TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Locking to ensure serializability

e Concurrent access to database items is controlled by strategies based on
locking, timestamping or certification

e A Jock is an access privilege to a single database item
® [ock Manager: manages the locks requested by transactions.
® Locks are

B obtained by transactions

Wstored in a lock table

M Lock is an entry of the form (item, lock-type, transactionlID)

e ;tem is the item that the transaction locks

® |ock-type can be shared or exclusive

e fransactionlD is the transaction identifier



TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Locking

® When a transaction holds an exclusive lock on a database item, no other
transaction can read or write the item

Mysed for writing

® When a transaction holds a shared lock, other transactions can obtain a shared
lock on the same item

Mysed for reading
e Assumptions (for now)
Mthere is a single type of lock and
Wevery transaction must obtain a lock on an item before accessing it.

Mall items locked by a transaction must be unlocked, otherwise no other
transaction may gain access to them.

M a transaction must wait until the lock it requests is released by the
transaction that holds it.



TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Transaction Management

1. Locking can prevent the lost update problem:
T: = Lock,(A) Ri(A) Wi (A) Unlock,(A) C;
T2 = Lock, (A) R2(A) W2(A) Unlock,(A) C,
2. Locking enforces a serial execution of the transactions

3. Locking can also prevent the blind write problem:
T; = Lock,(A) W;(A) Lock, (B) Wi(B) Unlock, (A) Unlock, (B) C;
T2 = Lock, (A) W2(A) Lock,(B) W2(B) Unlock,(A) Unlock,(B) C;

M Then the following schedule is valid:

Lock;(A) W;i(A) Lock;(B) W1(B) Unlock;(A) Locko(A) W2(A) Unlock;(B)
Lock,(B) W2(B) Unlocko(A) Unlock,(B) Cq Co



TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

LiveLock

e Undesirable phenomena if locks are granted in an arbifrary manner
e Example:

®while T2 is waiting for T1 to release the lock on A, another transaction T3
that has also requested a lock on A is granted the lock instead of T2. When
T3 releases the lock on A the lock is granted to T4 etc.

® [ivelock: The situation where a transaction may wait for ever while other
transactions obtain a lock on a database item

B Can be avoided by using a first-come-first-served lock granting strategy
but, even then a deadlock might occur



TMavernorruio Kpritng, Turua Emorrung YrnoAoyiotwv Anpritpng MAeouvodkng

Deadlock

e QOccurs when a fransaction is waiting to lock an item that is currently locked by
some other transaction

e Example: Consider the transactions:

T: = Lock,(A) Lock,(B) .... Unlock,(A) Unlock,(B) C;
T2 = Lock, (B) Lock, (A) .... Unlock, (B) Unlock, (A) C»
B Assume T; is granted a lock on A and T, is granted a lock on B

B Then T; requests a lock on B but is forced to wait because T, has
the lock on B.

W Similarly, T, requests a lock on A but is forced to wait because
T; has the lock on A.




TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv

Different solutions for Deadlocks

Anuntpng MAe§ouodkng

e Solution 1: Require each transaction to request all locks at once. Either all locks
are granted or none.

e Solution 2: Assign an arbitrary linear order to the items and require all
transactions to request their locks in that order.

e Solution 3: Do nothing to prevent deadlocks: abort one or more of the
deadlocked transactions if a deadlock arises.



TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Deadlock Discovery

® Deadlocks can be discovered using wait-for graphs:

B Given a set of transactions S, a waif-for graph is a directed graph:
e vertices correspond to transactions in the set

* there exists an edge from T; to T; if T; is waiting to lock an item on which T is
holding a lock.

® Theorem: A set of transactions is deadlocked if and only if there exists a
cycle in the wait-for graph.

® Example: The wait-for graph for the transactions contains a cycle
T; = Lock,(A) Lock, (B) .... Unlock, (A) Unlock, (B) C;
T2 = Lock,(B) Lock, (A) .... Unlock, (B) Unlock, (A) C>

(1) (1) 7

A



TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

2-Phase Locking (2PL)

® 2-Phase Locking (2PL): a protocol ensuring serializability of schedules

e Definition: A schedule is said to obey the 2-phase locking protocol if the
following rules are obeyed by each transaction in the schedule

1. When a transaction attempts to read (write) a data item, a read lock
(write lock) must be acquired first

2. If a transaction T, holds a lock on data item A for operation op, and
some other transaction T, requests the lock to perform a conflicting
operation op, on the same item, the transaction requesting the lock (T,) is
forced to wait until no conflicting lock on the item exists
o (only read locks are non-conflicting)

3 A transaction cannot request additional locks once it releases any lock!



TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

2-Phase Locking (2PL): Conflicts

® two locks by the same transaction never conflict

® a transaction with a read lock on a data item can acquire a write lock on the
item as long as no other transaction has a lock on the data item;

® a transaction with a write lock on a data item need not acquire a read lock on
the same item.

® 2Pl permits the early release of locks
e Notation:
B RL: transaction T; obtains a read lock
B WIL: transaction T; obtains a write lock
B RU: transaction T; releases a read lock
=

WU:: transaction T; releases a write lock



TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv

2-Phase Locking (2PL): Example

Anuntpng MAe§ouodkng

® Does the following schedule obey the 2PL protocol?

S =R;(A) R2(B) W2(B) Ra(A) W2(A) Ri(B) C; C»

Lock /unlock operations must be added first. The schedule becomes:

S = |RLi(A)| R:i(A)

RU1 (A) RL2(B) R2(B)

RL2(A) R2(A)

WL2(A)

W2 (A)

WLo(B)| W>(B) WU, (B)

RL;(B)

R;(B) C; C,

B Rule T :no item is accessed without a lock being granted to the requested

transaction

e obeyed

10



TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv

2-Phase Locking (2PL): Example

Anuntpng MAe§ouodkng

® Does the following schedule obey the 2PL protocol?
S =R;(A) Ro(B) W7(B) Ro(A) Wo(A) Ri(B) C; Co

Lock /unlock operations must be added first. The schedule becomes:

S = | RL;(A)

Ri(A)

RU;(A)

RL2(B) R2(B) WL2(B) W2(B) WU2(B)

RLo(A) Ro(A)  WLo(A)|Wa(A) RLi(B) Ri(B) Ci C;

B Rule 2 : no two conflicting operations have a lock on the same item at the

same time

e  obeyed

11



TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv

AnuARteng NAe§oucakng

2-Phase Locking (2PL): Example

® Does the following schedule obey the 2PL protocol?
S =R;(A) Ro(B) W2(B) R2(A) W2(A) Ri1(B) C; Co

® Lock/unlock operations must be added first. The schedule becomes:

S = RLi(A) Ri(A)|RU;(A)|RL2(B) R2(B) WL2(B) W2(B) (WU2(B)

R2(A) IVVL2(A) W2 (A)

RL;(B)

R;(B) C; C,

RL2(A)

BMRule 3: A transaction cannot request additional locks once it releases any lock!

e Violated!

12



TMavernorruio Kpritng, Turua Emorrung YrnoAoyiotwv

e Applying the 2PL discipline to the schedule

2-Phase Locking (2PL): Example

AnuARteng NAe§oucakng

S =R;(A) Ra(B) W2(B) Ro(A) Wo(A) Ri(B) C; Co
yields the following interleaved execution (all locks released at commit)

T1 |RLi(A) | Ri(A)

T> RL>(B) | R2(B) | WLx(B) | W(B) |RLy(A) |R2(A) | WLa(A)
¥

T RL;(B) wait abort restart | C,

T, | wait W>(A) |G,




TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anpritpng MAeouvodkng

2-Phase Locking (2PL): Example

e Theorem: A schedule that follows 2PL is always serializable.
e Example:

B The schedule S'= R;(A) Ro(A) Wi (A) Wa(A) C; C, is forced to
execute as follows by a transaction scheduler that uses 2PL:

T1 |RL:(A) | R:(A) WL4(A) wait abort
12 RLz(A) Rz(A) WL, (A) wait

T1 restart | C;
T2 | W5(A) Cc2

14




TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anpritpng MAeouvodkng

Transaction Management

o Example: Consider the following fransactions
B T.: W;(U) Ri(Y) Wi (U) G,
B T, Ro(X) Wi(U) WalY) Wa(W) C,
B T3: W3(W) R3(X) W3(U) W3(Z) Cs

o s it possible to add lock /unlock steps to these transactions so that every legal
schedule is serializable?

® Answer: yes by adding add lock /unlock steps using 2PL

15



TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv

Transaction Management

Anuntpng MAe§ouodkng

1. T, WilU) RyfY) WilU) Cy
2. T, Ry(X) W2(U) W(Y) W,(W) C;
3. T3 Ws(W) Rs(X) Ws(U) Ws(Z) Cs

Tl

T, RL(X) WLy(U) | wait

T3 WLs(W) RL3(X) WLs(U) WLs(2) Ws(W)
:- ___________________________________________________________ ,
LT WL;(U)
> T, wait wait wait wait wait WL,(Y)

T3 WUs(W) R3(X) RU3(X) Ws(U) WUs(U)

16



TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Transaction Management

1. T, WilU) RyfY) WilU) Cy
2. T, Ry(X) W2(U) W(Y) W,(W) C;
3. T3 Ws(W) Rs(X) Ws(U) Ws(Z) Cs

T, wait wait wait wait wait RL:(Y) | wait
-3, WLA(W) | RoX) W,(U) | WU,(U) Wy(Y) --F--
|
[E W3(Z) !
____________________________________________________ |
|
: Tl WLl(U) wait Wl(U) Rl(Y) Wl(U)
| - -
T, Wo(W) | WUAW) | C; i
T3 WU;3(Z) Cs !
m--T=SS=-S-------o---So-----------o----o------------—----—----
|
ll 1 Wwu,(U) RU;(Y) Cq

17




TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Transaction Management

Tree Protocols

0 In many instances, the set of items accessed by a transaction can be
viewed naturally as a tree or forest

o E.g., items are nodes in a B-tree; items have different granularities
(relations, tuples, attributes).

a0 Two different policies may be followed:
1. each node in the tree is locked independently of its descendants

2. alock on an item implies a lock on all of its descendants
o The latter policy saves time by avoiding locking many items separately

0 E.g., when the content of an entire relation needs to be read, the relation
can be locked in one step instead of locking each tuple individually

18



TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Transaction Management

Tree Protocol #1 (TP1)
o Definition: A transaction obeys the TP1 policy if:

- except for the first item locked, no item can be locked unless the
transaction holds a lock on the item’s parent

o ho item Is ever locked twice by a transaction

a Aschedule obeys the TP1 policy if every transaction in the schedule
obeys it.

Example: Consider the following hierarchy of items

/@\
®
& @}
®

19



TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv

Transaction Management

The following schedule obeys TP1

Anuntpng MAe§ouodkng

L1(A)

L1(B)

L1(D)

U1(B)

L1(C)

U1(D)

L2(B)

L3(E)

L3(F)

U1(A)

U1(C)

L2(E)

U2(B)

U2(E)

L3(G)

Us(E)

Us(F)

Us(G)

Does it obey 2PL?

20



TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Transaction Management

Note: A transaction that obeys TP1 need not necessarily obey 2PL.
Theorem: Every legal schedule that obeys the protocol TP1 is serializable

Example: The schedule of the previous example is serializable.
m its precedence graph is acyclic

21



TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Transaction Management

Tree Protocol #2 (TP2)

o Definition: A transaction obeys the TP2 policy if whenever an item is
locked, all its descendants are locked

a Indiscriminate locking under TP2 may result in schedules where two
transactions hold a lock on the same item at the same time.

o Example: in the hierarchy /@\
©
/
’ @} ®

transaction T, locks E (therefore F,G). Then T, locks B, therefore acquires
conflicting locks on E,F,G.

22



TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Transaction Management

To avoid conflicts of this sort, the warning protocol may be followed:

0 a transaction cannot place a lock on an item unless it first places a
warning on all its ancestors

0 a warning on an item X prevents any other transaction from locking
X, but does not prevent them from also placing a warning on X, or
from locking some descendant of X that does not have a warning

Definition: A transaction obeys the warning protocol if:
1. It begins by placing a lock or warning at the root

2. It does not place a lock or warning on an item unless it holds a
warning on its parent.

3. It does not remove a lock or warning unless it holds no lock or
warnings on its children

a. It obeys 2PL in the sense that all unlock operations follow all warnings

or lock operations
23



TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Transaction Management

a This protocol acts in conjunction with the assumption that a lock can be
placed on an item only if no other transaction has a lock or warning on
the same item.

o Furthermore, a warning can be placed on an item as long as not other
transaction has a lock on the item.

o Theorem: Legal schedules obeying the warning protocol are
serializable.

24



	Slide 1: Locking to ensure serializability
	Slide 2: Locking
	Slide 3: Transaction Management
	Slide 4: LiveLock
	Slide 5: Deadlock
	Slide 6: Different solutions for Deadlocks
	Slide 7: Deadlock Discovery
	Slide 8: 2-Phase Locking (2PL)
	Slide 9: 2-Phase Locking (2PL): Conflicts
	Slide 10: 2-Phase Locking (2PL): Example
	Slide 11: 2-Phase Locking (2PL): Example
	Slide 12: 2-Phase Locking (2PL): Example
	Slide 13: 2-Phase Locking (2PL): Example
	Slide 14: 2-Phase Locking (2PL): Example
	Slide 15: Transaction Management
	Slide 16: Transaction Management
	Slide 17: Transaction Management
	Slide 18: Transaction Management
	Slide 19: Transaction Management
	Slide 20: Transaction Management
	Slide 21: Transaction Management
	Slide 22: Transaction Management
	Slide 23: Transaction Management
	Slide 24: Transaction Management

