
1

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Concurrent access to database items is controlled by strategies based on

locking, timestamping or certification

 A lock is an access privilege to a single database item

 Lock Manager: manages the locks requested by transactions.

 Locks are

obtained by transactions

stored in a lock table

Lock is an entry of the form (item, lock-type, transactionID)

• item is the item that the transaction locks

• lock-type can be shared or exclusive

• transactionID is the transaction identifier

Locking to ensure serializability

2

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 When a transaction holds an exclusive lock on a database item, no other
transaction can read or write the item

used for writing

 When a transaction holds a shared lock, other transactions can obtain a shared
lock on the same item

used for reading

 Assumptions (for now)

there is a single type of lock and

every transaction must obtain a lock on an item before accessing it.

all items locked by a transaction must be unlocked, otherwise no other
transaction may gain access to them.

a transaction must wait until the lock it requests is released by the
transaction that holds it.

Locking

3

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

1. Locking can prevent the lost update problem:

T1 = Lock1(A) R1(A) W1(A) Unlock1(A) C1

T2 = Lock2 (A) R2(A) W2(A) Unlock2(A) C2

2. Locking enforces a serial execution of the transactions

3. Locking can also prevent the blind write problem:

T1 = Lock1(A) W1(A) Lock1 (B) W1(B) Unlock1 (A) Unlock1 (B) C1

T2 = Lock2 (A) W2(A) Lock2(B) W2(B) Unlock2(A) Unlock2(B) C1

Then the following schedule is valid:

Lock1(A) W1(A) Lock1(B) W1(B) Unlock1(A) Lock2(A) W2(A) Unlock1(B)

Lock2(B) W2(B) Unlock2(A) Unlock2(B) C1 C2

Transaction Management

4

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Undesirable phenomena if locks are granted in an arbitrary manner

 Example:

while T2 is waiting for T1 to release the lock on A, another transaction T3

that has also requested a lock on A is granted the lock instead of T2. When

T3 releases the lock on A the lock is granted to T4 etc.

 Livelock: The situation where a transaction may wait for ever while other

transactions obtain a lock on a database item

Can be avoided by using a first-come-first-served lock granting strategy

but, even then a deadlock might occur

LiveLock

5

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Occurs when a transaction is waiting to lock an item that is currently locked by
some other transaction

 Example: Consider the transactions:

T1 = Lock1(A) Lock1(B) …. Unlock1(A) Unlock1(B) C1

T2 = Lock2 (B) Lock2 (A) …. Unlock2 (B) Unlock1 (A) C2

 Assume T1 is granted a lock on A and T2 is granted a lock on B

 Then T1 requests a lock on B but is forced to wait because T2 has
the lock on B.

Similarly, T2 requests a lock on A but is forced to wait because
T1 has the lock on A.

Deadlock

Neither transaction can proceed because each one is waiting for
the other to release a lock: both processes wait for ever

6

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Solution 1: Require each transaction to request all locks at once. Either all locks

are granted or none.

 Solution 2: Assign an arbitrary linear order to the items and require all

transactions to request their locks in that order.

 Solution 3: Do nothing to prevent deadlocks: abort one or more of the

deadlocked transactions if a deadlock arises.

Different solutions for Deadlocks

7

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Deadlocks can be discovered using wait-for graphs:

Given a set of transactions S, a wait-for graph is a directed graph:

• vertices correspond to transactions in the set

• there exists an edge from Ti to Tj if Ti is waiting to lock an item on which Tj is

holding a lock.

 Theorem: A set of transactions is deadlocked if and only if there exists a

cycle in the wait-for graph.

 Example: The wait-for graph for the transactions contains a cycle

T1 = Lock1(A) Lock1 (B) …. Unlock1 (A) Unlock1 (B) C1

T2 = Lock2(B) Lock2 (A) …. Unlock2 (B) Unlock2 (A) C2

Deadlock Discovery

T1 T2

8

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 2-Phase Locking (2PL): a protocol ensuring serializability of schedules

 Definition: A schedule is said to obey the 2-phase locking protocol if the

following rules are obeyed by each transaction in the schedule

1. When a transaction attempts to read (write) a data item, a read lock

(write lock) must be acquired first

2. If a transaction T1 holds a lock on data item A for operation op1 and

some other transaction T2 requests the lock to perform a conflicting

operation op2 on the same item, the transaction requesting the lock (T2) is

forced to wait until no conflicting lock on the item exists

• (only read locks are non-conflicting)

3 A transaction cannot request additional locks once it releases any lock!

2-Phase Locking (2PL)

9

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 two locks by the same transaction never conflict

 a transaction with a read lock on a data item can acquire a write lock on the
item as long as no other transaction has a lock on the data item;

 a transaction with a write lock on a data item need not acquire a read lock on
the same item.

 2PL permits the early release of locks

 Notation:

 RLi: transaction Ti obtains a read lock

 WLi: transaction Ti obtains a write lock

 RUi: transaction Ti releases a read lock

 WUi: transaction Ti releases a write lock

2-Phase Locking (2PL): Conflicts

10

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Does the following schedule obey the 2PL protocol?

 S = R1(A) R2(B) W2(B) R2(A) W2(A) R1(B) C1 C2

Lock/unlock operations must be added first. The schedule becomes:

 S’ = RL1(A) R1(A) RU1(A) RL2(B) R2(B) WL2(B) W2(B) WU2(B)

RL2(A) R2(A) WL2(A) W2(A) RL1(B) R1(B) C1 C2

 Rule 1 : no item is accessed without a lock being granted to the requested

transaction

• obeyed

2-Phase Locking (2PL): Example

11

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Does the following schedule obey the 2PL protocol?

 S = R1(A) R2(B) W2(B) R2(A) W2(A) R1(B) C1 C2

Lock/unlock operations must be added first. The schedule becomes:

 S = RL1(A) R1(A) RU1(A) RL2(B) R2(B) WL2(B) W2(B) WU2(B)

RL2(A) R2(A) WL2(A) W2(A) RL1(B) R1(B) C1 C2

 Rule 2 : no two conflicting operations have a lock on the same item at the

same time

• obeyed

2-Phase Locking (2PL): Example

12

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Does the following schedule obey the 2PL protocol?

S = R1(A) R2(B) W2(B) R2(A) W2(A) R1(B) C1 C2

 Lock/unlock operations must be added first. The schedule becomes:

 S = RL1(A) R1(A) RU1(A) RL2(B) R2(B) WL2(B) W2(B) WU2(B) RL2(A)

R2(A) WL2(A) W2(A) RL1(B) R1(B) C1 C2

Rule 3: A transaction cannot request additional locks once it releases any lock!

• Violated!

2-Phase Locking (2PL): Example

13

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Applying the 2PL discipline to the schedule

 S = R1(A) R2(B) W2(B) R2(A) W2(A) R1(B) C1 C2

 yields the following interleaved execution (all locks released at commit)

2-Phase Locking (2PL): Example

T1 RL1(A) R1(A)

T2 RL2(B) R2(B) WL2(B) W2(B) RL2(A) R2(A) WL2(A)

T1 RL1(B) wait abort restart C1

T2 wait W2(A) C2

The deadlock had to be resolved by aborting and restarting one of the
transactions.
Under 2PL S is equivalent to the serial schedule T2 T1

14

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Theorem: A schedule that follows 2PL is always serializable.

 Example:

 The schedule S’= R1(A) R2(A) W1(A) W2(A) C1 C2 is forced to

execute as follows by a transaction scheduler that uses 2PL:

2-Phase Locking (2PL): Example

T1 RL1 (A) R1 (A) WL1(A) wait abort

T2 RL2(A) R2(A) WL2 (A) wait

T1 restart C1

T2 W2(A) C2

If no locking were imposed S’ would be
non-serializable

15

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Example: Consider the following transactions

 T1: W1(U) R1(Y) W1(U) C1

 T2: R2(X) W2(U) W2(Y) W2(W) C2

 T3: W3(W) R3(X) W3(U) W3(Z) C3

 Is it possible to add lock/unlock steps to these transactions so that every legal

schedule is serializable?

 Answer: yes by adding add lock/unlock steps using 2PL

Transaction Management

16

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Transaction Management

T1

T2 RL2(X) WL2(U) wait

T3 WL3(W) RL3(X) WL3(U) WL3(Z) W3(W)

T1 WL1(U)

T2 wait wait wait wait wait WL2(Y)

T3 WU3(W) R3(X) RU3(X) W3(U) WU3(U)

1. T1: W1(U) R1(Y) W1(U) C1

2. T2: R2(X) W2(U) W2(Y) W2(W) C2

3. T3: W3(W) R3(X) W3(U) W3(Z) C3

17

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Transaction Management

T1 wait wait wait wait wait RL1(Y) wait

T2 WL2(W) R2(X) W2(U) WU2(U) W2(Y)

T3 W3(Z)

T1 WL1(U) wait W1(U) R1(Y) W1(U)

T2 W2(W) WU2(W) C2

T3 WU3(Z) C3

T1 WU1(U) RU1(Y) C1

T2

T3

1. T1: W1(U) R1(Y) W1(U) C1

2. T2: R2(X) W2(U) W2(Y) W2(W) C2

3. T3: W3(W) R3(X) W3(U) W3(Z) C3

18

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Tree Protocols

❑ In many instances, the set of items accessed by a transaction can be
viewed naturally as a tree or forest

❑ E.g., items are nodes in a B-tree; items have different granularities
(relations, tuples, attributes).

❑ Two different policies may be followed:

1. each node in the tree is locked independently of its descendants

2. a lock on an item implies a lock on all of its descendants

❑The latter policy saves time by avoiding locking many items separately

❑E.g., when the content of an entire relation needs to be read, the relation
can be locked in one step instead of locking each tuple individually

Transaction Management

19

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Tree Protocol #1 (TP1)

❑ Definition: A transaction obeys the TP1 policy if:

o except for the first item locked, no item can be locked unless the
transaction holds a lock on the item’s parent

o no item is ever locked twice by a transaction

❑ A schedule obeys the TP1 policy if every transaction in the schedule
obeys it.

Example: Consider the following hierarchy of items

Transaction Management

D

A

B C

E

F G

20

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

The following schedule obeys TP1

Does it obey 2PL?

Transaction Management

T1 L1(A) L1(B) L1(D) U1(B) L1(C) U1(D)

T2 L2(B)

T3 L3(E) L3(F)

T1 U1(A) U1(C)

T2 L2(E) U2(B) U2(E)

T3 L3(G) U3(E) U3(F) U3(G)

21

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Note: A transaction that obeys TP1 need not necessarily obey 2PL.

Theorem: Every legal schedule that obeys the protocol TP1 is serializable

Example: The schedule of the previous example is serializable.

 its precedence graph is acyclic

Transaction Management

T1 T2 T3

22

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Tree Protocol #2 (TP2)

❑ Definition: A transaction obeys the TP2 policy if whenever an item is
locked, all its descendants are locked

❑ Indiscriminate locking under TP2 may result in schedules where two
transactions hold a lock on the same item at the same time.

❑ Example: in the hierarchy

transaction T1 locks E (therefore F,G). Then T2 locks B, therefore acquires
conflicting locks on E,F,G.

Transaction Management

A

B C

E

F G

D

23

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

To avoid conflicts of this sort, the warning protocol may be followed:

❑ a transaction cannot place a lock on an item unless it first places a
warning on all its ancestors

❑ a warning on an item X prevents any other transaction from locking
X, but does not prevent them from also placing a warning on X, or
from locking some descendant of X that does not have a warning

Definition: A transaction obeys the warning protocol if:

1. It begins by placing a lock or warning at the root

2. It does not place a lock or warning on an item unless it holds a
warning on its parent.

3. It does not remove a lock or warning unless it holds no lock or
warnings on its children

4. It obeys 2PL in the sense that all unlock operations follow all warnings
or lock operations

Transaction Management

24

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

❑ This protocol acts in conjunction with the assumption that a lock can be

placed on an item only if no other transaction has a lock or warning on

the same item.

❑ Furthermore, a warning can be placed on an item as long as not other

transaction has a lock on the item.

❑ Theorem: Legal schedules obeying the warning protocol are

serializable.

Transaction Management

	Slide 1: Locking to ensure serializability
	Slide 2: Locking
	Slide 3: Transaction Management
	Slide 4: LiveLock
	Slide 5: Deadlock
	Slide 6: Different solutions for Deadlocks
	Slide 7: Deadlock Discovery
	Slide 8: 2-Phase Locking (2PL)
	Slide 9: 2-Phase Locking (2PL): Conflicts
	Slide 10: 2-Phase Locking (2PL): Example
	Slide 11: 2-Phase Locking (2PL): Example
	Slide 12: 2-Phase Locking (2PL): Example
	Slide 13: 2-Phase Locking (2PL): Example
	Slide 14: 2-Phase Locking (2PL): Example
	Slide 15: Transaction Management
	Slide 16: Transaction Management
	Slide 17: Transaction Management
	Slide 18: Transaction Management
	Slide 19: Transaction Management
	Slide 20: Transaction Management
	Slide 21: Transaction Management
	Slide 22: Transaction Management
	Slide 23: Transaction Management
	Slide 24: Transaction Management

