation (14) by
W', and post-multiplication by W, or in this case, taking the
2-D DFT of the first row of H, with the elements stacked into
an N x N image, gives the diagonal elements of #.

Using this diagonalization approach, the matrix inverse
problem of Equation (13) can be solved as a set of N? scalar
problems. That is, using the DFT properties of block circu-
lant matrices, and pre-multiplying both sides of Equation
(13) by W', the solution can be written in the discrete
frequency domain as

ﬁ(l)= }[*(Z)Y l)
Toef (15)

where F(l), #(l), and Y(I) denote the DFT of the restored
image, f (. 7). the PSF, h(i,j), and the observed image, y(i,j),
as a function of the 2-D discrete frequency index [, where
1=k, ky) fork;, k=0, ..., N-1, for an N x N point DFT, and
* denotes complex conjugate. Clearly, for frequencies at
which #({) becomes very small, division by it results in

amplification of the noise. Assuming that the degradation is
lowpass, the small values of #(I) are found at high frequen-
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cies, where the noise is
dominant over the image.
For the frequencies where
#(1) is exactly zero (with
respect to the accuracy of the
particular computing envi-

ronment being used) F(I) is

also equal to zero (which is
the minimum norm least
squares solution). Figure 6
shows the effects of a gener-
alized inverse filter applied
to the degraded image in Fig.
5(b). The restored image has been truncated to lie within the
range of [0-255], however, the actual dynamic range of this
image is much larger due to amplified noise. Clearly, this is
not an acceptable restoration approach in this case.

In mathematical terms, the inverse problem represented in
Equation (9) is ill-posed, if described in continuous infinite-
dimensional space [85, 118]. In this case, the observation
equation becomes a Fredholm integral equation of the first
kind. The ill-posed nature of this problem implies that small
bounded deviations in the data may lead to unbounded devia-
tions in the solution. With respect to the discretized problem
of Equation (9), the ill-posedness of the continuous problem
results in the matrix H being iil-conditioned. It is interesting
to note that the finer the discretization of the problem, the
more ill-conditioned H becomes. Regularization theory is
often used to solve ill-posed or ill-conditioned problems. The
purpose of regularization is to provide an analysis of an
ill-posed problem through the analysis of an associated well-
posed problem, whose solution will yield meaningful an-
swers and approximations to the ill-posed problem [48].
Techniques to accomplish this span a vast array of mathe-
matical and heuristic concepts. In this section, some of the
classical direct, iterative, and recursive approaches to this
problem are reviewed.

6. Result of Fig. 5(b) restored by
a Generalized Inverse filter,
ISNR = -15.6 dB.

Direct Regularized Restoration Approaches. Solving
Equation (9) in a regularized fashion can lead to direct
restoration approaches when considering either a stochastic
or a deterministic model for the original image, f. In both
cases, the model represents prior information about the solu-
tion which can be used to make the problem well-posed.

Stochastic Regularization. Stochastic regularization can
lead to the choice of a linear filtering approach that computes

the estimate, f , according to

el -1

subject to knowledge of R = { £’ '}, which is the covariance
matrix of £, and R, = E{nn"}, which is the covariance matrix
of the noise. Using a stochastic model for f and n requires
some prior knowledge of the statistics of the data which are
then used to regularize the problem. The linear estimate
which minimizes Equation (16) is given by

16)
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F=RyH"(HRZH" +R,,) . (an
The matrix (HRﬁHT+ R,,), which needs to be inverted, is now
better conditioned than the matrix (H'H) in Equation (13).
Equation (17) is the classical formulation of the Wiener filter
[2].

By assuming block circulant structures for each of the
matrices in Equation (17), it can be rewritten and solved in
the discrete frequency domain. The assumption of Ryand R,
being block circulant implies that the image and noise fields
are stationary. This results in a scalar computation for each
2-D frequency component [ , given by

PR 1L (I
T Ssp @) + 8w

(18)

where Sg(I) and S,,(I) represent the power spectra of the

original image and the noise, respectively.

Having these power spectra represents significant prior
knowledge for the implementation of this filter. In most
cases, however, the noise variance is known, or can be
estimated from a flat region of the observed image [2]. In
addition, it is possible to estimate Sg(I) in a number of
different ways. The most common of these is to use the power
spectrum of the observed image, S,,(I), as an estimate of

Sg(l). Fig. 7 shows an ex-

ample of a Wiener filter res-
toration of Fig. 5(b), using a
periodogram estimate of the
power spectrum computed
from y. The periodogram es-
timate of the power spectrum
is simply defined according
to [78]

S50 ==[r 07 ().

(19)

Deterministic Regulari-
zation. The use of determi-
nistic prior information about the original image can also be
used for regularizing the restoration problem. For example,
constrained least squares (CLS) restoration can be formulated

7. Result of F z 5(b) restored b
a direct Wiener fiiter, ISNR =
3.9dB.

by choosing an f‘ to minimize the Lagrangian

min |y~ +of i |
(20)

where the term Cf generally represents a high pass filtered

version of the image f . This is essentially a smoothness
constraint which suggests that most images are relatively flat
with limited high-frequency activity, and thus it is appropri-
ate to minimize the amount of high-pass energy in the re-
stored image. Use of the C operator provides an alternative
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way to reduce the effects of the small singular values of H,
occurring at high frequencies, while leaving the larger ones
unchanged. One typical choice for C is the 2-D Laplacian
operator [37], given by

000 -025 0.00
C=(-025 -100 -0.25{.
0.00 -025 0.00

@1

In Equation (20), o represents the Lagrange multiplier, com-
monly referred to as the regularization parameter, which
controls the tradeoff between fidelity to the data (as expressed

")
by the term (”y—— Hf " ) and smoothness of the solution (as

ap2
expressed by "C f“ ).

The minimization in Equation (20) leads to an equation of
the form

f= (HTH + OLCTC)_IHTy . )
This also may be solved directly in the discrete frequency
domain when block-circulant assumptions are used. The
critical issue in the application of Equation (22) is the choice
of o. This problem has been investigated in a number of
studies (see, for example, [25], and the references therein)
and optimal techniques exist for finding an o given varying
amounts of prior information about the noise and the signal.
One way to use Equation (22), and choose o based on prior
knowledge, follows a set theoretic approach [49, 46, 51].
With this method, a restored image is defined by an image
which lies in the intersection of the two ellipsoids defined by

Opy={fllly-HAP <&}, 23)
and
Or={fIICAP<E*}. (24)

The equation of the center of one of the ellipsoids which
bounds the intersection of @, and Qis given by Equation
(22) with o = (e/E)z. The same solution may be obtained with
the Miller regularization approach [81].

Precise knowledge of
both bounds €” and E* may
not always be available. Sev-
eral ways to estimate these
bounds iteratively, based on
the partially restored image
at each step of the iteration,
have been presented in [42,
41, 52, 43]. If the noise and
signal variances are known
or can be estimated, one

[49, 46,
R

. i LN .
8. Result of Fig. 5(b) restored by
a Constrained Least Squares fil-
ter, ISNR = 2.0 dB.

choice is o=

51]. Figure 8 shows an ex-
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ample of a CLS restoration applied to Fig. 5(b), using
1
" BSNR'

As an illustration of the behavior of the restored image in
relation to the regularization parameter, Fig. 9(a) shows
several direct CLS restorations at different choices for c.
Notice that with larger values of o, and thus more regulari-
zation, the restored image tends to have more ringing, and yet
with smaller values of «, the restored image tends to have
more amplified noise effects. This is seen in the correspond-
ing error images shown in Fig. 9(b). The optimal solution, in
the MSE sense, lies somewhere in the middle of the two
extremes.

A more objective presentation of this idea can be seen in
Fig. 10, where the variance, bias, and MSE of the direct CLS
restoration filter are plotted as a function of . The variance
and bias have been computed here in the frequency domain,
as in [25], according to

2
2ZN ot
n 2

Var f( )=
[ 0‘] ° =1 (|.‘l{i|2+oc|ci|2)

(25)

and

i Al ol

Bias JA”
( (Oﬂ)) i=1 !}[| +0c| )

(26)

where #, ¢, and F; represent the 2-D discrete frequency
components of the blur, Laplacian constraint operator, and
original image, respectively, and 62 represents the variance
of the additive noise. The bias of this estimator is a monotoni-
cally increasing function of ¢, while the variance is a mono-
tonically decreasing function of o.. Notice that the minimum
MSE is encountered close to the intersection of these two
curves, which is the point having equal bias and variance.
Thus, one measure of objectively defining a good regulariza-
tion parameter is to choose that o which gives the best
compromise between these two types of errors. The proper-
ties of the bias and variance will be discussed in more detail
in a later section.

While direct approaches solved in the frequency domain
are among the most simple ways to restore noisy-blurred
images, they are subject to a number of restrictions, most
importantly the assumption that the image is globally station-
ary, and that a fair amount of prior information exists.

Iterative Approaches. Iterative image restoration algo-
rithms have been investigated in some detail over the last
decades (see, for example, [44, 46, 106], and the references
therein, and [8, 49, 50, 51, 67]). The primary advantages of
iterative techniques are that there is no need to explicitly
implement the inverse of an operator and that the process may
be monitored as it progresses. In addition, the effects of noise
may be controlled with certain constraints, spatial adaptivity
may be introduced, and parameters determining the solution
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(a1)

(b1)

(a2)

(b2)

(a3)

(b3)

9. (a) CLS restoration of Fig 5(b) with (from top to bottom) o. = 1.0, 0.001, 0.00001; (b) Corresponding Error Images {(original-re-

stored, scaled for display).

10. Logarithmic scale plot of the Variance, Bias and MSE vs. o.
for direct CLS restorations of Fig. 5(b).

can be updated as the iteration proceeds [41-43]. Iterative
algorithms are very well suited to restoring images suffering
from a variety of degradations, such as linear, nonlinear,
spatially varying, or spatially invariant blurs, and signal-de-
pendent noise, because of the flexible framework provided
by each approach, (see, for example, the work in [121, 122]).

One of the most basic of deterministic iterative techniques
congiders solving

HH+ o cfof=HY Q27)
with the method of successive approximations [51]. This
leads to the following iteration for f,
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fo=BH"y
(28)

fer1 = fi+ BIHY - (H'H + 0. CTO)fi.

This iteration converges if
2
0<fp<i—,
P

(29)

where Ay, is the largest
eigenvalue of the matrix
(H™H + aC'C) [44]. This it-
eration is often referred to as
the iterative CLS or Tik-
honov-Miller method, de-
pending on the way the
regularization parameter o/ is
computed. If the matrices H |
and C are block circulant, the
iteration in Equation (28)
can be implemented in the
discrete frequency domain.
The termination criterion most frequently used compares the
normalized change in energy at each iteration to a threshold
such as

11. Result of Fig. 5(b) restored
by the iterative Tikhonov-Miller
algorithm, ISNR = 6.1 dB.
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Vn - £

<107°.
A5

(30)
Using this termination criterion, and a value of

B= (L - 0.1}, Fig. 11 shows the result of the iteration of
[P tn

Equation (28) applied to Fig. 5(b), at convergence (after 321
iterations), using a value of o = 0.0001, which is equal to
_L in this case.

BSNR

One of the benefits of an iterative approach such as this is
that additional regularization may be obtained by terminating
the iteration before convergence. The result shows some of
the effects of stopping the iteration before it has converged
to the solution obtained by the direct method. Early termina-
tion may be accomplished by monitoring the visual quality
of the restored image at each iteration [44, 67]. Because the
solution in the early iterations tends to have less amplified
noise than that at convergence, a “better” solution, based on
subjective visual quality, may be obtained very simply by
terminating the process. The choice of the regularization
parameter, 0., is still an issue with this approach, and it may
be computed in a direct or iterative manner.

There are other deterministic techniques which can be
used to perform iterative restoration as well. For example, the
deterministic set-based approach described above can be
generalized to form an iterative method called projections
onto convex sets, or POCS, in which any number of prior
constraints on a solution can be imposed as long as the
constraint sets are closed convex [18]. Many techniques have
used the POCS-based approach to perform iterative restora-
tion with success in the past [93, 108, 110, 120, 130]. POCS
has also been used in a recent stochastic based image recov-
ery technique very successfully [107].

Other stochastic approaches also lead to iterative image
restoration techniques. In particular, a large amount of re-
search has been accomplished in the area of maximum like-
lihood solutions to this inverse problem. Some of this work
has included various formulations of the Expectation-Maxi-
mization (EM) algorithm for image and blur identification
and restoration [68, 66]. Such techniques are particularly
effective when the blur operator and the signal and noise
power spectra are unknown, as the identification process may
be built into the iteration explicitly. When the degradation
operator is known, but the signal and noise power spectra are
not, an iterative Wiener filter results [35], [48] (Chapter 6),
[68].

Recursive Approaches. Recursive filtering operations
are beneficial because they also permit spatial adaptivity to
be easily incorporated into the filter model [79]. In addition,
they usually require less memory for storage than direct or
iterative methods when reduced order models are used. The
recursive equivalent of the Wiener filter is the discrete Kal-
man filter. This is a recursive filter based on an autoregressive
(AR) parameterization of the prior statistical knowledge of f.
In the state space representation, consider that the global state
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vector for an M x M image model, at pixel position (#,n), may
be represented as

}_‘(m, n)=[f(m n), f(m n-1) ..,
fm—1N), f(m-1, N-1), '
...,f(m—M+1,n—M+1)]T (31)

The corresponding image model is then defined by

_f_(m, n)=A[(m, n—1)+y(m, n), (32)
where w(m, n)=[1,0,0, .., 0]" w(m, n), wim, n) ~ N0, o)
(indicating that w(m,n) is Gaussian distributed with zero
mean, and standard deviation 6), and A is an M x M prediction
matrix.

The Kalman filtering equations are reliant on the covari-
ance of the error in the prediction governed by this model.
They are also dependent upon an update based on the inno-
vation term contributed by the new observation at each point
in the recursion. Using notation defined thus far, the predic-
tion and update terms for the Kalman filter are simply
Prediction:

f+(m, n) = Af(m, n—l)

I A (33)
P* (m, n)=AP(m,n-1)A" +R,, (34)
Update:

Hom. )= 7 )+ Ko ) om0} - )|
P(m, n) = [I - K(m, )HP*(m, n) (36)
K(m, n) = P*(m, myH"[HP* (m, ))H + Run]"" G7)

where

— E{( £m.m)=F () £m )= n))T}
(38)

and
P(m, n) = E{(i(m, n) - z(m, n))(]_‘(m, n) — f_(m, n))T} .(39)

In this model the observation noise and the model noise are
modeled as zero mean Gaussian processes, with R, = E{ nnT}

and R, = E{MT} Here, the observation state, y(m, n), is
defined in a similar manner to f(m, n) in Equation (31).

Figure 12 shows the region of support of the global state
vector extending into the past, which is updated at pixel (m,n)
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12. Prediction neighborhood and global state for 2-D Kalman filter.

in Equation (35). This figure
also shows the pixels used in
predicting the value of the
current pixel. This model
uses a non-symmetric half
plane (NSHP) region of sup-
port to arrive at the predicted
value of the current pixel.
Reducing and keeping con-
stant the support of the
global state vector results in
a suboptimal Kalman filter,
the reduced update Kalman
filter (RUKF) [127, 128]. The computation of this Kalman
filter, however, becomes very efficient without sacrificing
performance, due to the local extent of the correlation exhib-
ited by most.images. While the RUKF assumes that the gain
is zero outside the local state, the reduced order model
Kalman filter (ROMKTF) [3] is based on the reduction of the
dimension of the state vector which requires a modification
to the state-space equations. Thus, the RUKF is a suboptimal
Kalman filter based on the original 2-D model, whereas the
ROMKEF is the optimal Kalman filter based on modified
state-space equations. Using an NSHP model estimated from
a prototype image, a RUKF filter restoration of Fig. 5(b) is
shown in Fig. 13. Notice that this restoration exhibits consid-
erable ringing. This is primarily caused by the use of a
constant prediction model here, which is invalid at the many
edges in the scene. Moreover, this restoration illustrates the
sensitivity of the Kalman filter to the parameters used in this
prediction-update approach. Because of this, adaptive mod-
els are best used in the recursive filtering framework provided
by Kalman filtering.

13. Figure 5(b) restored by a 2-
D Kalman filter, ISNR = 0.6 dB.

Image Restoration Artifacts

Some of the most common image restoration artifacts stem
from global restrictions placed on the restored image by
linear shift invariant (LSI) techniques. The two most preva-
lent artifacts are ringing around the edges in arestored image,
and filtered noise causing false texturing in the flat regions
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of the image. The ringing artifacts are a function of the blur
operator and the restoration filter, and are dependent on the
image. On the other hand, the magnified noise effects are a
property of the bandpass nature of the restoration filter, and
are independent of the image. Assuming that the blur operator
is lowpass with a sharp frequency cut-off (as found in motion
blur and out-of-focus blurs), there will be zeros in the transfer
function of this operator. Regularization essentially provides
a means to reduce the effects of these zeros, which become
poles in the restoration filter. Although this leads to reduced
noise amplification in the neighborhood of the zero frequen-
cies, it also results in the increase of an image-dependent
component in the restoration etror. To see this clearly, con-
sider an LSI restoration filter, G. The restored image may be
written as

f=Gy=GHf +Gn

= f+(GH—-I)f +Gn

=fte te,. (40)
So, the restored image comprises the original image, and two
error terms, e, = (GH - I)f, and e, = Gn. Considering this
problem in terms of its discrete frequency domain counter-
part, at the spatial frequencies in the original image corre-
sponding to zero frequencies in H, (GH - I) will equal -1 and
e, will be stimulated, giving rise to periodic ringing artifacts
[44, 117].

Ringing is very evidentin Figs. 7, 11, and 13. These results
are highly regularized, a characteristic that tends to increase
the image-dependent component of the error, since GH devi-
ates considerably from the identity. The tradeoff between e,
and e, is the crucial issue in regularized image restoration,
and has been analyzed in a number of different studies [65,
117]. One recent analysis of this problem treated the mani-
festation of these errors as the bias and variance of a CLS
estimator, as shown in Fig. 10, and demonstrated the effects
of the regularization parameter in terms of these image-de-
pendent and image-independent error terms [25]. As the
value of o becomes very small, the problem becomes under-
regularized, and the noise magnification component of the
error dominates the solution. This is the case in Fig. 8, where
the loose bound choice of the regularization parameter leads
to a sharp but somewhat noisy result. The restrictions of LSIT
restoration filters naturally lead to the choice of spatially
adaptive approaches to reduce some of the most common
restoration artifacts. These approaches generally require
some relaxation of the stationarity assumptions made.

So, in answer to the question, “Where have we been?”, it
is clear that we have been many places. We have learned how
to accurately model the types of degradation found in images
due to the environment used in obtaining them. We have
applied many of the most fundamental techniques from esti-
mation theory and numerical analysis to obtaining solutions
for this problem. We have encountered a variety of linear
filtering approaches along with iterative and recursive ap-
proaches to the solution. We have also studied the image
restoration problem from the perspective of an appropriate
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model for the image, from both a stochastic and deterministic
viewpoint. Additionally, we, as a community, have imple-
mented in fast software solutions all of the fundamental
approaches to spatially invariant linear restoration.

Much progress has been made in the last five or ten years
toward treating the restoration problem in a more nonstation-
ary way. That is, the added benefits of spatially variant
restoration have been explored from many angles, producing
even better results than those that can be obtained with the
techniques discussed in this section. We will briefly discuss
some of the most important of these advances in next section.

Where Are We Now?

The algorithms described in the previous section represent
the foundation of the approaches to the restoration problem
today. They are successful approaches, and they have been
applied to many different image restoration problems. Today,
we find that a variety of new techniques are being investi-
gated that attempt to improve upon these approaches, and use
them as their fundamental basis. A good deal of the newer
research is motivated by the desire to find ways to reduce the
artifacts mentioned in the previous section. Additionally,
special applications have also driven the development of new
image-restoration approaches. In this section, we briefly dis-
cuss and cite some of these approaches.

Most of the algorithms in the realm of classical image
restoration deal with some global assumptions about the
behavior of an image, whether from the stochastic viewpoint
of stationarity or a deterministic view of smoothness. Newer
successful techniques which address the problem with such
assumptions include the use of robust functionals [133] and
total least squares [80]. However, spatially adaptive or non-
stationary approaches have also been developed to alleviate
some of the problems associated with such rigid global re-
strictions.

Spatially Adaptive Approaches

Spatially adaptive algorithms frequently incorporate the
properties of the human visual system [1, 50, 51, 60, 97]. One
such property is the reduced sensitivity to noise in regions
with high spatial activity, such as edges. Because the visual
system is also sensitive to sharp changes in an image, it is not
desirable to smooth over the edges when performing restora-
tion. Therefore, the application of a different restoration filter
at each spatial location is desirable. Such filters should vary
between the inverse filter (applied at sharp edges) and an
over-regularized filter (applied in the flat regions). With a set
theoretic restoration filter obtained from Equations (23) and
(24), the spatial adaptivity can be introduced with the use of
weighted norms [44, 45, 65]. The weight matrices are chosen
to represent the masking and visibility functions[1] in [44, 50,
45]. An iterative algorithm is generally employed in the case
of spatially adaptive restoration. The weight matrices can
then be kept fixed, or be adapted at each iteration step based
on the partially restored image [53].
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Recursive methods can accommodate spatial adaptivity
when using a stochastic model of the image, by changing the
parameters of the model at the edges. For example, in [128]
a local decision process was proposed to switch between
different AR models that captured the orientation of the edges
present at different spatial locations. In [39], an AR model
was used that was driven by white noise with a space-variant
variance to model the residual image. The multiple model
approach can also lead to a reduction in ringing artifacts
around the edges in a restored image, as in [117].

Maximum a posteriori (MAP) probability methods have
also been proposed for nonstationary image restoration.
These methods utilize space-variant density functions as
prior knowledge to capture the nonstationarity of the original
image. In [15, 26, 40], doubly stochastic Markov random
fields were used as prior densities, and stochastic relaxation
was used to minimize a nonconvex objective functional in
each method.

Color Image Restoration

The problem of color image restoration presents a unique
difficulty in that the multiple color channels are related. Thus,
cross-channel correlations need to be exploited in order to
achieve optimal restoration results. A number of approaches
have been used to handle not only the color multichannel
image restoration problem, but also other inherent multichan-
nel problems such as image sequence restoration. Many such
approaches can be found in [23, 24, 57, 92, 119, 135].

Neural Networks

Another interesting emerging approach in the image restora-
tion realm is the use of neural networks [21, 94, 112, 131,
134]. Neural networks are especially well-suited to the image
restoration task because they can effectively adapt to the local
nature of the problem. They may also be used to realize
well-known algorithms without the need for extensive under-
lying assumptions about the distribution of the parameters
being estimated. They may also be used to estimate the
regularization parameter in the CLS approach, and can be
developed to alternate between learning and restoration cy-
cles. Finally, neural processing techniques have recently led
to efficient VLSI architectures for image restoration due to
their highly parallel nature [55, 56, 69, 104].

Astronomical Image Restoration

Some approaches finding extensive application to the astro-
nomical imaging problem described earlier are maximum
entropy-based methods [124], hierarchical Bayesian ap-
proaches [82], modified Richardson-Lucy iterative ap-
proaches [126, 101, 72], and more recently preconditioned
conjugate gradient methods [84]. These iterative approaches
are well-suited to dealing with the unique problems of this
application, in particular the signal-dependent nature of the
noise. Also particularly effective at restoring astronomical

IEEE SIGNAL PROCESSING MAGAZINE 35



Coefficients Grouped Into
Quadtree Structure

Scale 0

Scale 1

3-Level Wavelet
Decomposition

14. Wavelet coefficients in quadtree structure.

" data, and maintaining photometric integrity, are a new class
of general regularized iterative constrained least-squares
techniques that evaluate the regularization parameter as a
function of iteration in both the spatial and frequency do-
mains [54]. For a useful review of current techniques in
astronomical image restoration, see [87].

Wavelets

~ The use of wavelets for the task of image restoration and
enhancement is a relatively new but rapidly emerging con-
cept since their appearance in the image processing literature
[74]. Although there has long been the view that a nonstation-
ary approach may improve results substantially over those
using stationary assumptions, the idea of multiresolution has
not been a prevalent one. Instead, past adaptive restoration
techniques, for example [46, 51, 117, 128], have examined
the problem in the spatial domain, using various local meas-
ures to describe the type of activity near a pixel. However, a
number of researchers are now beginning to analyze enhance-
ment problems [17, 19, 75,76, 111, 116], and restoration and
recovery problems [11, 14, 59, 103, 115, 116] from the
multiresolution/subband perspective.

One such example of the use of wavelets for restoration
can be found in [4], where a new matrix formulation of a
wavelet-based subband decomposition was presented. This
formulation allows for the computation of the decomposition
of both'the signal and the convolution operator in the wavelet
domain. This permits the conversion of any linear single
channel space-invatiant filtering problem into a multichannel
one. In particular, this approach can be used to restore a single
channel image with any multichannel image restoration roun-
tine, like the approach to
color image restoration fol-
lowed in [16, 24, 38].

Also utilizing the wavelet
concept, in [5], a new spa-
tially adaptive restoration
approach which uses a mul-
tiscale Kalman smoothing
filter [6, 73] was discussed.
This filter was applied di-
rectly to the wavelet coeffi-
cients of a noisy image
ordered onto quadtree struc-
tures, as seen in Fig. 14. In

15. Result of Fig. 5(b) restored
by a Spatially-Adaptive Wavelet-
Based Multiresolution ap-
proach, ISNR = 6.6 dB.

36 IEEE SIGNAL PROCESSING MAGAZINE

order to obtain the noisy wavelet coefficients, the observed
image is first pre-filtered with a constrained least-squares
filter having a small regularization parameter, This leaves the
restored image under-regularized, and thus noisy. Sub-
sequent wavelet domain filtering is applied in a spatially
adaptive manner to remove this noise. A coupled approach is
described in [5] to jointly optimize the pre-filtering with the
wavelet-domain Kalman filtering.

The proposed method has the benefit that the majority of
the regularization, or noise suppression, of the restoration is
accomplished by the efficient multiscale filtering of wavelet
detail coefficients ordered on quadtrees. Not only does this
lead to potential parallel implementation schemes, but it
permits adaptivity to the local edge information in the image.
Figure 15 shows the result of such an approach applied to Fig.
5(b). This wavelet-based approach provides a particularly
useful method for image restoration when the preservation of
edges in the scene is of importance. Because the local adap-
tivity is based explicitly on the values of the wavelet detail
coefficients, it is also efficient to implement and requires
minimal added complexity over the initial deconvolution
filter.

Many of the emerging identification and restoration tech-
niques discussed here deal with the nonstationary nature of
images, so they tend to be more complex than the classicalQ
methods presented previously. This is a natural result of the
effort to find ways to improve on standard approaches. For-
tunately, the computational resources available to today’s
researchers are generally sufficient to handle algorithms of
much greater complexity than those previously used.

Where Are We Going?

It is clear that a vast array of knowledge is available to those
who wish to restore degraded images. The question remains,
however, as to what will become of the field known as digital
image restoration. The ideas expressed in this section are
merely a suggestion of what might be some avenues of
exploration. There is certainly a great deal of knowledge to
be obtained by continued research on the application of
theoretical estimation techniques to this problem, but it seems
appropriate to also consider the factors that will drive the
continued research in this field. We can use these factors to
lend insight to those seeking out new research projects in the
area.

As we move into the next phase of research in this field,
it will be useful to understand those areas in which the model
of the degradation and restoration process can be.improved.
In Fig. 16, the various components of the most common
degradation/restoration model are shown. Each of the ele-
ments of this model have been discussed in this article. It is
evident from this figure and previous discussion here, that the
amount of prior knowledge plays a major part in-achieving
the best restorations. Fig. 17 breaks down the three key areas
that benefit from prior knowledge in the identification, esti-
mation, and restoration processes. These are knowledge of
the degradation, knowledge about the. original image, -and
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Blur Identification

Most classical technigues assume that the convolution op-
erator representing the blur is known a priori. This, how-
ever, is almost never the case in practical imaging situations.
Thus, the area of blur identification, or blind deconvolution,
is a very important subset of image restoration in which
much important work has been performed (sec [63, 64] for
arecent review of this topic in this magazine).

The EM algorithm, for example, is an important tool in
image restoration and blur identification that is used to solve
for a maximum likelihood estimate of the parameters under
consideration. As mentioned in an earlier section, the EM
algorithm is one technique that has been successfully used to
simultaneously identify the blur and restore an image |66, 68].

There are also several other emerging techniques that have
been used to address this identification problem. The first of
these is the generalized cross-validation approach [99]. This
method considers a parameterized estimate of the blur bascd
on the minimization of a restoration residual over the image
and blur parameter space. This estimate excludes a single
observed data point at a time. It is sometimes referred to as the
“leave one out” method, as the accuracy of the cstimates are
analyzed on the basis of a prediction of the data left out at each
step. An added benefit is that a Gaussian noise assumplion is
not required with cross-validation. The cross-validation ap-
proach has also been used for the estimation of the regulariza-
tion parameter in |25, 98].

Another approach to the blur identification problem is
based on the idea of residual spectral matching [105]. This

consists of selecting the best PSF estimate from a pool of
candidates that provides the best match between the resto-
ration residual power spectrum and its expected value,
assuming that the selected PSF is the correct one. This
approach uses a Wiener filter as the restoration filter, and
thus requires knowledge of the noise variance and the
original image power spectrum. The residval spectral
matching method is essentially a statistical analysis ap-
proach to the blur identification problem. Other work that
treats the PSF as a stochastic signal has been examined using
a maximum likelihood estimate of the blur obtained from
differently blurred versions of an image with measurement
errors in the PSF [123]. Another technique was developed to
eliminate the use of prior knowledge of the extent of the blur
[96}. This method considers modeling the blur in continuous
spatial coordinates. permitting the likelihood function to be
minimized with respect to the cxtent of the blur.

In a number of applications, more than one blurred
version of an original image may be available. Improved
restoration results can be obtained in such cases when the
blurs are known, as reported in 58, 27, 47], but, more
recently, this has been the case when the blurs are unknown
{28, 33]. Finally, a new approach has recently been devel-
oped that jointly solves the blur identification and image
restoration problem for a single image by minimizing a cost
function based on a restoration error measure, a regulariza-
tion term for the image, and a regularization term for the
blur | 132].
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16. Image degradation model, and restoration process.

knowledge about the noise. Researchers are now attempting
to improve the models used in identification and restoration
by incorporating better prior knowledge into the problem. For
example, it has been shown that digital restoration may fail
when incomplete system models are used [95]. One example
of an incomplete system model is that which excludes the
image formation, or image gathering, process [20]. In moving
from the continuous to the discrete domain, the sampling and
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future will likely make use
of more complete models to

provide better image restorations. However, these complete
models will be tied in a critical way to the application at hand.

From the viewpoint of applications, the future of image
restoration depends upon the needs of a variety of video
technologies that will require processing of digital images for
a number of reasons. We already mentioned a number of
applications in today’s world that make ready use of image
restoration techniques. Some of the most interesting of these
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lie in the area of consumer products. Consider, for example,
hand-held video cameras that provide options such as digital
focusing and adjustment for camera jerkiness. These digital
enhancements to a widely accepted consumer product illus-
trate the importance of applying some of the well-developed
approaches from the restoration and enhancement field in a
useful manner. Many more digital consumer products that
utilize digital images and video are clearly on the way today.
Items such as personal communication systems (PCS) that
utilize video may provide a great deal of opportunity for the
application of restoration ideas to coded images. It should be
important to obtain a perspective on the future of image
restoration which considers the driving importance of con-
sumer applications.

In the same way, a second area of application that will
continue to draw on the expertise of image restoration experts
is medical imaging. Already, a great dea! has been done to
investigate the application of restoration techniques to the
problem of degraded image quality in this area. The technol-
ogy that advances the field of medicine is critically linked to
the world of image processing. One prominent piece of
evidence that illustrates this is the emergence of “tele-
medicine,” which considers diagnosis from imaging over
long distances through various forms of telecommunications.
It'is apparent that such remote diagnoses will rely heavily on
the image quality at reception, and we may find that restora-
tion has an important roles to play in this and other similar
applications in the medical realm today.

Of those emerging techniques that seem to hold promise
for further research, blur identification seems to be one area
that requires a good deal of research. The most critical fault
of most of the algorithms discussed in this review is that they
assume knowledge of the PSF of the imaging system. Al-
though certain applications have special circumstances that
permit good approximations of the PSF (such as those with
blurry star field images), most real situations have difficult,
spatially varying blurs. This makes studies into the blur
identification problem all the more important to the future of
this field. It may have been assumed 10 years ago that it would
not be possible to take a blurry picture because of the great
promise of digital image restoration. But the restoration
community’s lack of persistent attention to the identification
problem has made this assumption false. While blur identifi-
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results have been shown
thus far that really preserve
the edge-like nature of restored images using these tech-
niques [100]. Again, this is an area that may still provide
fertile ground for continued restoration research.

As mentioned in the beginning of this article, image
restoration has matured considerably over the last several
decades. The maturity of the field requires us to take an
objective look at where restoration will go, and what contri-
butions remain to be made in order to most effectively utilize
the existing knowledge in this area. The discussion here has
given some hints as to what directions we might take, but only
offers one perspective on the substantial work in.the field.
Researchers coming from a tradition outside of signal proc-
essing, such as astronomical and medical imaging, certainly
have additional and valuable viewpoints on this topic that will
also help to guide the direction of future research in the field.
Nonetheless, there remains a good deal of doubt about where
the next major advances will come. Clearly, there is a real
opportunity for interested researchers to begin shaping the
next ten years, and the next century of digital image restora-
tion right now.
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