
I
n this article, we present a review of techniques for the detection and classification of edges
in color images. Edge detection is one of the most important tasks in image processing and
scene analysis systems. It denotes the procedure of detecting meaningful discontinuities
(edges) of the image function (see Figure 1 for an example of edge detection in color and
gray-level image). The accuracy in detecting these discontinuities (edge detection) and the

efficiency in implementing these operations are important criteria for using an algorithm in the
area of computer vision. Inaccuracies in edge detection directly influence the results of a subse-
quent feature-based image processing technique, such as region segmentation, stereo analysis,
data coding, image retrieval, data hiding, watermarking, or recognition and tracking of objects
in image sequences.

Edges in gray-level images can be thought of as pixel locations of abrupt gray-level
change. A change in the image function can be described by a gradient that points in the
direction of the largest growth of the image function. Therefore, one edge detection tech-
nique is to measure the gradient vector magnitude at pixel locations. This method works best
when the gray-level transition is quite abrupt, like a step function. As the transition region
gets wider, it is more advantageous to apply second-order derivatives like the Laplacian. The
potential edge pixel locations can then be described by zero-crossings in the results.

While edge detection in gray-level images is a well-established area, edge detection in color
images has not received the same attention. The fundamental difference between color images
and gray-level images is that, in a color image, a color vector (which generally consists of
three components) is assigned to a pixel, while a scalar gray-level is assigned to a pixel of a
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gray-level image. Thus, in color image processing, vector-valued
image functions are treated instead of scalar image functions (as
in gray-level image processing). The techniques used for this
can be subdivided on the basis of their principle procedures into
two classes:

■ monochromatic-based techniques treat information from
the individual color channels or color vector components
first separately and then combine together the individual
results gained.

■ vector-valued techniques treat the color information as
color vectors in a vector space provided with a vector norm.

Up to now, most of the color edge detection methods are
monochromatic-based techniques, which produce, in general,
better than when traditional gray-value techniques are applied.
In this overview, we focus mainly on vector-valued techniques
because it is easy to understand how to apply common edge
detection schemes to every color component. Opposed to this,
vector-valued techniques are new and different. 

While in gray-level images a discontinuity in the gray-level
function is indicated as an edge, the term “color edge” has not
been clearly defined for color images. Several different defini-
tions have been proposed for color edges. A very old definition
[19] states that an edge exists precisely in the color image if the
intensity image contains an edge. This definition ignores, how-
ever, possible discontinuities in the hue or saturation values. If,
for example, two equally light objects of various colors are
arranged in juxtaposition in a color image, then the edges deter-
mining the object geometry cannot be determined with this
technique. Figure 2(a) shows a synthetic image consisting of
three different color squares of similar intensity in a grid pat-
tern. While a color version of the Canny operator is able to
detect the borders between the squares [see Figure 2(b)], the
original grayscale version is not able to detect any edges [see
Figure 2(c)]. 

A second definition for a color edge states that an edge exists
in the color image if at least one of the color components con-
tains an edge. However, merging the edge detection results from

the color components may cause some problems due to localiza-
tion inaccuracies of edges in the individual color channels. A
third monochromatic-based definition for color edges is based
on the calculation of the sum of absolute values of the gradients
for the three color components. A color edge exists if the sum of
the absolute values of the gradients exceeds a threshold value.
The results of the color edge detection by the two previously
named definitions depend heavily on the used color spaces. All
previously referenced definitions ignore the relationship
between the vector components. Since a color image represents
a vector-valued function, a discontinuity of chromatic informa-
tion can and should also be defined in a vector-valued way. 

The second part of the article addresses the topic of edge
classification. While edges are often classified into step edges
and ramp edges, we address the topic of physical edge classifi-
cation based on their origin into shadow edges, reflectance
edges, orientation edges, occlusion edges, and specular edges.
The rest of this article is organized as follows. First, we discuss
various vector-valued techniques for detecting discontinuities
in color images. Then operators are presented based on vector
order statistics, followed by presentation by example a couple
of results of color edge detection. We then discuss different
approaches to a physical classification of edges by their origin,
and finally the article is concluded.

VECTOR-VALUED TECHNIQUES
In some early publications on color edge detection, vector-valued
techniques were suggested that replaced gray-level differences of
adjacent pixels in some way by vector differences [17], [24].
Huntsberger and Descalzi [11] used fuzzy membership values,
while Pietikainen and Harwood [17] used histograms of vector
differences. Yang and Tsai [30] and Tao and Huang [25] used vec-
tor projections, but the first projected colors into grayscale, while
the latter projected vector differences onto segments connecting
color clusters. However, these simple difference operators do not
represent the state of the art in edge detection in either gray-
level image processing or in color image processing. 

[FIG1] Results of edge detection applied to the color image Lena. (a) Original color image. (b) Gray-level representation. (c) Results for a
color variant of the Canny operator. (d) Results of the gray-level algorithm of the Canny operator. (Used with permission from John
Owens, Stanford University.)

(a) (b) (c) (d)
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COLOR VARIANTS OF THE CANNY OPERATOR
Novak and Shafer suggest an extension of the “Canny opera-
tor” [3] for color edge detection. Kanade introduced this
approach in [12]. The philosophy of the Canny operator
consists of first determining the first partial derivatives of
the smoothed image function according to x and y, and
then, on the basis of these values, finding the magnitude
and direction of the “best” edge. A three-band color image is
represented by a function that maps a point in the image
plane to a three-dimensional (3-D) vector in the color
space. In the red, green, blue (RGB) space, the pixel value is
the vector C = (R, G, B). We have C as a function of (x, y)
in the image and can describe the variation of the image
function at any point by the equation �C = J�(x, y). The
Jacobian matrix is indicated by J, which contains the first
partial derivatives for each component of the color vector.
In the RGB space, J is

J =



Rx Ry

Gx Gy

Bx By


 = (

Cx, Cy
)
. (1)

The indices x and y designate the respective partial derivatives
of the functions, e.g.,

Rx = ∂ R
∂ x

and Ry = ∂ R
∂y

. (2)

The direction in the image along which the largest change
and/or the largest discontinuity in the chromatic image func-
tion occurs is represented by the eigenvector of JT J correspon-
ding to the largest eigenvalue. This technique can likewise be
used for multichannel images and/or image sequences. The
direction θ of a color edge defined in such a way is determined
in an individual image with any norm by 

tan(2θ) = 2 · Cx · Cy

‖Cx‖2 − ‖Cy‖2 , (3)

where Cx and Cy are the partial derivatives of the color compo-
nents, for example, in the RGB space

Cx = (Rx, Gx, Bx). (4)

The magnitude m of an edge is indicated by

m2 =‖Cx‖2 cos2(θ) + 2 · Cx · Cy · sin(θ) cos(θ)

+ ‖Cy‖2 sin2(θ). (5)

Finally, after the direction and the magnitude are determined
for each edge, nonmaximum suppression is used, based on a
threshold value in order to eliminate broad edges. 

Several different color versions of the Canny operator were
tested at Carnegie Mellon University. Here, each operator is sub-
divided into three individual processing steps that are defined
below. Then, after k, k = 1, . . . , 3, processing steps for the indi-
vidual components of the color vectors have been implemented,
these results can be combined with a combination operator. The
following processing steps are implemented next for the
attained scalar values. By this combination, the vector-valued
technique is transferred into a monochromatic-based technique.
For the definition of the “combination operators,” different
mathematical norms can be used as a basis, e.g., the L1-norm
(sum of the absolute values), the L2-norm (Euclidian norm), or
the L∞-norm (maximum of the absolute values). A color edge
operator can now be described by the k processing steps that
were implemented for the individual color channels and the
index of the norm used for the combination. The Canny opera-
tor can be subdivided into three processing steps.

I) determine the partial derivatives
II) calculate edge direction and edge magnitude
III) implement the nonmaximum suppression.

In accordance with the convention specified previously, the I/2
Canny operator consists of determining the partial derivatives
for each component of the color vectors (processing step I),

combining the results using the
Euclidean norm L2, and executing
the remaining processing steps for
the combined values. We note that
0/1 and 0/2 color operators consist
of determining an intensity image
of the color vectors and subse-
quently executing the standard
Canny operator. Kanade [12] sum-
marizes the results obtained for a
selected series of color test images
as follows:
■ The color edges describe object

geometry in the scene better than
the intensity edges, although over
90% of the edges are identical. 

[FIG2] (a) Original color image consisting of three different color squares of similar intensity in a
grid pattern. (b) Results for a color variant of the Canny operator. (c) Results of the gray-level
algorithm of the Canny operator. (Used with permission from John Owens, Stanford University.)

(a) (b) (c)
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■ II/∞ proved to be the best multilevel operator, i.e., compu-
tation of the edge magnitude and direction separately for
each color channel and subsequent selection of the edge
with the strongest magnitude. 

■ A similar, but not as good, result can be obtained with the
I/∞ operator. This is faster than the II/∞ operator, since
the combination of the color channels takes place earlier. 

■ The II/∞ operator produced almost exactly the same edges
as the theoretical operator based on the Jacobian analysis
described previously.

Until now, there have been no investigations on what extent the
choice of the smoothing operator and/or the choice of a suitable
standard deviation for the Gaussian smoothing influences the
detected results. 

CUMANI OPERATOR
For edge detection in color or multispectral images, Cumani
suggests the extension of procedures based on the second
partial derivatives of the image functions [4]. A three-chan-
nel color image C is regarded as a two-dimensional (2-D)
vector field 

C(x, y) = (C1(x, y), C2(x, y), C3(x, y)) (6)

with the three components C1(x, y), C2(x, y), and C3(x, y). In
the RGB space, these vector components correspond to the
components R(x, y), G(x, y), and B(x, y) for the RGB color
channels (or the long, middle, and short wave spectral trans-
mission, respectively). The notation Ci(x, y) is given at this
point, on the one hand, for a compact representation. On the
other hand, it should be made clear that this technique is
applicable, in general, for n-channel color images. In this con-
nection, it is always assumed that a Euclidian metric exists for
the n-dimensional vector space. Therefore, this technique can-
not be easily used for edge detection in the HSI, CIELUV, or
CIELAB space.

The squared local contrast S(p; n) at p = (x, y) is defined [4]
as a quadratic norm of the directional derivatives of the image
function C toward the unit vector n = (n1, n2) by

S(p; n) = K · n2
1 + 2 · Fn1n2 + H · n2

2 . (7)

The abbreviations are defined as

K =
3∑

i=1

∂Ci

∂ x
· ∂Ci

∂ x
, F =

3∑
i=1

∂Ci

∂ x
· ∂Ci

∂y
, and

H =
3∑

i=1

∂Ci

∂y
· ∂Ci

∂y
. (8)

The eigenvalues of the matrix

A =
(

K F
F H

)
(9)

coincide with the extreme values of S(p; n) and are obtained if n
is the corresponding eigenvector. The extreme values λ± and
the corresponding eigenvectors are given by

λ± = K + H
2

±
√

(K + H)2

4
+ F 2 and

n± = (cos(θ±), sin(θ±)), (10)

with θ− = θ+ + (π/2) and 

θ+ =




π

4,
if (K − H) = 0 and F > 0,

− π

4,
if (K − H) = 0 and F < 0,

undefined, if K = F = H = 0, and

1
2

tan−1
(

2F
K − H

)
, otherwise.

In the one-channel case, λ± corresponds to the gradient, and
n± and θ± give the direction of the strongest and the weakest
magnitude. The two latter terms thus correspond to the gradi-
ent direction. Since only the direction of the steepest magnitude
is of importance for the extraction of edge points, λ−, n−, and
θ− are not further addressed. 

The squared local contrast of the vector-valued image
function C, dependent on location and direction, is defined
by S(p; n+). The maximum squared local contrast λ+ was
clearly defined as a maximum of S(p; n+) over the possible
directions n+ , while the direction of the maximum magni-
tude is clearly determined only up to the orientation. Edge
points, i.e., discontinuities of the image function that are
characterized by a particularly high contrast, are sought.
The maxima of λ+ are calculated by deriving the function
λ+(p), which is represented as a function of the location.
Subsequently, the zeros of the derivative, which represent
the maxima, are to be determined. In order to find the zeros
of λ+(p) defined in (10), the derivatives of this function can
also be formed in direction n+

∇λ+ · n+ = ∇S(p; n+) · n+ . (11)

Therefore, the derivative of λ+ is defined by DS(p; n) with

DS(p; n) := ∇λ+ · n+ = Kxn3
1 + (Ky + 2Fx)n2

1n2

+ (Hx + 2Fy)n1n2
2 + Hyn3

2, (12)

where the indices x and y denote the corresponding deriva-
tives to x and y, respectively, and the index + in the compo-
nents of n+ are omitted for simplification. In the one-channel
case, λ± corresponds to the absolute value of the gradient.
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DS(p; n+), as the derivative of λ± to n+, corresponds in the
one-channel case to the derivative of the absolute value of the
gradient in the gradient direction. 

Altogether DS(p; n+) is a form that is based on the second
directional derivatives of the image function. The edge
points, which were defined as the maximum points of the
first derivative of the image function, are represented in
DS(p; n+) by zeros (or zero-crossings in the digital grid). For
the detection of these zero-crossings (with regard to, for
example, a four- or eight-neighborhood), neighboring func-
tion values with different signs must be sought. The sign of
DS(p; n+) is, until now, not uniquely defined. The definition
of n+ of the eigenvector of a matrix results in the fact that it
is not certain whether n+ or (−n+) is the sought-after vec-
tor. Since n+ cubically rises in
DS(p; n+), DS(p; n+) is directly
dependent on the sign of n+ .
For the solution of this prob-
lem, Cumani [4] recommends
an investigation into the sub-
pixel domain using a bilinear
interpolation. Alshatti and Lambert [1] propose a modifica-
tion of Cumani’s technique. Since λ+ is an eigenvalue of the
matrix A, the associated eigenvector n+ can be directly deter-
mined. Thereby the complex approximation in the subpixel
domain, as suggested by Cumani, is avoided. 

The computationally costly calculations of the partial
derivatives of K, F, and H to x and y can be accomplished
more efficiently if these derivatives are determined directly,
without first calculating and storing K , F, and H [14].
However, it must still be specified how the partial derivatives
of the image functions are to be determined. Alshatti and
Lambert [1] and Cumani [4] applied several 3 × 3 convolution
masks for this. From [15] it is well known that the use of con-
volution masks of a fixed size of 3 × 3 pixels is not suitable for
the complex problem of determining discontinuities in image
functions. Therefore, for the determination of the partial
derivatives, masks that are based on the 2-D Gaussian func-
tion and their partial derivatives are suggested here. These
masks are called “Gaussian masks” and can be parameterized
by the standard deviation σ . The size of the Gaussian masks
can be specified by those function values that are, e.g., larger
than 0.1% of the maximum function value of the Gaussian
function for a standard deviation σ . Thus, the choice of a
standard deviation of, e.g., σ = 0.5 corresponds to a mask of
size 3 × 3 pixels. Large Gaussian masks can be effectively
approximated by cascaded block filters with very high efficien-
cy (a few operations per pixel). 

Note that the Cumani operator can be parameterized over
the standard deviation σ if Gaussian masks are included in the
calculations of the partial derivatives. Therefore, an application
of this operator is also possible in different resolutions [14].
The use of Gaussian masks is, however, not entirely necessary
here for the scalability of the operator. Other functions, such
as Gabor functions, can be used as well.

OPERATORS BASED ON VECTOR ORDER STATISTICS
Following the use of morphological operators for edge detection
in gray-level images [9], Trahanias and Venetsanopoulos suggest
vector-valued ranking operators for edge detection in color
images [27], [28]. The scheme of the detection and combination
of local minima and maxima of the image function, as it is used
for a morphological edge extraction in gray-level images, cannot
be extended directly to vector-valued color images. No exact
equivalent of the scalar “min-max” operator exists for vector-val-
ued variables. In [28], the application of vector order statistics is
therefore suggested for this.

Ordering of vector-valued data cannot be uniquely defined.
Therefore, a set of techniques for the arrangement of an order-
ing scheme for vector-valued data was introduced, which gener-

ally can be classified into
marginal- (M), reduced- (R),
conditional- (C), and partial-
(P) ordering [28]. Trahanias and
Venetsanopoulos propose the
use of reduced ordering for
color edge detection because

this scheme contains a natural definition of a vector median for
the first sample in the arranged vector sequence, and vector out-
liers occupy the upper ranks in this vector sequence.
Furthermore, the other ordering schemes appear less suitable
for color image processing. M-ordering corresponds to a compo-
nent-wise monochromatic-based processing, and P-ordering
implies the construction of a convex hull, which is difficult in 3-
D. C-ordering represents, simply, an ordering according to a
specific selected component, and thus does not use the informa-
tion content from the other signal components. 

x = (x1, x2, . . . , xp)
T represents a p-dimensional (multi-

variate) term provided with several characteristic variables,
where the xl, l = 1, 2, . . . , p, are random variables, and
xi, i = 1, 2, . . . , n is an observation of x. Each xi represents a
p-dimensional vector. In R-ordering, each multivariate obser-
vation is reduced as a function of a distance criterion to a
scalar value di. If the sum of the distances of the vector xi to
each vector from the set x1, x2, . . . , xn is selected as a distance
metric, then di is represented by

di =
n∑

k=1

‖xi − xk‖ , (13)

where ‖·‖ represents a suitable vector norm. An arrangement of
the dis in ascending order, d1 ≤ d2 ≤ · · · ≤ dn, associates the
same ordering to the multivariate xis, x1 ≤ x2 ≤ · · · ≤ xn. In
this arranged sequence, x1 is the vector median of the data sam-
ples. It is defined as that vector contained in the given set whose
distance to all other vectors is a minimum. 

A color image is now regarded as a vector field, represented
by a discrete vector-valued function C : Z2 → Zm , where
m = 3 for three-channel color images. F indicates a window
over the image function that contains n pixels (color vectors).
If R-ordering is specified for all color vectors lying within the

EDGE DETECTION IS ONE OF THE MOST
IMPORTANT TASKS IN IMAGE PROCESSING

AND SCENE ANALYSIS SYSTEMS.
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window, then xi indicates the ith vector in this ordering. A
simple color edge operator [vector rank operator (VR)] is
defined [28] by

VR = ‖xn − x1‖ . (14)

Edges in color images can be determined by indicating a thresh-
old value for VR. VR would be very sensitive, however, in relation
to impulse noise, since the vectors lying in the upper order of
rank can correspond with the noisy data. 

In order to eliminate this disadvantage, Trahanias and
Venetsanopoulos [28] consider dispersion measures. A general
class of vector dispersion edge detectors (VDEDs) can be defined
by using a linear combination of the arranged vectors 

VDED = OSO

(∥∥∥∥∥
n∑

i=1

αi1xi

∥∥∥∥∥ ,

∥∥∥∥∥
n∑

i=1

αi2xi

∥∥∥∥∥ , . . . ,

∥∥∥∥∥
n∑

i=1

αikxi

∥∥∥∥∥
)

,

(15)

where OSO indicates an operator based on ordering statistics. In
principle, edge operators can be derived from the previous equa-
tion by a suitable choice of an OSO and a set of coefficients αi j. In
order to limit this difficult task, some requirements for an edge
operator are observed in [28]. First, the edge operator should not
be sensitive to impulse and Gaussian noise, and second, the edge
operator should supply a reliable answer for ramp edges. 

Since the vectors afflicted by impulse noises appear in the
higher ranks in the set of ordered vectors, the detector can be
made insensitive to this kind of noise. Instead of a single differ-
ence, as in (14), k sets are determined by differences, and a min-
imization is implemented. 

min
j

(∥∥xn− j+1 − x1
∥∥)

, j = 1, 2, . . . , k; k < n. (16)

Impulses (up to k − 1) caused by isolated noisy pixels are not
detected by the implementation of minimization. The choice
of a suitable value for k in the previous equation depends on
n, the size of the observed work window F. However, no gen-
eral formula for the definition of k can be indicated. In [28],
it is proposed to interpret k as the number of the pixels
belonging to the smaller side of the edge, if F is centered on
an edge pixel. 

In order to make the operator insensitive to Gaussian noise,
Trahanias and Venetsanopoulos replace the vector median x1

by a so-called vector-valued “α-trimmed” mean value (vector
α-trimmed mean, VαTM, 

∑l
i=1(xi/ l )). The resulting edge

operator based on minimum vector dispersion (MVD), is
defined as 

MVD = min
j

(∥∥∥∥∥ xn− j+1 −
l∑

i=1

xi

l

∥∥∥∥∥
)

,

j = 1, 2, . . . , k; l < n. (17)

The value for the parameter l in the previous equation cannot be
formally determined. Trahanias and Venetsanopoulos [28] argue
that a duality exists between l and k, in that l describes the num-
ber of pixels that are on the larger side of an edge, if F is cen-
tered on an edge pixel. The choice of the parameters k and l in
the equation is, however, subjective and heuristic. Note that
color vectors can also be ordered applying principal component
analysis to aid color edge detection.

RESULTS OBTAINED USING COLOR EDGE OPERATORS
Various techniques for edge detection in color images were
presented previously. The following will cover how significant
the differences are in the results when differing techniques for
edge detection are applied. A discussion of several criteria for
the evaluation of edge operators (in gray-level images) can be
found in [21]. The topic of edge detection in color images is,
however, not covered there. 

The results of an investigation [12] of different color vari-
ants of the Canny operator have already been described. Here,
resulting images for the vector-valued variants of the Canny
operator are presented. The results for a selected color test
image obtained with the Cumani operator, including Gaussian
masks, are compared directly to these results. In addition, a
result image with a monochromatic technique is visualized.
For a monochromatic-based technique, the classic Mexican hat
operator (LoG operator) was selected as an example. The
Mexican hat operator is defined by the negative Laplacian
derivative of a 2-D Gaussian distribution −∇2GAUSS(x, y)
[15]. It holds that

−∇2GAUSS(x, y) = x2 + y2 − 2σ 2

2πσ 6 exp

(
− x2 + y2

2σ 2

)
.

(18)

The operator can be parameterized with the standard deviation
σ . The size of the convolution masks was fixed by those function
values that are greater than 0.1% of the maximum function
value of the Gaussian function for a standard deviation σ . The
convolution mask designed for a selected σ is applied to all
three spectral transmissions of the color image. A pixel in a
color image is declared as part of a color edge if a zero-crossing
was detected in at least one of the resulting images achieved in
this manner. 

In Figure 3, some results of color edge detection for a selected
color image “block” are represented. The results can be inter-
preted as follows. Many pixels in the image background are
determined as edge points by applying the monochromatic-based
color variant of the Mexican hat operator [see Figure 3(d)]. In
addition, many gaps develop at the same time in the detected
edges. The results of the Mexican hat operator can be improved
by defining a larger standard deviation. In Figure 3, the result for
the standard deviation σ = 1.0 was selected in order to show
such a comparison to the Cumani operator, which was parame-
terized over the same value for the standard deviation.
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Better results are achieved with the Cumani operator [see
Figure 3(c) and (e)]. Here, the quality of the results is continual-
ly improved if Gaussian masks with a greater standard deviation
are used instead of a 3 × 3 convolution mask with σ = 0.5. A

comparison of the results, which the Cumani operator supplies
for the color image “block” [see Figure 3(e)] and for the corre-
sponding gray-level image [see Figure 3(f)], is interesting. It is
to be noted that several edges that had not been determined in
the gray-level image were detected in the color image. Further
investigations have shown that edge detection in color images is
more robust in relation to noise than appropriate edge detection
in the associated gray-level image. This applies especially to low
contrasted images. 

From the results obtained with the Canny operator, it can
also be recognized that some edges could be detected in the
color image [see Figure 3(g)] that were not determined in the
gray-level image [see Figure 3(h)]. This statement applies like-
wise to the color image Lena, for which a gray-level representa-
tion and the results obtained with the Canny operator were
indicated in Figure 1. With a comparison of the results for the
Cumani operator indicated in Figure 3, and the Canny operator
for the color image “block,” one recognizes that more edges
were detected with the Cumani operator than with the Canny
operator. This statement cannot be generalized, however, and
applies only to the results represented in Figure 3. The inclusion
of the results that can be obtained with vector-valued ranking
operators, as they were described previously, remains the sub-
ject of future work. It can be said that the results that are deter-
mined in color images are at least as good as or better than the
results that are determined in gray-level images.

Apart from a qualitative evaluation of the results of color
edge detection, a quantitative evaluation is also of interest. As a
function of the processed image, about 90% of all detected edges
are identical in the color image and intensity image [12]. Also of
concern during the detection of edges in color images is the
detection of the remaining 10% of the edges. It depends on the
respective application whether the expenditure is justified for
the detection of this additional 10%. In an edge-based stereo
analysis, only those edges can be assigned that were also detect-
ed in both images. A missing edge that was not detected can lead
to a complete misinterpretation within shape reconstruction.
Furthermore, the nondetection of an edge also has a deciding
influence on the result of an edge-based segmentation process.
In the following, it is not our concern to decide whether the
additional edges are needed or not. Rather, vector-valued tech-
niques were introduced that make it possible to at least partly
detect the remaining edges. In the following, it is shown that
color information can be used, under certain conditions, for
classifying edges. 

CLASSIFICATION OF EDGES
In addition to quantitative and qualitative advantages of color
edge detection, color information allows for physical classifica-
tion of the edges. The main goal of the following is to give a gen-
eral overview on various edge classification techniques and to
familiarize the reader with the dichromatic reflections model
that is commonly applied in physics-based color image process-
ing. Edges in images can have completely different causes due to
the geometrical and photometric conditions within a scene.

[FIG3] (a) Color image “block” and (b) its gray-level
representation. (c) Edge detection results for the Cumani
operator with σ = 0.5, (d) the Mexican  hat operator with σ = 1.0,
and (e) the Cumani operator with σ = 1.0. (f) Results for the gray-
level image of “block” for the Cumani operator with σ = 1.0, (g)
the  color Canny operator, and (h) the gray-value Canny operator.
[Parts (g) and (h) used with permission from John Owens,
Stanford University.]
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Different types of edges are outlined in Figure 4. Edges can be
distinguished into the following five classes: 

■ object edges, or orientation edges, arise from a discontinu-
ity of the vector normal of a continuous surface

■ reflectance edges arise from a discontinuity of the reflect-
ance of object surfaces, for example, by a change of sur-
face material

■ illumination edges, or shadow edges, arise from a disconti-
nuity of the intensity of the incident lighting

■ specular edges, or highlight edges, arise from a special ori-
entation between the light source, the object surface, and
the observer and are due to material properties

■ occlusion edges are boundaries between an object and the
background as seen by the observer. Occlusion edges do not
represent a physical discontinuity in the scene. They exist
due to a special viewing position. 

In many areas of digital image processing, a classification of
edges is necessary and/or advantageous. For
example, only orientation edges, reflectance
edges, and illumination edges should be
matched in stereo vision. Specular edges and
occlusion edges should not be matched
because their occurrence in the image
depends on the viewing position of both cam-
eras, and they do not represent the identical
physical locus in the scene. Illumination
edges should not be matched if motion analy-
sis is applied. The classification of edges by
their physical origin is difficult or even impos-
sible in gray-level images. Color image pro-
cessing can provide a solution to this problem
at least in part. 

DICHROMATIC REFLECTION MODEL
If it is known, for example, that the objects in the scene consist of
inhomogeneous dielectric materials, then a physics-based classi-
fication of the color edges is possible. The dichromatic reflection
model (DRM) describes the reflection on inhomogeneous, dielec-
tric materials, such as plastic or paint [23]. The surface area con-
struction of these materials consists of an interface and an
optically neutral medium in which color pigments are found.
The construction of such a material is illustrated in Figure 5.

The interface separates the surface area from the medium
surrounding it, which is generally air. A portion of the radiation
that appears on the surface area does not penetrate into the
material, but rather is reflected on the interface. This reflection
is called Fresnel reflection (interface reflection or surface reflec-
tion) and has approximately the same spectral distribution as the
light of the illumination source.

The light that is not reflected onto the interface penetrates
into the material. There it is scattered onto the color particles,
partially absorbed, partially passed on, and finally, a portion of the
penetrated light is reflected through the interface into the sur-
rounding medium. This final process is indicated as “body reflec-
tion.” When the division of the color pigments is homogeneous

and the pigments demonstrate the same optical behavior, it can
be assumed that the light penetrating into the material does not
show any particular direction when exiting the surface area. 

The light energy L that falls on a sensor depends on the
wavelength λ, the surface normal n, the lighting direction s, and
the viewer direction v. L is the sum of the radiance of the inter-
face reflection Ls and the body reflection Lb. The interface
reflection describes the specular reflection component, while
the diffuse reflection component is described by the body reflec-
tion. The dichromatic model is formulated mathematically by

L(λ, n, s, v) = Ls(λ, n, s, v) + Lb(λ, n, s, v)

= ms(n, s, v) · cs(λ) + mb(n, s, v) · cb(λ). (19)

A DRM assumes that the geometric components ms and mb can
be separated from the spectral components cs and cb · cs is
denoted as “interface reflection color” and cb as “body reflection
color.” Since ms and mb can principally be any scaling factors,
vectors cs and cb form a plane in the RGB color space, the so-
called dichromatic plane. If the object has many differing surface

[FIG4] Different types of edges in a representation of a scene.
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area orientations, then the color vectors in the dichromatic plane
are assigned to T- and L-shaped clusters. Figure 6 shows the
dichromatic plane of a bent, one-color, hybrid-reflecting object. 

If the object consists of many hybrid-reflecting materials,
then a special cluster develops for each material. The color
spaces represented in the figure are likewise called “color his-
tograms” although the entry in this color histogram is only bina-
ry. It is only noted whether a color appears in the scene or not. 

Several vector-valued techniques for edge classification in
color images are based on the DRM. They can be summarized
as follows: 

■ Reflectance edges and/or material changes can be partly
recognized by a rejection scheme using spectral crosspoints
[20]. At least two spectral samples (e.g., the values in the
red and green color channels) are needed for the applica-
tion of this technology. The limits of this classification tech-
nique are discussed in [7]. 

■ Shadow edges, or illumination edges, can be classified by
active shadow recognition [6] or by analyzing the struc-
ture of the shadows in chromatic images [7]. A retinex
technique has also been applied to color images to detect
shadow edges and to remove shadows [5]. It has to be
noted that the retinex algorithm also provides some
dynamic range compression, which yields to a change of
the colors in the image. Furthermore, several recent
approaches have been published on shadow detection in
gray-level images (see, for example, [10] and [18]). 

■ Specular edges, or highlight edges, can be classified on the
basis of methods for highlight detection [2], [13], [22], [26],
[29]. These methods separate the specular and the diffuse
reflection component applying the DRM. Highlight analysis
techniques can be subdivided into global and local tech-
niques. While global techniques have to consider the entire
image for finding color clusters [13], [22], [26], local tech-
niques perform local analysis on pixels [22]. However, the
latter technique requires that more than one image of an
object is available to be analyzed.

■ Orientation edges and occlusion edges can be classified by
using gradient estimation techniques. These two latter
classes of edges can be determined without evaluation of
color information.

The techniques mentioned previously do not offer a complete
solution to the problem of physical edge classification. However,
they may be applied when no complete classification must be
accomplished, but it has to be decided in individual cases
whether an edge is, for example, caused by a highlight or not.
One disadvantage of the procedures specified previously, using
the DRM, is that certain knowledge of the material properties of
the objects in the scene must be present. A goal for the future is
to achieve an edge classification solely on the basis of the vector
signals in the color space and without further knowledge about
the objects. Techniques in this direction are presented in [16]. 

PHOTOMETRIC INVARIANT GRADIENTS
While the techniques previously discussed were mainly designed
to detect one specific class of edges, Gevers and Stokman [8]
proposed a technique for an automatic classification of color
edges into the three classes 1) shadow-geometry (orientation
and occlusion), 2) highlight, and 3) material transitions using
photometric invariant gradients. Although their technique can
be applied to hyperspectral data, we focus here on the case of a
three-channel color image. In addition to the RGB space, Gevers
and Stokman investigate normalized colors c1 c2 defined by

c1(R, G, B) = arctan
(

R
B

)
, c2(R, G, B) = arctan

(
G
B

)

(23)

and the 2-D opponent color space defined by

o1(R, G, B) = (R − G)

2
, o2(R, G, B) = B

2
− (R + G)

4
.

(24)

The gradients in the three considered color spaces are denoted
by ∇CRGB, ∇Cc1 c2 , and ∇Co1 o2 . From several investigations, one
may conclude that ∇CRGB measures the presence of 1) shadow-
geometry, 2) highlight, and 3) material edges. Further, ∇Cc1 c2

measures the presence of 2) highlight and 3) material edges,
while ∇Co1 o2 measures the presence of 1) shadow-geometry and
3) material edges. As a result, a taxonomy of color edges can be
specified (see Table 1). By applying automatic threshold setting[FIG6] Dichromatic plane of a bent, one-color, hybrid-reflecting object.

Blue
Dichromatic Plane

cs

cb

Green

Red

ORIENTATION SHADOW HIGHLIGHT MATERIAL
EDGE EDGE EDGE EDGE

∇CRGB + + + +
∇Cc1 c2 − − + +
∇C0102 + + − +

[TABLE 1]  CLASSIFICATION OF COLOR EDGES BASED ON
THE SENSITIVITY OF THE DIFFERENT COLOR EDGE
MODELS WITH RESPECT TO THE IMAGING CONDI-
TIONS. – DENOTES INVARIANT AND + DENOTES
SENSITIVITY OF THE COLOR EDGE MODEL TO
THE IMAGING CONDITION [8].
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to the three gradients [8], an automatic physics-based edge clas-
sification into the three classes 1) shadow-geometry, 2) high-
light, and 3) material edges can be obtained.

This classification is very computationally costly and, so far,
no extensive investigations exist on false-positive and false-nega-
tive classification results. Note that although this taxonomy
allows identifying highlight, material, and shadow-geometry
edges, it is not capable of distinguishing between orientation,
occlusion, and shadow edges. Here, additional classification
techniques need to be applied. 

CONCLUSION
We presented a review of vector-valued techniques for the
detection and classification of edges in color images. Color edge
operators are able to detect more edges than gray-level edge
operators. Thus, additional features can be obtained in color
images that may not be detected in gray-level images. However,
it depends on the application (and the class of images) whether
these color edge features are required. In addition to quantita-
tive and qualitative advantages of color edge detection, color
information allows for a classification of the edges. Such classi-
fication is not possible without the evaluation of color informa-
tion, and it can aid many image processing tasks which follow. 
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