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~ Abstract—This paper surveys current technology and research a prism helped dispel existing misconceptions and led to
in the area of digital color imaging. In order to establish the the realization that the color of light depended on its spec-

background and lay down terminology, fundamental concepts 5 composition. Even though Grimaldi preceded Newton in
of color perception and measurement are first presented us- )

ing vector-space notation and terminology. Present-day color Making these discoveries, his book [5], [2, pp. 141-147] on
recording and reproduction systems are reviewed along with the subject received attention much later, and credit for the

the common mathematical models used for representing these widespread dissemination of the new ideas goes to Newton.
devices. Algorithms for prm(:jessigg (}olor imagfes for di?‘play 3”‘,’ While Newton’s experiments established a physical basis for
Zﬁ?ﬁ&ggé&%ﬂ e?(rt?ar?;:/\:ae}t/)?bli Oagr: a ;hyoirgcgztv?d é‘slsearc trends Is color, they were still a long way from a system for colorimetry.
Before a system to measure and specify color could be
developed, it was necessary to understand the nature of the
color sensing mechanisms in the human eye. While some
MONG THE human senses, sight and color perceptigtogress in this direction was made in the late 18th century [6],
are perhaps the most fascinating. There is, consequenthe prevalent anthropocentric views contributed to a confusion
little wonder that color images pervade our daily life ihetween color vision and the nature of light [6], [7]. The
television, photography, movies, books, and newspapers. Wjfitler acceptance of the wave theory of light paved the way
the digital revolution, color has become even more accessilig: a better understanding of both light and color [8], [9].
Color scanners, cathode ray tube (CRT) displays, and print@§th Palmer [6] and Young [9] hypothesized that the human
are now an integral part of the office environment. Extrap@ye has three receptors, and the difference in their responses
lating from current trends, homes will also have a plethora gpntributes to the sensation of color. However, Grassmann
digital color imaging products in the near future. 10] and Maxwell [11] were the first to clearly state that color
The increased use of color has brought with it new chalan pe mathematically specified in terms of three independent
lenges and problems. In order to meaningfully record aR@riaples. Grassmann also stated experimental laws of color
process color images, it is essential to understand the meﬁfﬁtching that now bear his name [12, p. 118]. Maxwell [13],
anisms o.f colpr visiop and the capabilities and Iimitation[sl4] demonstrated that any additive color mixture could be
of color imaging devices. It is also necessary to developaiched” by proper amounts of three primary stimuli, a fact
algorithms that minimize the impact of device limitations anf|,, referred to asrichromatic generalizatioror trichromacy
preserve color information as images are exchanged betweg ,nq the same time, Helmholtz [15] explained the dis-

devices. The goal of this paper is to present a survey of g ion hetween additive and subtractive color mixing and

technology and research in these areas. _explained trichromacy in terms of spectral sensitivity curves
The rest of this paper is broadly organized into four Sectionst the three “color sensing fibers” in the eye

Section Il provides an introduction to color science for imaging Trichromacy provided strong indirect evidence for the fact
applications. Commonly used color recording and reproducti

devices are discussed in Section lll. A survey of algorithn}‘%
used for processing color images in desktop applicationsclg
presented in Section IV. Finally, research directions in coI%‘rn
imaging are summarized in Section V.

I. INTRODUCTION

t the human eye has three color receptors. This fact was
nfirmed only much later by anatomical and physiologi-
| studies. The three receptors are known as the S, M,
d L cones ghort medium andlong wavelength sensitive)
and their spectral sensitivities have now been determined
directly through microspectrophotometric measurements [16],
[17]. Long before these measurements were possiukoyr-
Prior to the time of Sir Isaac Newton, the nature of lightnatching functionCMF’s) were determined through psy-
and color was rather poorly understood [1], [2]. Newton’shophysical experiments [12], [18]-[21]. CMF’s are sets of
meticulous experiments [3], [4, Chap. 3] with sunlight anthree functions related to the spectral sensitivities of the three
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to color changes is nonlinear. Since color differences betwespectral peaks, a higher sampling rate or alternative approaches

real world objects and images are evaluated by human viewargy be required [27]-[30].

it is desirable to determingniform color spaces which equal If N uniformly spaced samples are used over the visible

Euclidean distances correspond to roughly equal perceiv@hge[Ayin, Amax], (1) can be compactly written as

color differences. Considerable research has focused on this T

problem since the establishment of colorimetry. c=8"1 (2)
Tristimulus values are useful for specifying colors anghere the superscriptl’ denotes the transpose; =

communicating color information precisely. Uniform COIOr[cl,cQ,c?,]T,S is an Nx 3 matrix whoseith column, s;,

spaces are useful in evaluating color matching/mismatchipfine vector of samples af(\), andf is the N x 1 vector of

of similar stimuli under identical adaptation conditions. Sinc§amples off()\). The HVSS then corresponds to the column
the human visual system undergoes significant changess'ﬁhce ofS.

response to its environment, tristimuli under different condi- |, normal human observers. the spectral sensitivities of
tions of adaptation cannot be meaningfully compared. Singg, three cones are linearly independent. Furthermore, the
typical color reproduction problems involve different media Ofjitterences between the spectral sensitivities of color-normal

viewing conditions, it is necessary to considgr descriptgrs 8hservers are (relatively) small [18], [31], [12, p. 343] and
color appearancehat transcend these adaptations. This is th§ise primarily due to the difference in the spectral transmit-

goal of color appearance modeling. tance of the eye’s lens and the optical medium ahead of the
retina [18], [32]-[34].
A. Trichromacy and Human Color Vision If a standardized set of cone responses is defined, color

In the human eye, an image is formed by light focuseddy be specified using the three-veciarin (2), known as a

onto the retina by the eye’s lens. The three types of cones tHéﬁtimulusvector. Just as severa_l _diffe_rent coorglinate_ systems
govern color sensation are embedded in the retina, and con{&f P& used for specifying position in three-dimensional (3-
photosensitive pigments with different spectral absorptances: space, any nonsingular well-defined linear transformation
the spectral distribution of light incident on the retina is givefl the t”St,'r_nu“,Js vectore, can also serve the purpose of

by f()\), where\ represents wavelength (we are ignoring anglor spec!flcatlon. Since Fhe cone responses are.dlfflcult to
spatial variations in the light for the time being), the responsgi€asure directly, but nonsingular linear transformations of the

of the three cones can be modeled as a three vector Wiff'€ responses are readily determined through color-matching
components given by experiments, such a transformed coordinate system is used for

the measurement and specification of color.
1) Color Matching: Two spectra, represented byv-

Amax
¢ :/ ss(AfN)dX i=1,2,3 (1) vectors, f and g, produce the same cone responses and
Amin therefore represent the same color if
where s;(\) denotes the sensitivity of thah type of cones, S'f =s7g. 3)

and [)‘.‘“i“’)‘max] denotes. Fh.e : interval of wavelgngth; ouFS|de To see how (2) encapsulates the principle of trichromacy
of which all these sensitivities are zero. Typically in air or

g ; : and how CMF's are determined, consider three cqor
vacuum, the visible region of the electromagnetic spectrum Is

specified by the wavelength region betwekg, = 360 nm maries i.e., threecolorlmetrlcglly m_dependenhght sources
and \ — 230 nm P1, P2, ps. The termcolorimetrically independenwill be used

. . . . in this paper to denote a collection of spectra such that
Mathematically, the expressions in (1) correspond to inngr pap P

product operations [22] in the Hilbert space of square intia-e color O.f any one cannot be wsually_ matched py any
: 9 inear combination of the others. Mathematically, colorimetric
grable functionsC*([Amin, Amax])- HeNce, the cone response

. - in nden i ivalen he linear in n-
mechanism corresponds to a projection of the spectrum O%It(c)iepe dence gby, p, ps IS equivalent to the linear indepe

T T T i
the space spanned by three sensitivity functiag))}?_; . Peice of the thretﬁ-vgctogs p%’.ssl;}; andS" ps. I-:ence it
This space is called théwuman visual subspacéHVSS) ~ _ [pl’pQ’I_)?’]’ €2 x5 matnix IS honsinguiar. dot
[23]-[26]. The perception of color depends on further non- Eor any visible spectrumf, the three-vectora(f) =
linear processing of the retinal responses. However, to a fifSt F)~ 5" f satisfies the relation
order of approximation, under similar conditions of adaptation, STt = STPa(f) @)
the sensation of color may be specified by the responses of the
cones. This is the basis of all colorimetry and will be implicitlywhich is the relation for a color match. Hence, for any visible
assumed throughout this section. A discussion of perceptsgkectrum,f, there exists a combination of the primaries,
uniformity and appearance will be postponed until Sectio®a(f), which matches the color df. This statement encap-
[I-C and II-D. sulates the principle of trichromacy. From the standpoint of

For computation, the spectral quantities in (1) may bebtaining a physical match, the above mathematical argument
replaced by their sampled counterparts to obtain summatiamsjuires some elaboration. It is possible that the obtained
as numerical approximations to the integrals. For most coleector of primary “strengths,a(f), has negative components
spectra, a sampling rate of 10 nm provides sufficient accuraiy, fact it can be readily shown that for any set of physical
but in applications involving fluorescent lamps with sharprimaries there exist visible spectra for which this happens).
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Fig. 2. Color-matching experiment with negative value for primagy

Fig. 1. Color-matching experiment.

sities of the three primaries required for matchiag by
Since negative intensities of the primaries cannot be producag,= a(e;), the matches for all the monochromatic spectra
the spectrumPa(f) is not realizable using the primaries.can be written as
A physical realization corresponding to the equations is, .
hovse\);er, still possible by rea?rangin% the termsq in (4) and S'e;=8'Pa; i=12...N. (5)
“subtracting” the primaries with negative “strengths” from Combining the results of alN monochromatic spectra, we
f. The double negation cancels out and corresponds to thet
addition of positive amounts of the appropriate primarieg.to

Ty _ QT T
The setup for a typical color-matching experiment is shown STI=S"PA (6)
schematically in Fig. 1. The observer views a small circulavhereI = [e;,es,---,en] is the N x N identity matrix,
field that is split into two halves. The spectruhis displayed and A = [aj,ay,---,an]|? is the color-matching matrix

on one half of a visual field. On the other half of the visuatorresponding to the primarieP. The entries in thekth

field appears a linear combination of the primary sourcesolumn of A correspond to the relative amount of théh

The observer attempts to visually match the input spectrymimary required to matcke; }.\_,, respectively. The columns

by adjusting the relative intensities of the primary sourcesf A are therefore referred to as thelor-matching functions

The vector,a(f), denotes the relative intensities of the thre@CMF’s) (associated with the primarid3).

primaries when a match is obtained. Physically, it may be From (6), it can be readily seen that the color-matching

impossible to match the input spectrum by adjusting theatrix A = S(P?'S)~!. Hence the CMF’s are a nonsingular

intensities of the primaries. When this happens, the obsenlieear transformation of the sensitivities of the three cones in

is allowed to move one or two of the primaries so that thepe eye. It also follows that the color of two spectfaand

illuminate the same field as input spectrufr(see Fig. 2). As g, matches if and only ifA“f = ATg. As mentioned earlier,

noted earlier, this procedure is mathematically equivalent ¢olor of a visible spectrumf, may be specified in terms of

subtracting that amount of primary from the primary fieldthe tristimulus valuesATf, instead ofSTf. The fact that

i.e., the strengths im(f) corresponding to the primariesthe color-matching matrix is readily determinable using the

which were moved are negative. As demonstrated in tipeocedure outlined above makes such a scheme for specifying

last paragraph, all visible spectra can be matched using tb@dor considerably attractive in comparison to one based on

method. the actual cone sensitivities. Note also that the HVSS that was
2) Color-Matching Functions:The linearity of color defined as the column space 8fcan alternately be defined

matching expressed in (3) implies that if the color tristimuluas the column space di.

values for a basis set of spectra are known, the color values8) Metamerism and Black Spacé&s stated in (3), two

for all linear combinations of those spectra can be readigpectra represented hi-vectorsf and g match in color

deduced. The unit intensity monochromatic spectra, given ByS’t = STg (or ATf = A%g). SinceS (or equivalently

{e;}X;, wheree; is an N-vector having a one in théth A)is an N x 3 matrix, with NV > 3, it is clear that there are

position and zeros elsewhere, form a orthonormal basis saveral different spectra that appear to be the same color to the

terms of which all spectra can be expressed. Hence, the calbserver. Two distinct spectra that appear the same are called

matching properties of all spectra (with respect to a given seetamersand such a color match is said to benatameric

of primaries) can be specified in terms of the color matchingatch (as opposed to a spectral match).

properties of these monochromatic spectra. Metamerism is both a boon and a curse in color applications.
Consider the color-matching experiment of the last sectidviost color output systems (such as CRT’s and color photogra-

for the monochromatic spectra. Denoting the relative intephy) exploit metamerism to reproduce color. However, in the
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Fig. 3. CIE#()), g(\), b(A) color-matching functions.

matching of reflective materials, a metameric match under odescribed by the above mathematics may not be realizable.
viewing illuminant is usually insufficient to establish a matchn cases where a realizable metamer exists, set theoretic
under other viewing illuminants. A common manifestation cipproaches may be used to incorporate nonnegativity and other
this phenomenon is the color match of (different) fabrics undeonstraints [37].
one illumination and mismatch under another.

The vector space view of color matching presented above .
was first given by Cohen and Kaupauf [35], [36], [24]B- Colorimetry
Tutorial descriptions using current notation and terminology It was mentioned in Section 1I-A2 that the color of a
appear in [23], [25], [37], and [38]. This approach allowsisible spectrumf, can be specified in terms of the tristimulus
us to deduce a number of interesting and useful propertigsiues, A7, whereA is a matrix of CMF’s. In order to have
of color vision. One such property is the decomposition eigreement between different measurements, it is necessary to
the NV dimensional spectral space into the 3-D HVSS and thifine a standard set of CMF’s with respect to which the
(N — 3)-dimensionalmetameric black spacevhich was first tristimulus values are stated. A number of different standards
hypothesized by Wyszecki [39]. Mathematically, this resuliave been defined for a variety of applications, and it is worth
states that any visible spectrut),can be written as reviewing some of these standards and the historical reasons

_ 1 behind their development.
f=Paf+Pxi 0 1) CIE Standards:The CIE is the primary organization re-

whereP, = A(ATA)~1AT is the orthogonal projector onto sponsible for standardization of color metrics and terminology.
the column space aA, i.e., the HVSS, an®4 = (I- Pa) A colorimetry standard was first defined by the CIE in 1931
is the orthogonal projector onto the black space, which is thed continues to form the basis of modern colorimetry.
orthogonal complement of the HVSS. The projectibn,f, is The CIE 1931 recommendations define a standard colori-
called thefundamental metameaf f because all metamers ofmetric observer by providing two different but equivalent
f are given byPAf +Pxg | g € RV} sets of CMF's. The first set of CMF’s is known as tB¢E

Another direct consequence of the above description BEd-Green—Blue (RGEBJMF’s, #(\), g()\), b()\). These are
color matching is the fact that the primaries in any colomassociated with monochromatic primaries at wavelengths of
matching experiment are unique only up to metamers. Sing@0.0, 546.1, and 435.8 nm, respectively, with their radiant
metamers are visually identical, the CMF's are not changautensities adjusted so that the tristimulus values of the equi-
if each of the three primaries are replaced by any of thenergy spectrum are all equal [40]. The equi-energy spectrum
metamers. is the one whose spectral irradiance (as a function of wave-

The physical realization of metamers imposes additionigngth) is constant. The CIE RGB CMF’s are shown in Fig. 3.
constraints over and above those predicated by the equationfhe second set of CMF’s, known as th¢E XYZCMF's,
above. In particular, any physically realizable spectrum needez(\), 7(\), andz()); they are shown in Fig. 4. They were
to be nonnegative, and, hence, it is possible that the metam@msommended for reasons of more convenient application in
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Fig. 4. CIEZ(A), g(A), Z(\) color matching functions.

colorimetry and are defined in terms of a linear transformatigrarent, the CIE defined an alternate standard colorimetric
of the CIE RGB CMF's [41]. When these CMF's wereobserver in 1964 with different sets of CMF's [40]. Since
first defined, calculations were typically performed on deskaging applications (unlike quality control applications in
calculators, and the repetitive summing and differencing dmeanufacturing) involve complex visual fields where the color-
to the negative lobes of the CIE RGB CMF's was prone tdomogeneous areas have small angular subtense, the CIE 1964
errors. Hence, the transformation from the CIE RGB CMF'6L0° observer) CMF's will not be discussed here.

to CIE XYZ CMF’s was determined so as to avoid negative In addition to the CMF’s, the CIE has defined a number
values at all wavelengths [42]. Since an infinite number & standard illuminants for use in colorimetry of nonlumi-
transformations can be defined in order to meet this nofous reflecting objects. The relative irradiance spectra of a
negativity requirement, additional criteria were used in tHeumber of these standard illuminants is shown in Fig. 5.
choice of the CMF’s [43], [44, p. 531]. Two of the important’® represent different phases of daylight, a continuum of
considerations were the choice gf)\) coincident with the dayllght |Ilym|nants has b_een defined [40], which are uniquely
luminous efficiency functiofil2] and the normalization of specified in terms of theicorrelated color temperatureThe

the three CMF’s so as to yield equal tristimulus values fgorrelated color temperature of an illuminant is defined as
he temperature of dlack body radiatorwhose color most

the equi-energy spectrum. The luminous efficiency functid : bles that of the illuminant 112]. D65 and D50
gives the relative sensitivity of the eye to the energy at eaEr S‘t:"ve' rgselrin hfﬁl n?inont e ImunTlrr:?n [ d].in Iar?m .
wavelength. From the discussion of Section II-Al, it is readil&fich ct):or?gsgon q l:o cgrresia(t:g q c;orytgfneperatlj:rgeg ofeGgéo
seen that CMF's that are nonnegative for all wavelengt . . .

. . : . . ._and 5000 K, respectively. The CIE illuminant A represents a
cannot be obtained with any physically realizable primarie ack body radia?cor at aytemperature of 2856 K ;’nd closely
Hence, any set of primaries corresponding to the CIE XY . !

CMF’s is not physically realizable approximates the spectra of incandescent lamps.
> Not phy y . L . A nonluminous object is represented by tNevector,r, of
The tristimulus values obtained with the CIE RGB CMF's .
. . samples of its spectral reflectance, whére< r; < 1,1 <
are called theCIE RGB tristimulus valuesand those obtalnedi < N. When the object is viewed under an illuminant with
with the CIE XYZ CMF's are called th€IE XYZ tristimulus sp_ectrﬁm given by theV vector, 1, the resulting spectral
val(;les TheIY trlst|mhuluhs value IS “Sd“i”)’ ?]alled thefmlﬂanced. radiance at the eye is obtained as the product of the illuminant
and correlates with the perceived brightness of the radialffe irym and the reflectance at each wavelength. Therefore,
spectrum. _ , the CIE XYZ tristimulus values defining the color are given
The two sets of CMF's described above are suitable fgy
describing color matching when the angular subtense of the
matching fields at the eye is between one and four degrees t =ATLr = Alr (8)

[12, p. 131], [40, p. 6]. When the inadequacy of these CMF's
for matching fields with larger angular subtense became aphere A is the matrix of CIE XYZ CMF’s,L is the diagonal
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Fig. 5. CIE standard illuminants.

illuminant matrix with entries fronl along the diagonal, and Fig. 6 shows a plot of the curve corresponding to visible
Ay LA. In analogy with the HVSS, the column spacenonochromatic spectra on the CIE xy chromaticity diagram.
of Ar is defined as théhuman visual illuminant subspaceThis shark-fin-shaped curve, along which the wavelength (in
(HVISS) [26]. Note that (8) is based on an idealized model @im) is indicated, is called thepectrum locus From the
illuminant—object interaction that does not account for sevedaiear relation between irradiance spectra and the tristimulus
geometry/surface effects such as the combination of speculatues, it can readily be seen that the chromaticity coordinates
and body reflectance components [30, pp. 43-45]. of any additive-combination of two spectra lie on the line

2) Chromaticity Coordinates and Chromaticity Diagramssegment joining their chromaticity coordinates [12]. From
Since color is specified by tristimuli, different colors may b#his observation, it follows that the region of chromaticities
visualized as vectors in 3-D space. However, such a visoF all realizable spectral stimuli is the convex hull of the
alization is difficult to reproduce on two-dimensional (2-Dypectrum locus. In Fig. 6, this region of physically realizable
media and therefore inconvenient. A useful 2-D representationromaticities is the region inside the closed curve formed
of colors is obtained if tristimuli are normalized to lie in theby the spectrum locus and the broken line joining its two
unit plane i.e., the plane over which the tristimulus valuegxtremes, which is known as thmirple line
sum up to unity. Such a normalization is convenient as it 3) Transformation of Primaries—NTSC, SMPTE, and CCIR
destroys only information about the “intensity” of the stimulu®rimaries: If a different set of primary source®), is used
and preserves complete information about the direction. Thethe color matching experiment, a different set of CMF’s,
coordinates of the normalized tristimulus vector are calldd, are obtained. Since all CMF's are nonsingular linear
chromaticity coordinatesand a plot of colors on the unittransformations of the human cone responses, the CMF's are
plane using these coordinates is calletheomaticity diagram related by a linear transformation. The relation between the
Since the three chromaticity coordinates sum up to unitieyo color-matching matrices is given by [37]
typical diagrams plot only two chromaticity coordinates along
mutually perpendicular axes.

The most commonly used chromaticity diagram is @&
xy chromaticity diagramThe CIE xyz chromaticity coordi- Note that the columns of the & 3 matrix AT Q are the

nates can be obtained from tie Y, Z tristimulus values in tristimulus values of the primarieQ with respect to the pri-
CIE XYZ space as mariesP. Note also that the same transformatiéA? Q)= 1,

BT = (ATQ) AT, (10)

is useful for the conversion of tristimuli in the primary system

7= X P to tristimuli in the primary systenQ.
X+Y+272 Color television (TV) was one of the first consumer products
y = Y 9) exploiting the phenomenon of trichromacy. The three light-
X+Y+ 27 emitting color phosphors in the television CRT form the three
o Z ' primaries in this “color-matching experiment.” In the United
X+Y+2Z States, the National Television Systems Committee (NTSC)
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recommendations for a receiver primary system based on thoeeenpatibility reasons and to minimize noise in transforma-
phosphor primaries were adopted by the Federal Commutigns, it is still desirable to keep the reference primaries for
cations Commission (FCC) in 1953 for use as a standardhbroadcast colorimetry close to the phosphor primaries. To-
color TV. The FCC standard specified the CIE xy chromaticityard this end, the International Radio Consultative Committee
coordinates for the phosphors [45] &.670,0.330) (red), (CCIR) [50] has defined a set of phosphor primaries by the
(0.210,0.710) (green),(0.140, 0.080) (blue) [46]. In addition, chromaticity coordinate$0.640,0.330) (red), (0.300,0.600)
the tristimulus value$1,1,1) were assumed to correspond tdgreen), and(0.150,0.060) (blue) for use in high definition
a “white color” typically specified as the illuminant D65. Thetelevision (HDTV) systems.
chromaticity coordinates along with the white balance condi- Prior to transmission, tristimuli in SMPTE RGB and CCIR
tion define the CIE XYZ tristimuli of the NTSC primaries,RGB spaces are nonlinearly compressed (by raising them
which determine the relation of NTSC RGB tristimuli to CIB0 a power of 0.45) and encoded for reducing transmission
XYZ tristimuli as per (10). bandwidth [50], [51] (the reasons for these operations will be
In the early color TV system, the signal-origination colexplained in Sections Ill-Al and IV-C). Note however, that the
orimetry was coupled with the colorimetry of displays, witfencoding and nonlinear operations must be reversed before the
the tacit assumption that the processing at the receiver invoh&gnals can be converted to tristimuli spaces associated with
only decoding and no color processing is performed. Agher primaries. Transformations for the conversion of color
display technology changed, manufacturers began using mtistimulus values between various systems can be found in
efficient phosphors and incorporated some changes in {f&, pp. 66-67], [53, p. 71], [54], and [55].
decoding as a compensation for the nonstandard phosphors
[47]. Similar changes took place in the monitors used b . )
broadcasters, but they were unaware of the compensatingUniform Color Spaces and Color Differences
mechanisms in the consumer TV sets. As a result, there waghe standards for colorimetry defined in Section 1I-B pro-
considerable color variability in the broadcast TV systewide a system for specifying color in terms of tristimulus
[45]. To overcome this problem, the chromaticities of a setlues that can be used to represent colors unambiguously in a
of controlled phosphors was defined for use in broadcaiD space. It is natural to consider the relation of the distance
monitors, which now forms the Society of Motion Picturébetween colors in this 3-D space to the perceived difference
and Television Engineers (SMPTE) “C” phosphor specificatidmetween them. Before such a comparison can be made, it is
[48], [49]. Current commercial TV broadcasts in the Unitedecessary to have some means for quantifying perceived color
States are based on this specification. differences. For widely different color stimuli, an observer’s
With the development of newer display technologies that aassessment of the magnitude of color difference is rather
not based on CRT's (see Section I1I-A4), it is now recognizedhriable and subjective [12, p. 486]. At the same time, there is
that signal-origination colorimetry needs to be decoupldittle practical value in quantifying large differences in color,
from the receiver colorimetry and that color correction at thend therefore most research has concentrated on quantifying
receiver should compensate for the difference. However, femall color differences. For this purpose, the notion ¢fist
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noticeable differenc€JND) in stimuli has been extensivelyspaces. Both spaces employ a common lightness d¢gléhat
used as a unit by color scientists. An alternate empiricaliepends only on the luminance vallie The lightness scale
derived system, which has also been used often, is the Munsgltombined with different uniform chromaticity diagrams to
color system [56], [57]. In the Munsell system, all possiblebtain a 3-D uniform color space. For the CIELUV space,
colors are defined in terms of the perceptual attributes aflater version of CIE 1960 u, v diagram is used whereas
lightness, hugand chroma and associated Munsell book(s)CIELAB uses a modification of Adams’ chromatic-value dia-
of color contain reflective samples, which (when viewedram [12, p. 503]. In either case, the transformations include
under daylight), are spaced apart in perceptually equal stepsormalization involving the tristimuli of a white stimulus,
of these attributes [12]. Lightness, hue, chroma, and oth&hich provides a crude approximation to the eye’s adaptation (
terms of color perception will be used in this paper isee Section II-D1). Euclidean distances in either space provide
accordance with common terminology, but a definition wild color-difference formula for evaluating color differences in
not be attempted here because of their subjective natyperceptually relevant units.
Definitions are, however, provided in [12, p. 487], [58], [59], 1) The CIE 197& *u*v* Space: The L*,u*,v* values
and [60]. corresponding to a stimulus with CIE XYZ tristimulus values
Several researchers have examined the distribution of INDY, Z are given by [40]
colors in CIE xy chromaticity and CIE XYZ tristimuli spaces Yy
and have found that it varies widely over the color space L* = 116f<?> - 16 (12)
[61]-[65]. Hence, the CIE XYZ space is perceptually nonuni- . IV
form in that equal perceptual differences between colors do not wh=13L"(u' — uy,) (12)
correspond to equal distances in the tristimulus space. Since v* = 13L* (v —v),) (13)
perceptual uniformity is an extremely desirable feature for

defining tolerances in color reproduction systems, considerawgere .

research has been directed toward the developmantififrm Flz) = {wg x> 0.008 856 (14)

color spacesTraditionally, the problem has been decomposed 7.787x + 1% x < 0.008856

into two sub-problems: i) one of determining a uniform , 4X

lightness scale, and ii) the other of determining a uniform w= X +15Y +3Z (15)

chromaticity diagram for equilightness color stimuli. The , 9y

two are then combined with suitable scaling factors for the v= X +15Y +37 (16)

chromaticity scale and the lightness scale to make their units , 4X,

correspond to the same factor of a JND. Un = X, + 15Y,, + 32, 17
The historical milestones in the search for uniform bright- , 9Y,,

ness and lightness scales are described in Wyszecki and Stiles Up = X, +15Y, + 32, (18)

[12, pp. 493-499]. Typical experiments determine these scales o . .
either by a process of repeated bisection of the scale extrerRBd Xn: Yn, Z, are the tristimuli of the white stimulus.
or by moving up in increments of a JND. A cube-root power The Euclldean distance between two color Stlmu|.l in
law relation between brightness and luminance providesCAELUV space is denoted b\ET, (delta E-uv), and is
satisfactory fit for most experimental data and, therefore, hAsmeasure of the total color difference between them. On
the most widespread acceptance at present [12, p. 494]. 2n average, aiky, value of around 2.9 corresponds to a
The search for a uniform lightness scale was complementddP [70]. As mentioned earlier, the value &f serves as a
by efforts toward determination ofumiform chromaticity scale correlate of lightness. In the*y* plgne, the radlgl distance
for constant lightness. Two of these attempts are notewortty/ (4*)* + (v*)?) and angular positior(arctan(;s)) serve
The first determined a linear transformation of the tristimul @S correlates of chroma and hue, respectlvely..
space that yielded a chromaticity diagram with JND colors 2) The CIE lQ?&fa*b*_ Space: The L* °°°Td'”ate of the
being roughly equispaced [66], [67]. This was the precurSGrlELAB space is identical to thel* coordinate for the

of the CIE 1960 u, v diagram [12, p. 503]. The seconglELLj'V space, a.nd the transformations for th&é and b*
was primarily motivated by the Munsell system and used G20rdinates are given by

nonlinear transformation of the CIE XYZ tristimuli to obtain - X Y
a chromatic-valuediagram in which the distances of Munsell a” =500 <f<X_n> - f<?n>> (19)
colors of equal lightness would be in proportion to their Y A
hue and chroma differences [68]. The form for the nonlinear b* =200 <f<?> - f<Z—>> (20)

transformation was based on a color vision model proposed
earlier by Adams [69], and the diagram is therefore referradhere f(-), X,, Y,, and Z,, are as defined earlier.
to as Adams’ chromatic-value diagram. The Euclidean distance between two color stimuli in
Based on the aforementioned research, the CIE has recd&ELAB space is denoted bp £, (delta E-ab), and &\ £,
mended two uniform color spaces for practical applicationgalue of around 2.3 corresponds to a JND [70]. Once again,
the CIE 1976 L*u*v* (CIELUV) space and the CIE 1976in the a*b* plane, the radial distancg/(a*)? 4 (b*)2) and
L*a*b* (CIELAB) space [40]. These spaces are defined engular position(arctan(‘g—:)) serve as correlates of chroma
terms of transformations from CIE XYZ tristimuli into theseand hue, respectively.
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2) Other Color Difference FormulaeAs may be expected, which assumed the existence of neural signals of opposite
the CIELUV and CIELAB color spaces are only approximatelkinds with the red—green hues forming one opponent pair and
uniform and are often inadequate for specific applicatiorthe yellow—blue hues constituting the other. Such a theory also
The uniformity of CIELAB and CIELUV is about the same,satisfactorily explains both the existence of some intermediate
but the largest departures from uniformity occur in differerftues (such as red-yellow, yellow—green, green—blue, and
regions of the color space [71]-[73]. Several other uniforilue-red) and the absence of other intermediate hues (such
color spaces and color difference formulae have been propossdreddish-greens and yellowish-blues).
since the acceptance of the CIE standards. Since CIELAB hadgnitially, the trichromatic theory and the opponent-colors
gained wide acceptance as a standard, most of the differetis®ory were considered competitors for explaining color vi-
formulae attempt to use alternate (non-Euclidean) “distans®n. However, neither one by itself was capable of giving
measures”in the CIELAB space. Prominent among these amatisfactory explanations of several important color vision
the CMC (l:c) distance function based on the CIELAB spagehenomena. In more recent years, these competing theories
[74] and the BFD (I:c) function [75], [76]. A comparisonhave been combined in the form abne theories of color
of these and other uniform color spaces using perceptibiliysion which assume that there are two separate but sequential
and acceptability criteria appears in [70]. In image processizgnes in which these theories apply. Thus, in these theories
applications involving color, the CIELAB and CIELUV spacest is postulated that the retinal color sensing mechanism is
have been used extensively, whereas in industrial color contiéthromatic, but an opponent-color encoding is employed
applications the CMC formulae have found wider acceptande. the neural pathways carrying the retinal responses to the
Recently [77], the CIE issued a new recommendation f@rain. These theories of color vision have formed the basis
the computation of color differences in CIELAB space thaif a number of color appearance models that attempt to
incorporates several of the robust and attractive featuresesiplain psychophysical phenomena. Typically in the inter-
the CMC (l:c) distance function. ests of simplicity, these models follow the theories only

approximately and involve empirically determined parameters.

D. Psychophysical Phenomena and Color Appearance Modéfge simplicity, however, allows their practical use in color

. . . roduction applications involving different media where
The human visual system as a whole displays considera . .

. . . . . a perceptual match is more desirable and relevant than a
adaptation. It is estimated that the total intensity range over

which colors can be sensed is around®1D While the Colorimetric matc_h. . - "
. . A somewhat different but widely publicized color vision
cones themselves respond only over a 1000 : 1 intensity range

. . . ; F‘ory was theretinex (from retina and comX theory of
the vast total operating range is achieved by adjustment Elwin Land [80], [81]. Through a series of experiments, Land
their sensitivity to light as a function of the incident photon ' ' '

flux [78]. This adjustment is believed to be largely achieVe((jjemonstrated that integrated broadband reflectances in red,

through a feedback from the neuronal layers that provi@er:een’ and blue channels show a much stronger correlation

N . with perceived color than the actual spectral composition of
temporal lowpass filtering and adjust the cones output as,. S

. . N . radiant light incident at the eye. He further postulated that the
a function of average illumination. A small fraction of theh

adaptation corresponding to a factor of around 8: 1 is the res
of a 4:1 change in the diameter of the pupil that acts as t

jiman visual system is able to infer the broadband reflectances
fom a scene through a successive comparison of spatially
aperture of the eye [60, p. 23]. néighboring areas. As a model of human color perception, the

Another fascinating aspect of human vision is the invarianégpa%réheaor:g EZ; giéiwlz? glmystlllfgl:gg d:get? t'%r;h':r ;E(e;?)?ites
of object colors under lights with widely varying intensity ' gely sup y

tregt explain a wider range of psychophysical effects. However,

levels and spectral distributions. Thus objects are often re mputational version of the theory has recently been d
ognized as having approximately the same color in phas% omputational version ot the theary has recently been used,
ith moderate success, in the enhancement of color images

of daylight having considerable difference in their spectrjgz] [83]

ower distribution and also under artificial illumination. Thi .
b One may note here that some of the uniform color spaces

phenomenon is calledolor constancy The termchromatic . lud s of col ¢ d col
adaptationis used to describe the changes in the visual systé'ﬂ‘fu € Some aspects ot color constancy and color appear-

that relate to this and other psychophysical phenomena ance in their definitions. In particular, both the CIELAB and
While colorimetry provides a representation of colors iﬁ:IELUV spaces employ an opponent-color encoding and use

terms of three independent variables, it was realized eaWHe-pomt normalizations that partly explain color constancy.

on that humans perceive color as having four distinges owever, the notion of a color appearance model is distinct

corresponding to the perceptually unique sensations of ré@,m that of a uniform color space. Typ!cal .unlform c_olpr
green, yellow, and blue. Thus, while yellow can be producé;(?aces are useful only for comparing stimuli under similar
by thé additi\’/e combination (’)f red and green, it is clearl onditions of adaptation and can yield incorrect results if used

perceived as being qualitatively different from each of the t igr comparing stimuli under different adaptation conditions.

components. Hering [79] had considerable success in explain-l) Chromatic Adaptation and Color Constancgeveral

ing color perception in terms of aapponent-colors theory mecham;ms of chromatic adaptation have been proposed
to explain the phenomenon of color constancy. Perhaps

INote several of these distance measures are asymmetric and as sucmgo most W'dely used Of. these in Imaging appllcatlons 1S
not satisfy the mathematical requirements for a metric [22, p. 91]. one proposed by Von Kries [84]. He hypothesized that the
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gain control on each of the three cone responses. Thus, instead
of (2), a more complete model represents the cone responses as

¢ =DSTf (21)

chromatic adaptation is achieved through individual adaptive /\

whereD is a diagonal matrix corresponding to the gains of the
three channels, and the other terms are as before. The gains of
the three channels depend on the state of adaptation of the eye,
which is determined by preexposed stimuli and the surround,
but independent of the test stimulfis This is known as the
Von Kries coefficient rule

The termasymmetric-matchingg used to describe matching
of color stimuli under different adaptation conditions. Using +
the Von Kries coefficient rule, two radiant spectfa,and fs, ‘
viewed under adaptation conditions specified by the diagonal
matrices,D; and D,, respectively, will match if

D,S™f, = D,STY,. (22)

Thus, under the Von Kries coefficient rule, chromatic adapta- !
tion can be modeled as a diagonal transformation for tristimuli l
specified in terms of the eye’'s cone responses. Usually, tris- I — )
timulus values are specified not relative to the cone responses | Saturation Brightness
themselves, but to CMF’s that are linear transformations of the o i
cone responses. In this case, it can readily be seen [12, p. 4!‘3'%17. Typical “wiring diagram” for human color vision models (adapted
L. . . . . . from [99]).
that the tristimuli of color stimuli that are in an asymmetric
color match are related by a similarity transformation [85] of
the diagonal matrixDl_1D2. the viewing illuminant. Several researchers have investigated
A Von Kries transformation is commonly used in colomlgorithms for estimating illuminant-independent descriptors
rendering applications because of its simplicity and is a part of reflectance spectra from recorded tristimuli, which have
several standards for device-independent color imaging [86fme to be known asomputational color constancy algo-
[87]. Typically, the diagonal matriXDl_lDQ is determined rithms [93]-[97]. Several of these algorithms rely on low-
by assuming that the cone responses on either side of (B#pensional linear models of object and illuminant spectra,
are identical for white stimuli (usually a perfect reflectowhich will be discussed briefly in Section I11-B5. A discussion
illuminated by the illuminant under consideration). The whitesf how these algorithms relate to the Von Kries transformation
point normalization in CIELAB space was primarily motivatedule and to human color vision can also be found in [98], [95],
by such a model. Since the CIE XYZ CMF's are mmr se and [97].
the cone responses of the eye, the diagonal transformation rep2) Opponent Processes Theory and Color Appearance
resenting the normalization is not a Von Kries transformatiddodels: The modeling of chromatic adaptation is just one
and was chosen more for convenience than accuracy [88].part of the overall goal of color appearance modeling. While
In actual practice, the Von Kries transformation can exolor appearance models are empirically determined, they are
plain results obtained from psychophysical experiments onlgually based on physiological models of color vision. Most
approximately [12, pp. 433-451]. At the same time, thmodern color vision models are based on “wiring diagrams” of
constancy of metameric matches under different adaptatite type shown in Fig. 7. The front end of the model consists
conditions provides strong evidence for the fact that the conéL, M, and S (long, medium, and short wavelength sensitive)
response curves vary only in scale while preserving the saomes. The cone responses undergo nonlinear transformations
shape [89, p. 15]. Therefore, it seems most likely that paahd are combined into two opponent color chromatic channels
of the adaptation lies in the nonlinear processing of the cofR-G and Y-B), and one achromatic channel (A). A positive
responses in the neural pathways leading to the brain. signal in the R-G channel is an indication of redness whereas
A number of alternatives to the Von Kries adaptatioa negative signal indicates greenness. Similarly, yellowness
rule have been proposed to obtain better agreement wéthd blueness are opposed in the Y-B channel. The outputs of
experimental observations. Most of these are nonlinear afése channels combine to determine the perceptual attributes
use additional information that is often unavailable in imagingf hue, saturation, and brightness.
applications. A discussion of these is beyond the scope of thidt is obvious that the above color-vision model is an over
paper, and the reader is referred to [60, pp. 81, 217], [90]-[92]mplification. Actual color appearance models are consid-
and [88] for examples of such models. erably more intricate and involve a much larger number of
The phenomenon of color constancy suggests that the Iparameters, with mechanisms to account for spatial effects
man visual system transforms recorded stimuli into representdi-surround and the adaptation of the cone responses, which
tions of the scene reflectance that are (largely) independentafs briefly discussed in the last section. Due to the immense
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practical importance of color appearance modeling to cologpresentation of the color space, such as the colorimetry
reproduction systems, there has been considerable researctandards or uniform color spaces discussed earlier [115],
this area that cannot be readily summarized here. The intgt16]. Often, 2-D representations are more convenient for
ested reader is referred to [60, pp. 213—-258] and [100]-[11&kplay, and chromaticity diagrams are used for this purpose.
for examples of some of the prominent color appearanEeom the linearity of color matching, it can be readily seen that
models in current literature. A recent overview of the curreihe gamut of additive systems in CIE XYZ space (or any of
understanding of human color vision can also be found the other linear tristimulus spaces) is the convex polyhedron
[113]. formed by linear combinations of the color tristimuli of the
primaries over the realizable amplitude range. On the CIE xy

lIl. COLOR REPRODUCTION AND RECORDING SYSTEMS chromaticity diagram, the gamut appears as a convex polygon
with the primaries representing the vertices. For the usual case

The basics of color discussed in the last section addres$gqy ee red green, and blue primaries, the gamut appears as
the issue of specification of a single color stimulus. In practicg| triangle o’n the éIE xy chromaticity 'diagram Since most
systems, one is usually concerned with the processing Qfpiractive and hybrid systems are nonlinear, their gamuts
color images with a large number of colors. In the physicgl e jrregular shape and are not characterized by such elegant
world, these images exist as spatially varying spectral radiange, metric constructs. One may note here that in order to obtain
or reflectance dIStrIbUt.IOI’]_S. Qolor information needs_to BRe largest possible chromaticity gamut, most three-primary
recorded from these distributions before any processing Calitive systems use red, green, and blue colored primaries.
be attempted. Conversely, the physical realization of colgf iha same reason, cyan, magenta, and yellow primaries are
images from recorded information requires synthesis of SRaso in subtractive and hybrid systems
tia_lly varying spectral radiance or reflectance distribution_s. Inn order to discuss colorimetric reproduction on color output
this section, some ofdtheo common color OUtpg,t and 'gpgkvices, it is useful to introduce some terminology. The term
Zystems ar? surve)g? - Output systemf a[)e |scgsse trol valuesis used to denote signals that drive a device.

ecause color recording systems Mmay aiso be usea to recpral operation of the device can be represented as a multidi-
color reproductions and may exploit the characteristics of the, i\, mapping from control values to colors specified in

reproduction device. a device-independent color space. This mapping is referred to
as the (devicekharacterization Since specified colors in a
A. Color Output Systems device-independent color space need to be mapped to device
Nature provides a variety of mechanisms by which col@ontrol values to obtain colorimetric output, it is necessary
may be produced. As many as fifteen distinct physical medie- determine the inverse of the multidimensional device-
anisms have been identified that are responsible for colordharacterization function. In this paper, the tecalibration
nature [114]. While only a fraction of these mechanisms is suit4ll be used for the entire procedure of characterizing a device
able for technological exploitation, there is still considerablend determining the inverse transformation. If the device’s
diversity in available technologies and devices for displayirgperation can be accurately represented by a parametric model,
and printing color images. the characterization is readily done by determining the model
Color output devices can broadly be classified into thrgg@rameters from a few measurements. If no useful model
types:additivg subtractive andhybrid. Additive color systems exists, a purely empirical approach is necessary, in which the
produce color through the combination of differently coloredharacterization function is directly measured over a grid of
lights, known as primaries. The qualifier additive is used tdevice control values. The inversion may be performed in
signify the fact that the final spectrum is the sum (or average)closed form if the characterization uses a device model
of the spectra of the individual lights, as was assumed fhat allows this. If an empirical approach is employed in
the discussion of color matching in Section 1I-Al. Examplesharacterization or if the model used is noninvertible (often
of additive color systems include color CRT displays antie case with nonlinear models), one has to resort to numerical
projection video systems. Color in subtractive systems iigethods in the inversion step.
produced through a process of removing (subtracting) un-1) Cathode Ray TubesThe most widely used display de-
wanted spectral components from “white” light. Typicallyyice for television and computer monitors is the color CRT.
such systems produce color on transparent or reflective medihg CRT produces visible light by bombardment of a thin
which are illuminated by white light for viewing. Dye subli-layer of phosphor material by an energetic beam of electrons.
mation printers, color photographic prints, and color slides aféne electron beam causes the phosphor to fluoresce and
representatives of the subtractive process. Hybrid systems asgt light whose spectral characteristics are governed by
a combination of additive and subtractive processes to prodube chemical nature of the phosphor. The most commonly
color. The main use of a hybrid system is in color halftonesed color CRT tubes are the shadow-mask type, in which
printing, which is commonly used for lithographic printing ané mosaic of red, green, and blue light emitting phosphors
in most desktop color printers. on a screen is illuminated by three independent electron
Any practical output system is capable of producing onlgeams. The intensity of light emitted by the phosphors is
a limited range of colors. The range of producible colorgoverned by the velocity and number of electrons. The beam
on a device is referred to as igamut The gamut of a is scanned across the screen by electrostatic or electromagnetic
device is a 3-D object and can be visualized using a 3flection mechanisms. The number of electrons is modulated
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in synchronism with the scan to obtain spatial variations ithannel basis, the transformation from CIE XYZ tristimulus
the intensity of the light emitted by the three phosphors. Allues can also be determined as a linear transformation,
normal viewing distances, the light from the mosaic is spatiallyorresponding to a transformation from the CIE primaries to
averaged by the eye, and the CRT thus forms an additive calibe phosphor primaries, followed by a one-dimensional (1-D)
system. transformation that is determined by the parametric model used
There are several design choices in the manufacture tofrepresent the operation of the individual electron guns [125].
shadow mask CRT's. Other competing designs offer improvdgpically, this operation involves exponentiation to the power
resolution by utilizing a layered phosphor instead of a mosamf 1/~ and is known asgamma-correction As mentioned
The reader is referred to [117] and [118] for a description d@fi Section 11-B3, TV signals are normally gamma corrected
the different technologies and involved tradeoffs. A detaildokfore transmission. One may note here that quantization
description of physical principles involved in the operation aff gamma corrected signals results in wider quantization
these devices is provided in [119, pp. 79-200]. intervals at higher amplitudes where the sensitivity of the
Color in CRT displays is controlled through the applicatiomye is also lower. Therefore, just like speech companding,
of different voltages to the red, green, and blue guns. Forgamma correction of color tristimuli prior to quantization in a
complete colorimetric characterization of these devices, tHaital system (or transmission in a limited bandwidth system)
CIE XYZ tristimulus values (or other tristimuli) need to bereduces the perceptibility of errors and contours in comparison
specified as a spatially varying function of the voltages appliegd a scheme in which no gamma correction is used [73],
to the three guns. A brute force approach to this problem, usifi7]-[130, p. 393].
a multidimensional look-up table, is infeasible because of theFor colors that the phosphors are capable of producing,
extremely large number of measurements required. Hentarly good color reproduction can be obtained on a CRT
simplifying assumptions need to be made in order to makesing the models mentioned above. Beatsl. [125] report
the problem tractable. an accuracy around 0AE?, using only eight measurements
Assumptions of spatial uniformity, gun independence, aridr determining model parameters. However, the gamut of
phosphor constancy are commonly made in order to simpli§RT tubes is limited by the phosphors used, which causes
CRT colorimetry [120]. Spatial uniformity implies that thesignificant color errors for colors that lie beyond the gamut.
color characterization of the CRT does not vary with positioff.his is one of the primary sources of color errors seen in
Gun independence refers to the assumption that the thkeeadcast TV.
phosphors and their driving mechanisms do not interact. ThisThe assumptions of gun independence and phosphor con-
implies that the incident intensity at the eye when the guns atancy have been tested by several researchers and found to
operated simultaneously is the sum of the intensities when theld reasonably well [123], [131], [120], [126]. However,
guns are operated individually. Phosphor constancy refersimtomost CRT monitors for the same driving voltage, the
the assumption that the relative spectral power distribution light intensity is brightest at the center and falls off toward
light emitted by the phosphors does not change with drivinge edges. The change in luminance over the screen can be
voltage (i.e., at all driving voltages the spectra emitted byas high as 25% [132, p. 104]. Therefore, the assumption
phosphor are scalar multiples of a single spectrum). of spatial uniformity does not strictly hold. Since the eye’s
With the above three assumptions, the problem of chaensitivity itself is not uniform over the entire field of view
acterizing the CRT reduces to a problem of relating thend because the eye adapts well to the smooth variation in
amplitudes of the individual red, green, and blue channelsitdgensity across the screen, the spatial nonuniformity of CRT’s
their corresponding gun voltages. The problem can be furthiernot too noticeable. An algorithm for correcting for spatial
simplified through the use of a parametric model for the@homogeneity is discussed in [133].
operation of the individual guns. Typically, these models are 2) Contone Printers:Continuous tone (“contone”) printers
based on the exponential relation between the beam curras¢ subtractive color reproduction to produce color images
and grid voltage in vacuum tubes [121], [122]. For each guon (special) paper or transparent media. Subtractive color
the spectrum of emitted light in response to a control voltageproduction is achieved by using cyan, magenta, and yel-
v, IS modeled by an expression of the forfm/v,,)Yh()), low colorants in varying concentrations to absorb different
where v, is the maximum value of the voltagi(\) is the amounts of light in the red, green, and blue spectral regions,
emitted phosphor spectrum at the maximum voltage, andrespectively. Each colorant absorbs its complimentary color
is the exponential parameter. The exponentis commonly and transmits the rest of the spectrum. The extent of absorption
referred to as thenonitor-gammaand is normally around 2.2 is determined by the concentration of the colorant, and the use
for most color monitors. Since the above parametric model é$ different concentrations produces different colors. For an
only approximate, several modifications of it have been usedcellent description of the subtractive process and the reasons
by researchers [123]-[126]. Using the parametric models, CR&hind the choice of cyan, magenta, and yellow colorants, the
monitors can be readily characterized using a small numberrefder is referred to [134, Chap. 3].
measurements. The subtractive principle is schematically shown in Fig. 8
In order to produce colorimetric color on a CRT displayfor a transmissive system. If the incident light spectrum is
the “inverse” of the characterization, i.e., the transformatidig)), the spectrum of the light transmitted through the three
from CIE XYZ tristimuli to the driving voltages for the layers is given byg(A) = I(A)t1(M)t2(N)Es(A), wheret;(A)
guns, is required. Since the characterization is on a pés-the spectral transmittance of thh layer. If the colorants
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1) Most contone printers available currently use thermal dye
diffusion technology. The coloring dyes in such a system
are transferred from a dispensing film into the reproduction
medium by means of heat-induced diffusion. Often, a fourth

Cyan Layer  t () black dye is used in addition to the cyan, magenta, and yellow
- dyes to achieve greater contrast and better reproduction of
1)t ) achromatic (gray) colors. A recent review of the physical
1

processes involved in a thermal dye diffusion printer can be
found in [136] and [137]. Note that conventional photogra-
phy uses subtractive color reproduction, thus continuous tone
printing is possible using photochemical methods that mimic
Lyt Mt @) photography. For an overview of this method and for more
details on the dye diffusion printing process, the reader is
referred to [138] and [139].

In practice, the models for subtractive printers described
above do not provide even reasonable approximations for
actual printers. The colorants have smooth absorptance curves

Magenta Layer tz(k)

Yellow Layer t3(k)

OLNOTNOING) that do not agree with the block dye assumption. In addition,
_ _ _ typical colorants are not completely transparent, and therefore
Fig. 8. Subtractive color reproduction. the Kubelka—Munk theory [140], [135], [141], which accounts

for scattering of light by the colorants, is more appropriate

are transparent (i.e., do not scatter incident light) and théstead of the Bouguer—Beer law. These modifications have
absorption coefficients are assumed to be proportional to theiiccessfully been used in [142] to model a thermal dye
concentration (Bouguer-Beer law), it can be shown [13g!ffu3|on printer. Since accurate determination of the model
Chap. 7] that theptical densityof theith colorant layer, which Parameters is fairly complicated and there are interactions be-

is defined as the logarithm (base 10) of its transmittance, fyéeen the media and the colorant layers that are not accounted
given by for even in the Kubelka—Munk theory, often purely empirical

techniques are used to characterize color printers. At the same
di(ci; ) =loggti(ei; ) = cidi(X) (23) time, note that the model in (24), though somewhat restrictive,

, . ] has proven very useful in analytical simulations of printers and
wheret;(c;; A) is the transmittance of thith colorant layerg; in making design choices [143].

is the concentration of thé&h colorant which varies between Typical empirical approaches for color printer calibration

0 and 1, andd;(A) = d;(1; ) is the density at maximum peqin by measuring the color of test prints corresponding to
concentration. _ a_uniform grid of control values. This provides a sampling
Using samples of the spectra involved, the spectrum gf yhe mapping from device control values to a device-
transmitted light can be represented as [38] independent color space. A variety of interpolation based
— Ll10~De techniques are then utilized to determine the required inverse
g =L[1077] (24) . ; :
transformation—typically, in the form of a look-up table over a
whereL is a diagonal matrix representing an illuminant speciform grid in a color space [144]-[146]. Interesting alternate
trum, ¢ = [c1coc3]? is the vector of colorant concentrationsapproaches have also utilized neural networks [147] and an
D = [d;d.d3], the remaining boldface symbols represeriterated scheme that concentrates measurements in regions of
sample vectors of the corresponding spectral functions, aggatest impact [148].
the exponentiation is computed componentwise. 3) Halftone Printers: Contone printers require reliable and
For prints produced on paper, the transmitted light is r@ccurate spatial control of colorant concentrations, which is
flected by the paper surface and travels once again throudjfficult to achieve. As a result, contone printers are rather
the colorant layers. This process is readily incorporated in tegpensive. Most desktop printers are therefore based on the
model of (24) as an additional diagonal matrix that represerstisnpler technique of halftoning, which has long been the color
the reflectance spectrum of the substrate and a doubling of teproduction method of choice in commercial lithographic
densities{d;(\)}3_,. For simplicity, the substrate reflectanceprinting. Like CRT displays, halftoning exploits the spatial
can be conceptually included in the illuminant matfixand lowpass characteristics of the human visual system. Color
the same equations can be used for reflective media. halftone images are produced by placing a large number of
Even the simplified model of (24) cannot be used fasmall differently colored dots on paper. Due to the lowpass
a closed-form calibration of a subtractive system. Analytihature of the eye’s spatial response, the effective spectrum seen
cal models therefore often assume that the three dyes hayethe eye is the average of the spectra over a small angular
nonoverlapping rectangular shaped absorptance functions. Thibtense. Different colors are produced by varying the relative
is known as theblock dyeassumption. Using the block dyeareas of the differently colored dots. In contrast with contone
assumption, colorant concentrations required to producepmnting, the concentration of a colorant within a dot is not
given CIE tristimulus can be determined in closed form [38}aried and therefore halftone printers are considerably easier
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and cheaper to manufacture. Special processing of image®©ne obstacle in the direct use of Neugebauer models in
is necessary to determine the dot patterns for the differeftaracterizing a halftone printer is that the relation between the
colors prior to printing on a halftone printer. This processingontrol values and the printing area of the different colorants
is the subject of Section IVB, and only the halftone printings usually not knowra priori. Hence, an empirical component
mechanism will be discussed in this section. is normally required even for characterization schemes using

In order to obtain a reasonable gamut, most three-igk model. This empirical component is in the form of 1-
halftone systems use cyan, magenta, and yellow colorants Bopretransformations of device control values, which often
printing the dots [134, Chap. 3]. Just as in contone printerssarve the additional purpose of increasing characterization-
fourth black colorant is often introduced to conserve the moaecuracy along thechromatic or neutral gray axis, where
expensive colorants, reduce ink usage, and produce derther eye has significantly greater sensitivity [158]. Purely
blacks [134, p. 282]. The colorants combine subtractively ovempirical schemes similar to those used for characterizing
the regions in which they overlap producing up to different contone printers can also be used for halftone printers. The
colors with K colorants. These distinct colors are called thmodels mentioned above are nonlinear and nonseparable in
Neugebauer primariesfter H. E. J. Neugebauer who firstthe device control values and cannot be inverted analyti-
suggested that halftone reproduction may be viewed as eally. Hence, for both model-based and empirical schemes,
additive process involving these primaries [149]. the inversion of the characterization needs to be performed

In Neugebauer’'s model for halftone printers, the spectralmerically. In either case, the final mapping from required
macroreflectance of a halftoned region can be expressedcelr tristimuli to device control values is realized as a
the weighted average of the reflectances of the individualultidimensional look-up table. The models, however, have
Neugebauer primaries, with the weighting factor of eadm advantage over a purely empirical approach in that they
primary given by its relative area. The temmacroreflectance offer a significant reduction in the number of measurements
is used to indicate that it is actually an average of an imequired. An interesting generalization of the Neugebauer
homogeneous region of differing (micro)reflectances. Singgodel is discussed in [159] and [160], where the model is
the model is linear in the reflectances of the Neugebauaterpreted as interpolating between a number of end-points
primaries, the same weighted average formulation appliesgpecified by the primaries. Accuracy is improved by using
colors specified in a tristimulus space instead of the spectigcal interpolation over smaller cells, which in turn implies
Since the original Neugebauer model used a tristimulus spagfare measurements. The generalization, known asdlhgar
recent spectral versions of the statement are referred toNasugebauer modglthus offers a graceful tradeoff between
the spectral Neugebauer mod¢l50]. For a three colorant accuracy and the number of measurements required. Due to
printer, Demichel [151] suggested a statistical scheme (ake large number of effects ignored by most models, they
suming random coverage) for determining the areas of tban offer only limited accuracy. Therefore, in graphic arts and
Neugebauer primaries from the physical printing areas of théinting industries, where there is greater emphasis on quality,
three colorants. As a further simplification, the reflectances gfeasurement-intensive empirical schemes are often preferred
the Neugebauer primaries composed of overprints of more tag1]. A comparison of some model-based and measurement-
one colorant may be expressed in terms of the transmittanggsed empirical schemes for electronic imaging applications
of the different colorant layers as was done in the subtractigan be found in [162].
model of (24). However, since this assumption of additivity Halftone printers have been manufactured using very dif-
of densities reduces accuracy, it is usually not invoked.  ferent technologies for printing dots on paper [139, pp. 4-8].

Prior to the work of Neugebauer, halftone color reprofhe most promising current technologies utilize inkjet, thermal
duction was often confused with subtractive reproductiofransfer, and electrophotography to produce the halftone dots.
and the Neugebauer model therefore offered very significaten a brief mention of the principles and technology of these
improvements [152]. However, the actual halftone processdgvices is beyond the scope of this paper, and the interested
considerably more complicated. Due to the penetration apshder is referred to [138], [163], [139] and [164] for details.
scattering of light in paper, known as tele—Nielsen effett 4) Recent Advances in Color Displays and Printinghe
[153], [154], the simple Neugebauer model does not perforimcreasing use of portable computers has fostered consider-
well in practice. As a result, several empirical modificationgple research in displays that overcome the CRT’s problems
have been suggested for the model. The papers in [155] arepfirbulk, weight, and high power consumption. Active and
excellent repository of information on the Neugebauer modghssive color liquid-crystal displays (LCD’s) are already in
and its modifications. More recently, considerable success hg2 in notebook personal computers, and their use is also
been demonstrated in using a spectral Neugebauer model itbposed in wall-mounted displays for HDTV [165]. A number
empirical corrections for the Yule—Nielsen effect [150], [156]of other technologies, including color light-emitting diodes
Complete and accurate physical models for the color halftoneeD’s), electro-luminescent displays, and plasma displays,
printing process and the Yule-Nielsen effect continue to Bge also being actively investigated. A description of their
elusive, though recent research [157] has yielded encouragifigtorical development, physical principles, and relative merits
results. and demerits can be found in [118], [119], [166], and [167].
2Note that in the printing of the original paper [153], Nielsen’s name wa'g/IOSt of them arg additive color systems similar to a CRT

’ 51d use a mosaic of red, green, and blue “dots” to produce

misspelled as “Neilsen”. Both spellings have therefore been used in existi )
literature. color, though there are also some LCD devices based on the
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subtractive principle [165], [167] or on spectrally selective [TTTTII T Detectors

reflection [168]. B g Ir
A majority of the color display devices mentioned so far

rely on the spatial lowpass characteristics of the human eye to m '

— > Lens

produce different colors using a mosaic of differently colored
regions. An alternative system for producing color, known
as field sequential color(FSC), is based on the temporal U ‘

lowpass nature of the eye’s response. In an FSC system, red,

green, and blue image frames are projected in rapid succession

onto the viewing screen, and the temporal averaging in the Objective  Aperture Diffraction
observer’s eye produces the illusion of a single colored image. Lens Grating
An FSC system was originally selected by the FCC for color
TV transmission, but before it could be commercialized it
was replaced by the monochrome-compatible NTSC system
in use today. The primary drawback in such a system wasl) Spectroradiometers and Spectrophotomete3ampling

the high frame rate and bandwidth requirements [169, pgf the spectral distribution provides the most direct and
218-219]. Recently, there has been a resurgence of intekgshplete technique for recording color information. A

in FSC systems. An interesting example of a recent FSC sgpectroradiometeis the fundamental device used to record
tem is Texas Instrument’s digital micromirror device (DMD}he spectrum. Fig. 9 shows the schematic cross section of a
[170] that utilizes an array of deformable micromirrors. Ispectroradiometer. The light is collimated by the lens onto
the deformed state, each micromirror deflects light from andispersive element, which decomposes it into its spectrum.
illuminating lamp onto a single picture element (pixel) oThe spectrum is then sampled and recorded using either
the viewing screen. The duty cycles of the deformation @fngle or multiple detectors. Typically, a diffraction grating is
different mirrors are modulated to produce image intensitysed as the dispersive element because it provides an almost
variations on the screen. Color is produced by placing a colitiear relation between wavelength and displacement in the
filter-wheel between the lamp and the micromirror device anfbtector plane as opposed to an optical prism, for which the
synchronizing the red, green, and blue frames with the colesrrespondence is highly nonlinear. The linear relationship
wheel. Alternate configurations using three separate DMgdnsiderably simplifies calibration procedures.

devices or two devices in a five primary projection system haveModern spectroradiometers use charge-coupled device
also been reported [171]. From a color imaging standpoificCD) arrays as the detectors because of their linear
DMD displays are rather interesting, as they are almost linegifaracteristics. A sampling of the spectrum is achieved
and allow considerable flexibility in the choice of the primariegutomatically through the placement of physically distinct
through the use of different color filters in the filter-wheel. detectors in the measurement plane. Since the separation

There have also been significant new advances in colgstween the detectors need not correspond directly to a
printing. Color halftone printers have continually improved igonvenient wavelength spacing, the detector outputs are
resolution, speed, and cost. Some devices now incorporate lilgually interpolated to obtain the final spectral samples. Even
ited contone capability through a coarse variation in coloraffough the CCD’s are almost linear in their response at a given
concentrations. The gamut of printers has also been enlargggelength, their spectral sensitivity is not uniform. Therefore,
by using improved colorants, or more recently, by using moeggain compensation procedure is usually necessary to obtain
than three/four inks, which is referred to lagh-fidelity (“hi-  calibrated output from the device [175, p. 338].
fi") printing [172]-[174]. The range and the sampling interval of spectroradiometers

Since most of the devices mentioned above are still in theisry according to their intended application. Spectroradiome-
infancy, little information if any is available on the colorters used for color typically report measurements over the
characterization and performance of these devices. As they fiafige of 360—780 nm and are capable of a spectral resolution
increased acceptance, there will no doubt be a greater demgnd. to 2 nm. This resolution is sufficient for most radiant
for more accurate color characterization and for reasonallgectra. However, since some light sources have monochro-
models of these devices. This will, therefore, be an active angatic emission lines in their spectra, a deconvolution of the
of color imaging research in the future. spectroradiometer measurements may sometimes be necessary
to obtain greater accuracy [27], [28].

An interesting application of spectroradiometry that extends
In order to process images digitally, the continuous-spaqgsyond the visible spectrum is in multispectral scanners carried
analog, real-world images need to be sampled and qua”tiZW*remote sensing satellites. These scanners disperse radiation
Requirements for the spatial sampling process and the effeglig, different spectral bands in much the same way as the
of quantization have been analyzed in considerable de@Eectroradiometers discussed above. Early cameras in these
in signal processing and communications literature and wihtellites used five to 12 spectral bands extending from the
not be reiterated here. This section will, instead, look at thgsiple into the infrared region [176], [177]. The Airborne
requirements of devices that sample spectral information\gtiple Infrared Imaging Spectrometer (AVIRIS) [178], which
each spatial location and attempt to preserve color informati%mmes the range of 4002500 nm at 10 nm resolution, is an

Fig. 9. Schematic cross section of a typical spectroradiometer.

B. Color Input Systems
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Ratio for added convenience and to save time, typical measurement
’—‘ devices make one measurement of the standard, which is stored
and used for a number of successive object measurements.
Detector > . : Since most real-world reflectances are relatively smooth
Grating ——>% I 1 i 1 functions of wavelength [27], most spectrophotometers work
‘- > with much larger sampling intervals than spectroradiometers,
<l / L e R typically reporting reflectance at 5, 10, or 20 nm intervals.

w The built-in illumination in these devices is usually a filtered

Illumination incandescent or xenon arc lamp whose spectrum is smooth
ﬁ (unlike fluorescent lamps) and therefore does not unduly

amplify the measurement noise and quantization errors. Spec-
trophotometers used in color work usually sample the spectrum
in the 380—780 nm range, though the lower wavelength end
of the spectrum may be truncated or less accurate in some
devices because of the lower energy in incandescent lamps at
the ultraviolet end. Owing to the lower resolution requirement
and because of the less stringent calibration required (due
Standard Test Object to the normalization of illuminant and detector sensitivities),
spectrophotometers are considerably less expensive than spec-
troradiometers, and are also more stable over time.

The design of spectroradiometers and spectrophotometers
example of more recent scanners that use a larger numbehg8éds to account for a large number of factors excluded
bands. from the simplistic description given above. Both devices

The spectroradiometer is useful for measuring the specigffer from systematic and nonsystematic deviations from the
of luminous objects. For nonluminous objects, the spectiigleal behavior described above and need to be accurately
reflectance or spectral transmittance is usually more useful fflibrated to known radiant and reflectance standards prior
color specification. The device used for measuring spectral (g-use. In particular, stray light, detector nonlinearity, effects
flectance is called apectrophotometesSince light is essential of polarization, variations in illumination and measurement
for making any measurement, spectrophotometers determig&metry, and unaccounted fluorescence and thermochromism
spectral reflectance as the ratio of two spectroradiometf¢ samples are sources of systematic errors. Detector noise
measurements. This is shown schematically in Fig 10. TAad quantum fluctuations in photon flux are examples of
light source is contained within the spectrophotometer apgndom errors encountered in measurements. The reader is
is used to illuminate both a standard Sample with knOV\Héferred to [179, Chap 9] and [135' Chap 8] for a thorough,
reflectancer;(A), and the test object whose reflectancg)),  though somewhat dated, account of the systematic errors
is to be measured. If A) denotes the spectral irradiance of thgn these devices and their calibration procedures. A more
light source and the device makés spectral measurementscyrrent, though brief, overview is also provided in [60, Chap.
at A\ wavelength intervals in the regiop\o, \o + (K — 5] and [141, pp. 74-86]. Detector noise models for older
1)AJ], the reference measurements can be representedin@guments that used thermal detectors and vacuum tubes
ms(k) = dil(Ao + EAN7Ts(Ao + EAN), 0< k< (K —1), are described in [180], and a more recent account of noise
where d;, denotes the detector sensitivity @to + kAN).  models for semiconductor detectors of radiation is provided

Fig. 10. Spectrophotometer measurement.

Similarly, the object measurements are givensby(k) = in [175] and [181]-[183]. Some methods for accounting and
dil(Ao+EAN)T,(Ao+EAN), 0< k< (K —1). The object correcting some of the systematic errors in spectrophotometers
reflectance samples can therefore be determined as are discussed in [184]. The propagation of spectrophotometric
(k) errors in colorimetry has also been analyzed in [185].
To(Ao + kAN =—ZLr (Ao +EAN) 0< k< (K —1). Color recording devices that attempt to sample spectral
ms (k) information suffer from a number of obvious drawbacks. First,

Mathematically, it can be seen that the detector sensitivi§ince the total energy in the spectrum is split into a number
dx, and the illuminant/(}), cancel out and have no impactof spectral samples, a sizeable measurement aperture and/or
on the measurement. However, in order to obtain good perfé?ng integration time are required for reliable measurements of
mance in the presence of quantization and measurement négespectra. In addition, the required optical components make
and errors due to the limited dynamic range of the detectoﬁgme of the Spectral devices rather expensive and therefore in-
it is desirable that the product of these quantities be neafppropriate for desktop use. Finally, measurement devices that
constant as a function of wavelength. For similar reasons, it@%ploit trichromacy are less accurate but can offer acceptable
desirable that the reflectance of the standard sample be clg@lr performance and significant speedup at a fraction of the
to unity at all wavelengths. To avoid unnecessary duplicati&®st. Spectroradiometers and spectrophotometers are therefore
of the optics and sensors, the measurements of the referedg@d primarily for color calibration, where the larger aperture
standard and the object are usually performed sequentizfyd longer measurement times are not prohibitive (in contrast
instead of the parallel scheme shown in Fig. 10. In additiowith devices for recording complete spatially varying images).
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2) Photographic  Film-Based Recording Schemes: 3) Colorimeters, Cameras, and ScannelSolorimeters,
Photograpihic film is not a digital recording device; howevedigital color cameras, and color scanners are color recording
a brief discussion of this medium is worthwhile, as it oftedevices that operate on very similar principles and differ pri-
forms the primary input to many digital color imagingmarily only in their intended use. All these devices record color
systems. Film used for color photography records the colmformation by transmitting the image through a number of
information in three spectral bands corresponding roughly ¢olor filters having different spectral transmittances and sam-
the red, green, and blue regions of the spectrum. pling the resulting “colored” images using electronic sensors.
The image to be recorded is focused by a lens onto theThe colorimeter is primarily intended for color calibration or
film. The film contains three emulsion layers with silver halidguality control applications and is used to measure the color
crystals that act as the light sensors and sensitizing dyes tfigpically using the CIE system) of luminous (or externally
make the crystals in the three layers respond to differeitminated) objects of somewhat larger angular subtense.
spectral regions. Typically, the top layer is blue sensitivdhus, these devices do not involve any spatial sampling, have
followed by a yellow filter and green- and red-sensitive layerene sensor per color channel, and make a single average color
respectively. The yellow filter keeps blue light from getting toneasurement over their aperture. Colorimeters are often used
the lower layers that are also sensitive to blue light. Liglibr the calibration of color monitors.
in each of the three spectral bands initiates the formation ofDigital color cameras are designed to capture color images
development centers in the corresponding film layer. Whe real-world objects in much the same way as conventional
the film is chemically processed, the silver halide crystals eameras, with the difference that the images are recorded
the development centers are converted into grains of silwgectronically instead of using film. Since the scenes may
and unexposed crystals are removed. The number of grainsmfolve moving objects, they typically have 2-D CCD arrays
silver in a given layer at a particular location is determineghat capture the image in a single electronically controlled
by the incident light energy in the image in the correspondirgkposure. Different schemes may be used to achieve the
spectral band at that location. Thus, the spatial distribution gpatial sampling and color filtering operations concurrently.
silver grains in the three layers forms a record of the spati@he arrangement uses three CCD arrays with red, green, and
distribution of blue, green, and red energy in the image. blue color filters, respectively. In such an arrangement, precise
The relation between the density of silver grains and theechanical and optical alignment is necessary to maintain
incident light spectrum is highly nonlinear. In addition, theorrespondence between the images from the different chan-
formation of silver grains is not deterministic, and the randommels. Often the green channel is offset by half a pixel in the
ness in grain formation contributes to noise in the recordin@rizontal direction to increase bandwidth beyond that achiev-
process, known alm grain noise Film grain noise is often able by individual CCD’s [190]. For economy, and in order
modeled as a Poisson or Gaussian random process [186,tpravoid the problems of registering multiple images, another
619-622], [187]-[189] and constitutes multiplicative noise iBommon arrangement uses a color filter mosaic that is overlaid
the recorded image intensity [52, p. 342]. on the CCD array during the semiconductor processing steps.
An image record in the form of three layers of silveSince the green region of the spectrum is perceptually more
grains is obviously of limited use. Therefore, further chemicalignificant, such mosaics are laid out so as to have green, red,
processing of the film is necessary. For the purposes of thisd blue recording pixels in the ratio 2:1:1%r1:1[191].
discussion, it suffices to note that this processing replaces theage restoration techniques are then used to reconstruct the
silver grains in the red, green, and blue layers with cyafull images for each of the channels [192]-[194].
magenta, and yellow dyes in accordance with the principlesScanners are usually designed for scanning images re-
of subtractive color reproductigrnwhich were be discussed inproduced on paper or transparencies and include their own
Section 1lI-A2. A more complete description of color phosources of illumination. Since the objects are stationary, these
tography can be found in [130], and simplified mathematicgevices do not need to capture the entire image in a single
models for the process are described in [52, pp. 335-339].exposure. Typical drum or flatbed moving stage scanners use
As an aside, one may note that prior to the invention @f single sensor per channel, which is scanned across the
spectrophotometers and spectroradiometers, two technigigage to provide spatial sampling. The single sensor makes
were developed to record the spectral information of entire inthe characterization of the device easier and more precise, and
ages on (monochromatic) film. In the microdispersion methegso allows the use of more expensive and accurate sensors.
of color photography, the light from each small region ofor desktop scanners, speed is of greater importance, and
image was split into its spectral components using dispersitferefore they usually employ an array of three linear CCD
elements, and the corresponding spectra (of rather small spadishsors with red, green, and blue color filters. The linear
extent) were recorded on film. The second method, known &nsors extend across one dimension of the scanned image.
Lippman photographyrecorded the color information in theThis allows three filtered channels of the image along a line
form of a standing wave pattern by using a mercury coating be acquired simultaneously. To sample the entire image,
on the rear of the film as a mirror. Both methods required ete linear array is moved optically or mechanically across the
tremely fine-grain film in order to achieve the high resolutiogther dimension of the image. In another variation of these
required and long exposure times to compensate for the l@@vices, three different lamps are used in conjunction with a

energy at each spectral wavelength. The reader is referredsiiggle linear CCD array to obtain a three-band image from
[130] for a slightly more detailed account of these techniquegiree successive measurements.
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Fig. 11. Schematic of a color scanner.

Colorimeters, digital cameras, and scanners can be matbgfilter transmittance and detector sensitivity, afidlenotes
matically represented by very similar models. In the remainddre value obtained from th&h channel.
of this section, a scanner will be used for illustration of such a In a manner analogous to (2), the equations of (25) may be
model. However, the same discussion applies to colorimetégplaced by their discrete approximations using matrix vector
and cameras with trivial modifications that will be pointed outotation as
where required. t, = MTL,r +e¢ (26)

The schematic of a typical desktop color scanner is shov\\llvrig]erets is the K x 1 vector of scanner measurements the

i!q Fig. 11. The scanner lamp illgminates the image, and tl}\?x 1 vector of reflectance samplds, is an/N x N diagonal
light reflect_ed off a small area IS _|maged by the lens ONtBatrix with samples of the radiant spectrum of the scanner
a beam splitter that splits the light into a number of Cha””qﬁjminant along the diagonalM is an N x K matrix whose
with filters having different spectral transmittances (the typical, <ojumn m; is the vector of samples of the product of the

case of three channels is shown in the figure). The filtereg fijter transmittance and the detector sensitivity, arislthe
outputs are integrated over the electromagnetic spectrum By, 1 measurement noise vector.

optical detectors to obtain a scanner measurement vector. Thifiote that while these devices “sample” color spectra very

process is repeated over the entire image to obtain a “col@parsely, to assure that the above model is accurate it is
representation of the image. In actual scanners, the scani@fessary that sampling restrictions on the color spectra in-
measurements of the small area corresponding to a sampljig@lyed are met [27]. Due to their higher efficiency and
unit is influenced by the color of the surrounding areas [199bwer heat dissipation, fluorescent lamps are often used in
Ideally, restoration schemes should be used to remove the hlgsktop scanners. Since their spectra have sharp spectral
from the recorded image. However, due to the computatiorgdaks, the sampling rate requirements (with uniform sampling)
requirements, this is rarely done, and this aspect of the problemthe model of (26) can be prohibitively high. A more
will be ignored in the subsequent discussion. efficient model for such a case is proposed in [196], where a
For sensors commonly used in electronic scanners, tthecomposition of the illuminant into the sum of a bandlimited
response at a single spatial location can be modeled in(sooth) component and impulses (monochromatic emission

manner similar to (1) as lines) is used to substantially reduce the dimensionality of the
0 model while retaining the mathematical form of (26).
= / Ji)dX)r(M)Is(A) dA + & For colorimeters and color cameras, the stimulus is normally
P a luminous object or an object illuminated by an illuminant

= / m;(Nr(NI(N) dh+¢ i=1,2,---K (25) external to the device. For these devices, the produat,(or

—oo its equivalent), defines the spectral radiance whose color is
where K is the number of scanner recording channelgp be recorded. From the model in (26), it can inferred that
{f:(M}E,, are the spectral transmittances of the colan the absence of noise, exact CIE XYZ tristimulus values
filters, d(\) is the sensitivity of the detector used in th&an be obtained from the data recorded by colorimeters and
measurements, () is the spectral radiance of the illuminantcolor cameras if there exists a transformation that transforms
r(A) is the spectral reflectance of the area being scannedthe sensor response matrix], into the matrix of CIE XYZ
is the measurement noisey;(A\) = f;(A)d()\) is the product color matching functionsA [38]. This is equivalent to the
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requirement that the HVSS be contained in semsor visual fluorescence of samples in scanners, stray light, inclusion of
spacedefined as the column space B [26]. For devices ultraviolet and infrared radiation in the measurements (which
using three channels, this reduces to the requirement tlgot accounted for if the visible region of the spectrum is used
M be a nonsingular linear transformation &f. This fact in the model), and limited dynamic range of detectors [213].
has been known for some time and is referred to as thwever, if proper precautions are taken, these errors are small
Luther—Ives conditior197], [198]. Recent reiterations of thisand can be included in the noise process with minimal loss of
result can be found in [199] and [200]. A device that satisfidanctionality [213].
(generalizations of) the Luther—Ives condition will be said to It should also be noted here that the above discussion applies
be colorimetric to a system for recording color where the input spectra are
For color scanners, the analysis is slightly more involveabt constrained to lie in a restricted set. In recording color
because the illuminant used in the scanner is usually differéntormation from color reproductions that exploit trichromacy
from the illuminant under which the scanned object is vieweshd utilize three primaries, the requirements for obtaining
by an observer. Under these conditions, it can be shown tipagcise color information are much less stringent, and typically
the CIE XYZ tristimulus values of the scanned object undesensors with any three linearly independent channels suffice. A
the viewing illuminant can be determined exactly from thproof of this result for a system using three additive primaries
noiseless scanner measurements if the human visual (viewiQghose spectra vary only in amplitude and not in spectral
illuminant space (HVISS) is contained in tlsganner visual shape) appears in [23]. An example of an application where
space (SVS) defined as the column space bfM. Since this can be readily seen is the measurement of colors produced
the spectra of fluorescent lamps used in most scannersoisa CRT [214]. Note, however, that the calibration of these
quite different from that of the daylight illuminants used imoncolorimetric recording systems is highly dependent on
colorimetry, this condition is rarely met in practice. In additionthe primaries used in creating the images. Thus, they yield
often color tristimuli under multiple viewing illuminants needarge color errors with images that are not produced with the
to be estimated from a single scan of the image, and themaries used in calibration.
above criterion would require an inordinately large number For subtractive color reproduction systems (described in
of detectors. In addition to the problems caused by fluoresc&wction 111-A2) that use varying densities of cyan, magenta,
lamps, actual colorimeters, cameras, and scanners are sulgadt yellow dyes to reproduce colors, one can conclude that
to a wide variety of restrictions arising out of economi@any three sensors from whose measurements the densities can
considerations and limitations of the processes and materiaés inferred will suffice. While mathematical characterization
for manufacturing filters, optical components, and sensor. this requirement would require assumptions on the spectra
Techniques from signal processing are therefore useful for thiethe dyes and models for the specific processes used, in
evaluation and design of these devices. practical systems any three reasonably narrow color filters
It is the filters,{f;(\)}3_;, over which the designer has thewith peaks in the red, green, and blue regions suffice [215],
most control. A quality measure for evaluating single coldd30, p. 247]. Since this is far less demanding as a design
filters was first proposed by Neugebauer [201]. Recently, thibjective than the colorimetric criteria discussed above and
was extended to provide a computationally simple measuwecause a large fraction of input images to scanners are in
of goodness for multiple filters in terms of the principathe form of photographic prints that use subtractive repro-
angles between the HVISS and the SVS [26]. The measuhection, most present day scanners are designed to satisfy
was used for the evaluation and design of color scannitiys requirement. The cost levied by this design trade-off
filters [202], [203]. The same measure was also success-greater user intervention since distinct calibrations of the
fully applied to the combinatorial problem of selecting ascanner are required for accurately scanning reproductions
appropriate set of filters for a scanner from given off-thggroduced with different subtractive primaries [216]. With the
shelf candidate filters [204]. A minimum-mean-squared erradvent of hi-fi printing systems that employ more than three
(MMSE) approach, which requires more statistical informatioprimaries, the accuracy of such scanners is likely to be further
than purely subspace-based approaches, was introducedompromised.
[205], where numerical approaches for minimizing errors in If scanners are designed to be colorimetric, a linear trans-
uniform color spaces were also considered. In [206], noigermation, independent of the scanned object characteristics,
was included in the analysis, and [207]-[209] emphasized tban be used to accurately estimate the CIE XYZ tristimulus
reduction of perceived color errors in a hybrid device capablalues from the scanner measurements. However, due to the
of measuring both reflective and emissive objects through thenlinear relationship between density and tristimuli, scanners
use of linearized versions of CIELAB space [210]. An alternaesigned to measure dye densities perform poorly with a
novel approach accounting for noise was proposed in [211ihear transformation. A number of heuristic nonlinear cali-
where a filter-set was chosen from the multitude satisfying theation schemes have therefore been used in practice. Three-
Luther—Ives condition so as to minimize the perceptual impadimensional look-up tables [146], least-squares polynomial
of noise. In [212], a unified treatment encompassing a numbyegression [217], [146], and neural networks [147] are exam-
of these approaches is presented, and their performancespégs of these approaches. Note, however, that these approaches
compared. offer significant gains over a simple linear transformation only
In actual devices, it is possible to have systematic deviatiowhien the characterization is performed for a restricted class
from the linear model of (26). Sources of error includef media [216].
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4) Multispectral Imaging Systemdn remote sensing ap- Linear models for object reflectance spectra based on the
plications, multispectral scanners often utilize narrowbamiincipal components idea have been used by a large number
spectral filters to record energy in different regions of thef researchers for recovering illuminant and surface reflectance
spectrum in a manner very similar to the color recordindata from recorded images and for color correction appli-
devices mentioned in Section [lI-B3. A major differenceations [220], [223]-[225]. Most of this research used KL
between these and the color recording devices arises frtnansform on a spectrophotometrically recorded ensemble of
the fact that they are not attempting to capture informaeflectance spectra, and the problem of designing spectral
tion so as to match a human observer. Therefore, thaseording devices based inherently on the principal compo-
devices are not restricted to operating within the visibleents approach has received little attention. There is, however,
region of the electromagnetic spectrum and typically usme commercial color measuring device that attempts to re-
infrared, visible, and microwave regions of the spectrugpnstruct spectral data from sensor measurements [226]. In
[177]. For the same reason, while dimensionality reductiaddition, the principal components approach has been used
of recorded data is often done while processing (see Sectionanalyzing multispectral satellite imagery, and the idea of
[11-B5), there is no direct analog of trichromacy in remote recorder based on principal components has also been
sensing. suggested for acquiring satellite images [176, Chap. 7].

Most multispectral remote sensing applications are gearedone may note here that some naturally occurring reflectance
toward classification of acquired images into regions belongiisgectra do not adhere to the smoothness assumption. Examples
to a number of known categories. While this is different fromf such spectra are colors produced due to multiple film inter-
the color recording devices goal of capturing images withofgrence in certain minerals and iridescent colors on some bird
loss of visual information, the mathematical model of (2&pathers and in shells containing calcium carbonate [114, pp.
can also be used to represent multispectral systems. Since2fig, 267]. A principal components scheme leads to relatively
restrictions on the fabrication of these devices are similar karge errors in such spectra. Hence, in imaging applications
those for color recording devices, a number of ideas mentionigatolving these objects, the principal components approach
in the previous sections could also be applied to the design amauld be inappropriate.
analysis of multispectral imaging systems.

5) Principal Component RecordingThe color recording IV. COLOR IMAGE PROCESSINGALGORITHMS
devices of Section 1lI-B3 attempt to sample the spectra of . L .
images while preserving visual information. A recording of Fo_r obvious h'.StO“.C"?“ reasons, a Iarge fraction of the
the spectra itself provides greater information but is extreme Isting resea.rch n d|g|ta! Image processing deals only with
slow and expensive. Since spectral information of reflectiv onochromg Images. W_h'le some of th's. can be extende_d to
images is extremely useful for determining of color unddf'® processing of color images in a str_alghtforward fashlor_1,
different illuminants, alternate schemes for recording theipe'® are several prc_)blems_that_ are unique to the processing
spectral information are of interest. of color. images. This section is a survey of the research

Note that in the absence of noise, the scanned image in (Eg)dressmg some of these problems.
can be directly used to determine the projection of the image o
spectra onto the SVS. Hence, to obtain good reconstruct%nCOIOr Quantization
of reflectance spectra, the sensors can be chosen so th#ost computer color displays are based on a frame buffer
a large fraction of the energy in reflectance spectra li@schitecture [227]. In such an architecture, the image is stored
in the SVS. In the absence of noise, the Karhune®vko in a video memory from which controllers constantly refresh
(KL) transformation provides the mathematical solution to thitie display screen. The images are usually first recordéallas
problem in terms of the statistics of the ensemble of reflectancslor images, where the color of each picture elempixg]) is
spectra [218]. The best spectral reconstruction of scannegresented by (gamma-corrected) tristimuli with respect to the
spectra in a mean-squared error (MSE) sense is obtained frdisplay’s primaries and quantized to 8 or 12 bits (b) for each of
a K channel scanner when the SVS corresponds to the splaathree channels. Often, the cost of high-speed video memory
of the K principal componentsf the reflectance spectra, i.e.needed to support storage of these full color images on a
the eigenvectors associated with tRelargest eigenvalues of high-resolution display is not justified. Many color-display
the spectral reflectance correlation matrix. devices therefore reduce memory requirements by restricting

The reflectance spectra of most naturally occurring objedtse number of colors that can be displayed simultaneously.
are smooth functions of wavelength; the same is true of spedDéen, 8, 12, or 16 b of video memory are allocated to
produced using photography, printing, or paints. As a resudiach pixel, allowing simultaneous display it 212, or 216
these spectra can be accurately represented by a few priwciors, respectively. The user then has the capability to choose
pal components. Various studies of reflectance spectra havealette of simultaneously displayable colors from a much
estimated that between three to seven principal componelatger set of colors that the device is capable of rendering.
(depending on application) provide satisfactory reconstrud- palettized imagewhich has only the colors contained in
tion of reflectance spectra for most color work [219]-[223}he palette, can be stored in the video memory and rapidly
Note that this offers a significant reduction in dimensionalitglisplayed using look-up tables implemented in hardware [227].
in comparison with spectrophotometric measurements usingrhe use of a fixed image-independent palette usually pro-
uniform sampling. duces unacceptable results, unless halftoning (see Section
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IV-B) is employed. Hence, most image displays use an imagedian cut algorithmBoth Heckbert and Braudaway used the
dependent palette. In the ideal case, the palette and tHEG algorithm to improve the initial palettes obtained from
palettized image should be simultaneously determined frontheir heuristic procedures. However, since the LBG algorithm
full-color image so as to minimize the perceived differenceonverges only to a local minimum, this step often yields only
between the displayed and the full-color image. Since théight improvements [238].

solution is intractable, usually it is simplified by splitting it More significant improvements can be obtained by replacing
into two successive steps: i) the selection of a palette andtlie heuristics by schemes that attempt to select the palette
the mapping of each pixel to a color in the palette. through a sequential splitting process while reducing the MSE

The problem of selecting a palette is a specific instane¢ each step. Various splitting procedures, and different criteria
of the more general problem of vector quantization (VQ@pr selection of the cluster to be split, have been used by
[228], [229]. If the true color image ha#& distinct colors researchers. An algorithm suggested by Wtnal. [240],
and the palette is to hav& entries, the palette selection[241] (binarily) splits the cluster with the largest MSE at
may be viewed as the process of divididg colors into each stage along the plane orthogonal to the (tristimulus)
K clusters in 3-D color space and selecting a representatn@ordinate axis yielding greatest reduction in the total MSE. A
color for each cluster. Ideally, this clustering should minimizsimilar scheme has also been reported more recently in [242].
perceived color error. For mathematical tractability, howeve@rchard and Bouman [243] developed a more generalized
the problem is often formulated in terms of minimizatiorbinary splitting algorithm that allows arbitrary orientations
of the MSE between the true-color tristimuli in the imagef the plane used to split a cluster. The algorithm selects
and the palette representatives of their clusters. The selectibe cluster with the most variation along a single direction
of a globally optimal palette under the MSE criterion isnd splits it along the direction of maximum variation. It
a nondeterministic polynomial-time (NP) complete probleralso incorporated a modification of the MSE by a subjective
[230]-[232]. For cases where the number of palette and trueighting factor to reduce undesirable visible artifacts of
colors is extremely small, a branch and bound algorithm cauoantization. Balasubramaniahal. [244] used efficient data-
be used to determine the optimal solution [233]. However, fatructures, histogramming, and prequantization to speed up the
most realistic images, this approach is infeasible. Therefof@tchard—Bouman splitting algorithm.
efficient palette selection algorithms use suboptimal formu- Since the binary splitting algorithms use the “greedy” strat-
lations of the problem and heuristics to achieve acceptalglgy of minimizing the MSE at each split, they can potentially
performance in reasonable time. Often, the Linde—-Buzo—-Grggt stuck in poor local minima. Wu [245] developed an alter-
(LBG) algorithm [234] can be used to iteratively improve amative dynamic programming scheme that performs multiple
existing palette to achieve a local minimum with respect tgplits at each stage to partially remedy this problem. For
the MSE criterion. The algorithm is a generalization of theeasonable sized color palettes, the potential for encountering
1-D Lloyd-Max quantization algorithm [235], [236] and ispoor local minima with the greedy strategy is rather low.
identical to theK-means clustering algorithm [237] used inConsequently, Wu'’s algorithm offered the greatest gains for
pattern recognition and classification. guantization with small palettes [245].

A simple heuristic that has been used for palette designWhile several of the VQ algorithms mentioned above allow
is the popularity algorithm which works by forming a 3-D nearly transparent quantization of images for display, their
histogram of the true image colors and assigning&henost computational cost is often too high. Recently, Balasubrama-
frequently occurring colors in the histogram as the palettganet al.[246] reported a new VQ technique called sequential
colors [238]. While the popularity algorithm is extremely fastscalar quantization (SSQ). SSQ is able to exploit correlation
it performs rather poorly on images with a wide range dietween the color components and offers some of the benefits
colors. The idea of using histograms is, however, useful, anfl conventional VQ, while retaining the simplicity of scalar
is often used as a first step in the palette selection procegmntization. The application of SSQ to color quantization has
to reduce the number of colors to more manageable levdlgen reported in [246] and [247], where it can be seen that
Typically, the histogram is formed by the simple process &SQ offers slightly inferior MSE performance in comparison
ignoring some of the least-significant bits in each tristimue some of the binary splitting techniques while providing
lus. Braudaway [239] suggested a variant of the populariery significant speed-up. SSQ has also been used for the
algorithm that prevents the concentration of too many colocseation of universal (image-independent) color palettes for
around a single histogram peak by allocating the palette col@sor-diffusion (discussed in Section 1V-B) [248].
sequentially and modifying the histogram after each allocation.One limitation of the palettization schemes based on MSE
Gentileet al. [124] modified Braudaway’s algorithm and useds that they offer no guarantees regarding the maximum color
it to perform palettization in CIELUV space. An alternateerror. The octree quantization algorithm [249], [250] and the
heuristic was suggested by Heckbert [238], which attempatenter-cut algorithm [251] are two simple color quantization
to use each palette color to represent an equal numbersohemes motivated by the idea of limiting the maximum
true colors. The proposed algorithm determines a palette &yor. The center-cut algorithm is a minor modification of the
a recursive process of splitting the largest cluster into twoedian-cut algorithm, in which the cluster with the largest
equal halves. Since the splitting is done about the median paiitnension along a coordinate axis is split along the center at
after sorting the colors in the cluster along the dimension witach step. The octree algorithm is a bottom-up approach to
largest spread, the algorithm is commonly referred to as ttiee problem, in contrast with all the other top-down schemes.
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Conceptually, it subdivides the color space into cubes untievices normally possess rather high spatial resolution, which
each cube contains only one image color and then reduces (@tenormal viewing distances) is often beyond the resolving
resulting octree by an averaging and merging process so tbapabilities of the human eye. In reproducing color images on
each node represents a palette color. In practice, the buildihgse devices, it is therefore desirable to use techniques that
and reduction are performed in a single pass. An alterndtade off (excess) spatial resolution in favor of a greater range
bottom-up color quantization scheme, that uses histogramminfgperceived colors. The terimalftoningis used to describe a
and prequantization with a cluster-merging VQ algorithm, wagriety of image processing techniques based on this idea.
also presented in [252]. The eye perceives only a spatial average of the microvari-
Thus far, the palettization algorithms discussed were coation in spot-color produced by the device, and is relatively
cerned with single images. The problem of palettization issensitive to high-frequency differences between the original
more involved for video sequences. In addition to the reentinuous-tone image and the halftone image. Halftoning
quirement of real-time performance, care must be taken in thlgorithms therefore attempt to preserve this average in the
design of palettes for successive frames to minimize the visibkproduction while forcing a large fraction of the (neces-
effects ofcolormap flashinghat occurs when the color map issary) difference between the halftone and contone images
updated prior to the update of a frame. The reader is referri@atb the perceptually irrelevant high-frequency regions. In the
to [253] for a description of a mathematical formulation ancemainder of this section, the distinction between spot-color
solution scheme for the problem of color quantization of videand perceived average color will not always be explicitly
sequences. A less sophisticated scheme utilizing a single caarphasized. The implied meaning should, however, be clear
palette for the entire sequence is also discussed in [25#pm the context. Similarly, most of the discussion will refer
Colormap flashing can also be encountered in the simultane-halftone printing, and the use of halftoning in displays will
ous display of multiple independently palettized images. The mentioned where appropriate.
problem can be eliminated through the use of a combinedHalftoning methods have been used in lithographic printing
palette. An efficient VQ scheme for combining palettes witfor the reproduction of both gray-scale and color images for
little visual distortion is presented in [255]. a considerable length of time [260, p. 128]. The halftones
Once the design of a palette is over, the second step in cdior lithographic printing processes were traditionally obtained
quantization, i.e., the mapping of image pixels to the paletty photographing (color-filtered) images through a fine screen
colors, needs to be performed. The simplest approach to tbis a high-contrast film [260, Chap. 7]. In digital imaging
problem is to map each pixel to its nearest neighbor in tlapplications, halftoning was originally used in binary display
palette. Often, the palette design process can be used to obtiivices and printers for producing the illusion of gray scale.
a tree structure that simplifies this nearest neighbor searchTéiere is a vast amount of literature dealing with the halfton-
provides a good approximation to it. This is particularly trusng of gray-scale images (see [261]-[265] for an extensive
for the binary splitting algorithms that can use the classic kibliography). This section will focus mainly on digital color
d tree [256] for nearest-neighbor search. Similar procedurgalftoning. Since several techniques of color halftoning inherit
can also be readily used with the octree quantization schertteir motivation and principles from prior schemes used in
Note however, that if the LBG algorithm is used for iterativéalftoning gray-scale images, some of the pertinent gray-scale
improvement of the obtained palette, the tree structure of thehemes will also be referenced.
palette is destroyed, and therefore the nearest-neighbor seardbne problem unique to color halftoning is the problem
is more involved though fast searching schemes can still bk registration. Most printing processes print halftone “sep-
developed [257], [258]. arations” of the different color dyes sequentially. Typically,
While the nearest-neighbor mapping algorithm is optimahe reproduction medium is moved by mechanical systems
from a minimum-average-error standpoint, it often producés the process and some variation in the alignment of these
objectionable contours in smooth image regions. A significagéparations is inevitable. If ideal cyan, magenta, and yellow
reduction in visible contours can be obtained by a using tidges (which follow the Bouguer-Beer law and the block
halftoning techniques of dither or error diffusion, which will bedye assumptions mentioned in Section IlI-A2) are used, the
briefly discussed in Section 1V-B. The use of these techniqueisual appearance would be essentially independent of small
in the pixel mapping step has been discussed by a numberajistration errors [134]. However, real dyes are far from ideal,
researchers [238], [239], [124], [243]. Let al.[242] describe and registration errors can produce significant color shifts due
another pixel mapping scheme that combines error diffusiem varying amounts of overlap between the separations. Color
with morphological operations in an attempt to reduce visiblealftoning schemes, therefore, attempt to arrange separations
artifacts. so that the relative overlaps of the dye layers are insensitive
to alignment errors.
In conventional digital color halftoning (for printers), the
The human eye is extremely sensitive to color variationsnage is decomposed into a cyan, magenta, yellow, and black
and is capable of distinguishing around 10 million colors undeeparations, which are halftoned independently. The halftoning
optimal viewing conditions [259]. At the same time, colofor each separation is done by comparing the pixel value with
output devices such as halftone color printers and palette-spatially repeatedlither array and turning on pixels for
based displays are capable of producing only a limited numbehich the image exceeds the value in the corresponding dither
of colors at each addressable spatial location. However, thesatrix [264]. The dither matrix is designed so that thresholds

B. Halftoning
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close in value occur near each other in the dither array. FoR#& version ofx-A A/D converters. An analysis of ED and
uniform image, the halftoning schemes yield a grid of halftong-A A/D conversion in a common framework was presented
dots (consisting of clusters of “on” pixels) similar to onen [274], [275]. From such an analysis, it can be seen that the
produced by the photographic screen in lithography. The simeage resulting from ED can be represented as the sum of
of the clustereddots increases with increase in the image pixé¢he original image and a highpass filtered error image [276],
values. The grids for different colors are oriented at differef277]. Since the eye is less sensitive to high spatial frequencies,
angles to make the overlaps between the dots in the fahe images resulting from ED typically appear closer to the
separations invariant to small registration errors. The printirggiginals than those obtained with ordered dither.
mechanism is therefore said to emplmtated screensThe ED was originally used and analyzed for gray-scale images.
rotation angles for the different colors are chosen so st of the analysis is, however, applicable to color images
to minimize the occurrence and visibility of low-frequencytoo. For color images, the image may be represented as
interference patterns, known awiré [134]. The most visible tristimuli in a color space or as separate cyan, magenta, yellow,
black screen is typically oriented along a°4&ngle, along and black images for printing. Typically, the error diffusion is
which the eye is least sensitive. The yellow, magenta, and cydone independently for each channel using identical spatial
screens are located alon§,@5°, and 75, respectively [134, filters, but quantization may be performed independently in
pp. 328-330]. In digital imaging applications, often one isach channel (scalar ED) or simultaneously for the entire color
confined to working on a rectangular raster. An elegant schewextor (vector ED). For printers, both scalar and vector ED
for obtaining different screen angles on rectangular rastexshemes have been used [278], [279], but for color displays
was developed by Holladay [266]. An analysis of neoirsing with an image-dependent palette, it is usually necessary to
Fourier transforms and methods of designing dither arrays these vector ED. For unity-gain ED filters with positive weights
minimize moigé can be found in [267] and [268]. only, it can be shown that scalar ED is a stable process with
The requirement that pixels in a dither pattern must Heounded quantizer overload [274]. However, for vector ED,
clustered together is fairly restrictive and compromises spsevere quantizer overload can occur, leading to significant
tial resolution. However, clustered dots are insensitive twlor artifacts. A discussion of this problem and methods that
common printing distortions and reproduce well on printer@tempt to reduce overload by reducing the feedback in ED
and copiers that have difficulty in reproducing isolated pixetsan be found in [243] for displays and in [279] for printers.
[265]. Therefore, rotated clustered-dot screens have been usethe ED filter needs to be causal if the image is to be
extensively for color printing. For displays, these consideraalftoned in a single pass. The causality requirement for nor-
tions are inapplicable, and therefore alternate dither matriaeal raster processing implies that the filter is asymmetric. This
that producelispersediots with greater spatial resolution haveasymmetry often results in visible low-frequency “wormlike”
been successfully used for bilevel displays [269]. The usetifacts in bilevel ED. Several schemes, such as a larger area
of rotated dispersed-dot dithering for color printing on inkjedf support for the FIR filter [280], [281], processing on a
printers has also been recently mentioned in [270]. serpentine raster [282], and symmetric error diffusion neural
One may note here that the process of thresholding witmatworks [274], have been proposed for gray-scale images
dither array can be replaced by a mathematically equivald@nt overcome these limitations. For color images, however,
scheme of adding a dither pattern to the image and threshe problem of visible artifacts is not that acute due to the
olding at a constant level. This is a variant of the schemmaultiple output choices for each pixel in both displays and
proposed in [271]. The original scheme proposed the use minters [283]. While clustered dot dithering schemes are often
random noise as the dither pattern. Such a scheme is knowmpteferred for printing for reasons mentioned earlier, ED is the
reduce visible artifacts due to quantization and is often uspdmary halftoning scheme used in displays.
in monochrome and color displays. In order to emphasize thelt was mentioned earlier in this section that ED images
difference with this random dither, the terondered ditheris are pleasing to the eye because of the highpass nature of
often used to describe schemes of the last two paragraphs,tfar “noise” in the reproduction. The fact that pushing image
which the dither pattern is not random. guantization noise to high spatial frequencies results in reduced
Halftoning schemes that employ dither matrices quantizmise visibility was recognized early on and exploited in
the image pixels in isolation. Considerable improvements dithering schemes by several researchers [269], [284]-[286].
image quality can be obtained by using adaptive schemdeise processes having only high spatial frequency compo-
that process each pixel depending on the result of processirents were given the namiglue noiseby Ulichney [287].
other pixels. Error-diffusion (ED) [272], [273] is an adaptiveHe convincingly argued that since a large MSE is inevitable
scheme that has been widely used. ED works by “diffusingthen reproducing a gray-scale image on a bilevel device,
the error resulting from the quantization of the current pixel tealftoning should attempt to concentrate on shaping resulting
neighboring pixels. At each pixel, the diffused error is addatbise spectrum to be blue, and therefore least visible. While
to the image value prior to quantization, and the quantizati@D produces blue noise, it offers only a limited control over
error is again distributed over adjacent pixels. Since thie noise spectrum and also requires considerable processing
objective of error diffusion is to preserve the average value comparison to the pixelwise thresholding for ordered dither.
of the image over local regions, a unity-gain lowpass finiteveral researchers have therefore worked on developing large
impulse response (FIR) filter is used for distributing the errodither matrices, which achieve ED-like performance with the
From a signal processing viewpoint, ED can be viewed ascamputational benefits of pointwise processing [288]-[290].
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The resulting techniques along with ED-like adaptive algo- The method of ED continues to be an active area of
rithms are collectively known aslue noise halftoningor research. Recent novel developments in the area include the
stochastic screening he dither arrays produced for obtainingise of adaptive signal processing techniques and embedded
blue noise characteristics are knownbhige noise mask$lost quantization schemes. Image-adaptive ED filters that use the
of the literature dealing with the design of blue noise maskeell-known least-mean-squares (LMS) algorithm [303] have
addresses only grayscale halftoning. For color, independéeen employed for halftoning gray-scale [304] and color
(uncorrelated) blue noise masks are used for each separatjdfi5], [306] images (although, with slightly different error
Just as in bilevel reproduction, blue noise masks in coloriteria). The methods exploit the local characteristics of
offer the advantages of high processing speed, good spatiied image to obtain improvements over a constant filter.
resolution, and few visible artifacts. An added advantag@nother modification of color vector ED is proposed in [307],
particularly for hi-fi printing, is the lack of visible screen[308]. The resulting embedded multilevel ED algorithm allows
texture and interference between angled screens. coarse quantizations of an image to be embedded in finer
The halftoning methods mentioned thus far are (intelligenguantizations, which can be useful in (among other things)
heuristic algorithms that exploit the lowpass nature of the eydfse progressive transmission of color images.
spatial response. The problem of halftoning can alternatelyOne may note here that the issue of obtaining colorimet-
be formulated as an optimization problem that aims at maxieally accurate reproduction has been consciously avoided in
mizing the “visual similarity” between the original image andhe discussion above. Due to gamut restrictions, a colorimetric
the halftoned image. In order to quantify visual similaritynatch is often neither feasible nor desirable. In addition,
several schemes utilize a model for the spatial response of éwen with these problems excluded, there have been only
eye. These schemes are therefore referred tmadel-based a few attempts at incorporating colorimetric matching into
halftoning methodsBased on psychophysical measurementsilftoning algorithms. If the output device is linear and a
with sinusoidal gratings, an empirical isotropic linear shiftmean preserving scheme such as conventional ED is used
invariant (LSI) model for the eye's spatial response wder halftoning in the device color space, it can be expected
developed in [291] along with a distortion measure. The dithat a good colorimetric match will be obtained. However,
tortion measure corresponds to the MSE between the filtetbgse assumptions are rarely valid. For CRT displays, due to
versions of the actual and halftoned images, where the filtertliee larger number of output quantization levels, an argument
the LSI model of the eye’s spatial response. Most model-bagefdlocal linearity can be invoked [309]. This justifies and
halftoning methods use variants of this distortion measure. Fexplains the relatively accurate color reproductions obtained
the spatial response of the eye, however, a number of othising ED on CRT displays. In printing, color accuracy is
models have also been proposed, including some that take intwmally addressed (using the methods mentioned in Section
account known anisotropy in the visual-system [292]. [1I-A3) after selecting a halftoning scheme. The problem
The exact optimization in model-based halftoning scheme$ colorimetric match can also be partly addressed using
is an intractable integer programming problem. For display uniform color space (UCS) for vector ED [297], [279].
of gray-scale images on binary output devices, a numbdpwever, since the number of possible output pixel colors
of researchers have suggested iterative schemes that [eo-printers is small, analysis of colorimetric behavior of
vide good solutions with varying computational requirementalftoning algorithms needs further research.
[292]-[296]. For color displays with reasonable sized palettes, .
the problem remains computationally infeasible at present. An €olor Image Coding
iterative algorithm for model-based halftoning for color print- Since color has become such a large part of digital imagery,
ers has been reported in [297]. The algorithm uses a linearizbd problem of coding color images for transmission and
version of CIELAB space for perceptual uniformity alongstorage has gained increased importance. The natural evolution
with separate spatial models for luminance and chrominanakcoding treated color images simply as three independent
channels. Pappas [283], [298], [299] has also considered mmannochrome bands. This allowed all known monochrome
extension of the model-based halftoning scheme to color tlratding methods to be used. Since CRT displays were the
also accounts for some printing distortions. primary intended target, the RGB representation was most
Since the computational requirements of most model-basssmmon. However, the monitor-based RGB tristimuli are
schemes are rather restrictive, a number of researchers haighly correlated and therefore not suited for independent
investigated hybrid schemes that use the halftoning methamsling [310]. This was also recognized in early work with
mentioned earlier but still attempt to minimize a visual modetolor television, and other color spaces were investigated.
based error. For gray-scale images, Sullivanal. [300] A review of this work is given in [42]. There are a few
have incorporated a visual model in ED. The use of neuriahportant points about this early work that are worth noting
nets to minimize a visual model-based distortion function inere. The importance of using a luminance chrominance
symmetric error diffusion has also been reported in [274]. Fepace similar to CIELAB and CIELUV was recognized. An
color applications, significantly less research has been domelependent luminance channel was also required for reasons
The optimization of ED for color display applications has beeof compatibility with existing monochrome system. The result
reported in [301] and [302], where optimal ED filter coeffiwas YIQ, which is still used for many applications outside
cients were determined through a process of autoregressifeelevision today. The YIQ signals had to be transformed
(AR) modeling of the eye’s spatial response. into driving signals for the RGB phosphor guns used in the
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receiver. Since precision analog hardware was expensive,cafor spaces to be used. This means that as better color-coding
attempt was made to minimize the complexity of the variousethods are developed, they can be implemented in the current
transformations. The spectral sensitivities of the recordifigamework. In current implementations, the YCrCb space is
cameras were chosen to approximate the color-matching funften used with the Cr and Cb components subsampled by
tions defined by phosphor primaries. In doing so, the negatigefactor of two along both spatial dimensions [319]. The
portions of the color-matching functions were ignored, antPEG compression scheme has also been incorporated in the
sensitivities that matched the nonnegative portions were udaternational Color Facsimile Standard [320], [321].
[42]. This was recognized as creating color errors; however,An interesting problem is the coding of palettized im-
the errors seemed tolerable. In order to simplify receivers, tages. While the palettization process offers some compression
Y1Q signals were derived from gamma-corrected RGB signaypically 3:1), this is usually significantly lower than what
associated with the phosphor primaries, and therefore the Yikattainable with other image coding schemes. Smoothness
space used in TV transmission is not a linear transformatiagsumptions are typically invalid for color mapped “image”
of the CIE XYZ space. data. Therefore, normal coding schemes are inapplicable un-
With the advent of HDTV, the problem of negative lobdess the images are remapped to full color images before
truncation in the camera sensitivities is to be entirely elingoding. Recently, Wu [322] has suggested a new YIQ palette
inated by implementing matrix transformations of recordearchitecture that uses joint VQ of spatial and color information
color tristimuli. The gamma-correction mentioned in Sectioid obtain modest compression ratios. A more aggressive coding
I1I-A1 has still been retained due to its perceptual benefitscheme for palettized images has been suggested in [323],
Instead of YIQ, an opponent color space encoding for gammahere the colormap data is locally reorganized to obtain
corrected RGB data has been standardized as the YCrCb sgoeoth blocks, and DCT coding is then utilized. Lossless
[51]. This space has also been used frequently in recent wertropy coding schemes have also been presented recently in
on image compression. [324] and [325].
Since it was well known that color perception errors did
not correlate well with Euclidean distances in RGB space )
and the television standard was available, most research bnGamut Mapping
coding used variations of monochrome coding in combination It was mentioned in Section IlI-A that color output devices
with transformations to better color spaces. Transformatioage capable of producing only a limited range of colors defined
to novel color spaces were used, such as the K-L transforas, their gamut. Often, an image contains colors beyond the
which offered performance similar to YIQ [310]. Some worlgamut of the target output device. In such a case, before the
has also been done with coding images using perceptual eirpage can be reproduced, it is necessary to transform the
measures (see for e.g., [311], [312]). While the CIELUVmage colors to lie within the gamut. This process is referred
and CIELAB spaces were designed to match the results tofasgamut mappingThe goal in gamut mapping is to obtain
perceptual tests on larger patches of color, tests confirm thateproduction that appears identical to an “original” image.
quantizing in these spaces produces smaller perceptual erfiiie original image is often itself a reproduction from another
in images. color output device. Since output devices have widely varying
With the increasing use of digital imagery that is indeperphysical characteristics, they can have significantly different
dent of TV, new methods are continually being introducedolor gamuts. In addition, devices rely on different mecha-
Just as in halftoning, coding schemes that exploit the lowpasisms (e.g., emission, transmission, or reflection) to produce
spatial response of the eye have been suggested for imagkr and therefore imply different viewing conditions and
coding. In subband coding [313], the image is split inteonsequently different states of adaptation for the observer's
orthogonal subbands with varying frequency content. Thésual system. Gamut mapping is therefore a difficult problem
subbands are then quantized with fewer bits allocated ito which the issue of device capabilities is interwoven with
higher frequency components. VQ techniques, similar to tho$® psychophysics of color vision.
described in the earlier section on palettization, can be usedVhile the gamut mapping problem has been successfully
for the quantization. Known anisotropy in the eye’s spati@ddressed in the printing and graphic arts industries for con-
response can also be utilized. The lower sensitivity of thederable time, it has become an active area of research in
eye along the 45angle, permits fewer bits to be allocatedligital imaging applications only recently. In graphic arts
to frequency bands located on the diagonal. This idea dad printing, skilled human operators rely on experience to
easily extended to color images. However, complete data parform gamut mapping for each image independently. In
the spatial frequency response of the eye to spatial colfigital imaging applications, on the other hand, it is desirable
(chromatic) frequencies has only recently been published. Titeautomate as much of the process as possible and make it
combination of subband coding with color spatial frequendyansparent to the end user.
response was presented in [314] and [315]. Due to the large differences in dynamic range of different
Similar ideas provide the motivation for the discrete-cosineolor devices and due to the normalizing adaptation in the
transform-based (DCT-based) Joint Photographers Expeye, little success can be achieved by gamut mapping schemes
Group (JPEG) and Moving Pictures Expert Group (MPEGhat attempt to match tristimulus values. Use of uniform
standards [316]-[318]. These standards specify the codingctbor spaces that incorporate some white point scaling in the
be performed on each image band, and allow for a variety gfecification of colors mitigates the problem of normalization
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to a limited extent. However, naive schemes that map owtiaracterization information and transformations, color man-
of-gamut colors to the nearest color in a uniform color spaegement systems have been proposed to automate this task.
or scale the entire image colors to lie within the gamut afeor a discussion of the systems issues in color management
also unsatisfactory in most cases. A robust and universald existing color management schemes, the reader is referred
gamut mapping strategy remains an elusive goal. Howevay, recent presentations on the topic [334]-[336]. A notable
several researchers have reported encouraging results fiaance in this direction is the emergence of a widely accepted
experiments with different gamut mapping strategies. Tlstandard [86], [337] to facilitate the communication of device
more successful approaches tend to use uniform color spackaracterizations.

or color appearance models and manipulate color data using

perceptual attributes of lightness, hue, and chroma in an

attempt to preserve the more important attributes. V. RESEARCH DIRECTIONS IN COLOR IMAGING

Stone et al. [158] laid down some principles of gamut This paper surveyed the current technology and research
mapping that were culled from psychophysics and acceptgdthe area of color imaging. As compared to monochrome
procedures in graphic arts. For printing images displayed @faging, the field of color imaging is still in its infancy and
CRT monitors, they described an interactive gamut mappiaéounds with a large number of interesting research problems.
strategy involving translation, scaling, and rotation of colorgf greatest relevance, perhaps, is the problem of colorimetric
in CIE XYZ space. For an identical Scenario, simulations of @Cording of image data. Since the “garbage-in garbage-out”
number of clipping and compression based gamut mappipgradigm still holds, significant gains in processing and dis-
schemes using CIELUV [326], [327] and CIELAB [328],play can be made only if the recorded colors are accurate.
[329] color spaces have also been reported. For obtainimgward this end, the construction of readily manufacturable
similar reproductions on transmissive and reflective medignd inexpensive colorimetric filters remains elusive, though
the use of an invertible color appearance model was reportgflances in electrically tunable acouto-optic filters [338],
in [330]. Recently, a gamut mapping strategy for printeq839, Chap. 7] offer considerable promise. Using appropriate
that does not involve any explicit clipping and scaling waglectrical modulation, a wide range of filter transmittances
presented in [331]. The mapping for a limited subset of cologan be synthesized on these devices [340]. Their use in
was explicitly specified, and an interpolation algorithm basegientific applications requiring precise color recording has
on morphing was then used to obtain a mapping for the othg@en recently reported in [341]. Other research areas in color
colors. input systems are the development of multidimensional image-

restoration schemes for effective deconvolution of adjacency
i effects in scanning, robust methods for scanning halftone
E. Device-Independent Color and Color Management Syste[gs,qes, and methods for illuminant independent recording of

In digital imaging applications, color was first used prireflective and transmissive images. Research in several of these
marily on CRT displays. The color data in most images waseas would also be relevant to satellite multispectral imagers.
adjusted and stored in a device-dependent format suited forquantifying color recording accuracy, it is also desirable
providing reasonable reproduction on common CRT monitotts. develop metrics that are based on complex image scenes
With the proliferation of a large number of other color devicednstead of the CIE metrics based on large uniform areas.
it is desirable to use a device-independent color specificationColor appearance modeling for imaging applications is
from which identical-appearing images can be created another prospective area for investigation. While there are
multiple output devices. While this has been an active areaveral color appearance models, most are fairly complex
of research in the industry, a universally acceptable coland their suitability for color imaging remains to be compre-
specification system that guarantees device independencéensively evaluated. The development of simpler and readily
yet to be defined. The use of standardized colorimetry defiresplicable (though, not necessarily physiological) models of
colors in a device-independent space and therefore formgdor perception and their incorporation into color processing
first step toward achieving device independent color. Howeveaitgorithms to improve performance is also a desirable research
as discussed in Sections II-D and IV-D, the use of a devicgeal. This is particularly relevant for problems of gamut
independent color space does not by itself guarantee an appe@pping and cross-device rendering, though such an approach
ance match between images reproduced on different devieesuld also benefit coding and compression algorithms.
under different viewing conditions. Therefore, in addition to With the advent of new display and printer technologies,
colorimetry, the use of auxillary information regarding viewingheir modeling and easy calibration will also pose new chal-
conditions and white points has been proposed for colmnges. Few predictions, if any, can be made regarding the
specification. Such information would allow exploitation ohature of devices yet to come. However, it is likely that a
vision psychophysics and gamut mapping to achieve deviaasmber of these will utilize more than three primaries to
independent color [332], [333]. obtain an increased gamut. Color coordinates, which drive the

For device-independent color reproduction, it is necessarygdomaries in these systems, would therefore be mathematically
accurately characterize each individual color input and outpuniderdetermined. Research is needed on schemes for dealing
device and transform image data into appropriate deviosith this underdeterminacy that incorporate feasibility con-
dependent versions based on the characterization. In ordesti@aints and also avoid introducing undesirable discontinuities,
isolate the end user from the nitty-gritty of handling colowhile exploiting the full device gamut. Several of these
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problems are already under investigation in the context of hif#i2] A. Friedman The Foundations of Modern AnalysisNew York: Dover,

printing mentioned in Section IlI-A4.
Finally, there is room for improvement in existing color pro-

[23]

cessing algorithms. More efficient quantization and halftoning4]
schemes are necessary for use with real-time video on framg-
buffer displays. Colorimetric behavior of halftone printing also
deserves attention, though such an analysis would necessaril
have to account for imperfections in the printing process i
order to be useful.

(27]
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