
1

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 In modern applications databases are

shared by more than one users at the same time

who can query and update them

 It is not possible to provide each user with their own copy of the database

 A database management system must ensure that:

concurrent access is provided

each user has a consistent view of the data

Transaction Processing (Διαχείριση Δοσοληψιών)

Lecture 14

2

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 The problems encountered in the development of large database

applications led to the development of transaction management techniques

Creation of inconsistent results (Consistency)

• the machine crashes in the middle of the execution process

Errors in concurrent execution (Concurrency)

• arbitrary concurrent execution of processes lead to the inconsistent views of

data

Uncertainty as to when changes become permanent:

• can we be confident about the results residing in secondary storage even if

processes have completed successfully?

Transaction Management

The concept of a transaction was invented to solve these problems

3

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 A transaction is a series of database operations (reads and writes) that

form a single logical entity with respect to the application being

modeled.

Example: a transfer of funds between accounts is considered a

logical entity

 A transaction commits when it finishes execution normally otherwise it

aborts

 User transactions appear to execute in isolation, although they may

execute concurrently

Transaction Processing (Διαχείριση Δοσοληψιών)

4

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Process P1 transfers $400 from account 1234 to account 5678

 Transfer is implemented by

1. (S1) subtracting $400 from the balance of account 1234

2. (S2) adding $400 to the balance of account 5678

 Accounts can be found in the following 3 states:

Inconsistent view of Data (Ασυνέπεια στα Δεδομένα)

account# lname fname type balance

1234 Doe John Checking 900.00

5678 Doe John Savings 100.00

…. …. …. …. ….

accounts

Balance 1234 Balance 5678

After S1 $500 $100

Before P1 $900 $100

After S2 $500 $500

5

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Inconsistent view of Data: Process Interleaving

(Ασυνέπεια στα Δεδομένα: Παρεμβολές μεταξύ Διαδικασιών)

 Process P2 performs a credit check

on the account holder and requires

a minimum of $900 as the total

balance of the accounts to approve

the issuance of a credit card

 P2 reads the balance values of the

two accounts and computes their

sum

 P2 and P1 are running concurrently

 Execution is incorrect since the ‘real’

sum is 1000$

Process P1 Process P2

sum:=0

subtract 400$ from
the balance of 1234
balance:=500

add balance of 1234 to sum
sum:=sum+500 = 500

add balance of 5678 to sum
sum:=500 + 100 = 600

reject

add $400 to the
balance of 5678

6

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Inconsistent view of Data: Process Interleaving

 It is equivalent to serial

executions P1, P2

 This execution is correct

both processes see the

correct data

 Transaction management must

ensure that only correct

interleaving of processes takes

place

Process P1 Process P2

sum:=0

add balance of 1234 to
sum
sum:=900

subtract 400$
from the balance
of 1234
balance:=500

add balance of 5678 to
sum
sum:=900+ 100 = 1000

add $400 to the
balance of 5678

Issue approval

7

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Transactions guarantee the following properties:

Atomicity (Ατομικότητα)

Consistency (Συνέπεια)

Isolation (Μεμονωμένη Εκτέλεση Διαδικασιών)

Durability (Διάρκεια)

 Known as ACID Properties

Transaction Management

8

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Atomicity

Transactions are considered atomic when considering their effect on

the database:

•all operations that make up the transaction are executed or none

is: the set of operations that make up the transaction is

considered indivisible

• result of the transaction is preserved even when crashes occur:

• a database recovery procedure performs a rollback to bring

the database back to its state prior to transaction execution

Transaction Management: ACID Properties

9

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Consistency

a transaction should preserve a domain-specific consistency constraint

independently of whether it is executed concurrently with other

transactions or in isolation.

 Isolation (serializability)

serial schedule: when transactions are executed one after the other

any schedule of interleaved execution of transactions is equivalent to

some serial schedule

 Durability

After a transaction commits, it is guaranteed to be recoverable

• transactions are durable to crashes

Transaction Management: ACID Properties

10

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Atomicity and durability are trivially satisfied by any transaction that

performs only read operations

 Notation:

Transactions: T1, T2, … Tk

Ri (X): transaction Ti reads database item X

Ri (X,u): transaction Ti reads database item X, u is the value read

Wi (X): transaction Ti writes database item X

Wi (X,u): transaction Ti writes database item X, u is the value written

Ci : transaction Ti commits

Ai: transaction Ti aborts

Transaction Management (ACID Properties)

11

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 A schedule or history is an interleaved sequence of operations.

Transactions: T1, T2

Schedule : R2(A) W2(A) R1(A) R1(B) R2(B) W2(B) C1 C2

 A schedule is the result of the translation of processes - specified in some

high-level language - into a series of primitive operations

 The scheduler component of the transaction processing component of a

DBMS ensures that only “correct” schedules are executed

Transaction Management (ACID Properties)

12

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Given a set of transaction specifications, the scheduler component

produces a schedule that is equivalent to some serial execution of the

transaction

 If no such schedule is possible, the transaction manager aborts or delays

some of the transactions

 The scheduler also detects deadlocks

Situations in which none of the transactions participating in the

schedule can proceed unless one of them is aborted

Transaction Management (ACID Properties)

13

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Schedule S = R2 (A) W2(A) R1(A) R1(B) R2(B) W2(B) C1 C2

involves transactions T1, T2

is not equivalent to any serial execution of the two transactions.

 Interpretation of the schedule

T1 = R1(A), R1(B), C1

T2 = R2 (A), W2(A), R2(B),W2(B), C2

Example: Scheduling

14

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Schedule S = R2 (A) W2(A) R1(A) R1(B) R2(B) W2(B) C1 C2

T1 = R1(A), R1(B), C1

T2 = R2 (A), W2(A), R2(B), W2(B), C2

 S is correct only if it is equivalent to one of the serial schedules T1, T2 or

T2, T1

Case 1: serial schedule S’ = T1, T2

• S: T1 reads A after T2 has modified it.

• S’ : the values of A and B read by T1 have not been modified by T2

Case 2: serial schedule S’ = T2, T1

• S: T1 reads B before T2 writes it.

• S’: T2 modifies the values of A and B, then T1 reads it.

Example: Scheduling

Hence the schedule has different effects than any serial execution

15

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Interleaving of database operations can yield large performance gains

 While some transaction is performing I/O, another transaction can use the

CPU

 System throughput

the number of transactions that can finish execution in a given period of

time) increases whereas response time remains constant

Interleaving of DB Operations

16

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Transaction Manager services database transactions

 Each transaction uses both CPU and I/O Resources

 Ti: (cpu operation) RI() (cpu operation) WI() CI

 The system has a single CPU with a 5ms interval and a single disk.

 Each I/O operation requires 50ms of wait time.

 Serial Execution: Resource usage

Serial vs Concurrent Execution (Example)

17

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Serial Execution

 a transaction needs 110ms

 throughput is 1 transaction per 110ms (9.09 transactions per second)

CPU is underutilized: active 9.09% of the time

Serial vs Concurrent Execution (Example)

Interleaved execution of transactions can increase
CPU utilization and thus the system throughput

18

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Interleaved Execution

 throughput has increased

 throughput will increase with the number of transactions processes executed

concurrently

 additional improvements: more than one I/O devices are used

Serial vs Concurrent Execution (Example)

19

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Criteria to determine given a set of transactions S if

interleaved schedules for S are equivalent to some serial execution for the

transactions in S

 Conflicting database operations when they

I. belong to different transactions

II. refer to the same data item

III. at least one of them is a write operation

Testing Serializability

a transaction reads an attribute and another
tries to write its value

20

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Two schedules are called equivalent if for any initial state of the database,

they result to the same database state.

 Two schedules are equivalent if all pairs of conflicting operations occur in

the same order

 A schedule is called serializable if it can be shown to be equivalent to some

serial execution of its transactions

 Only serializable schedules are acceptable

 Example:

T1 = R1(A), R1(B), W1(A), C1

T2 = W2(A), R2(A), C2

S = W2(A) R1(A) R1(B) R2(A) W1(A)

Is S serializable?

• Yes, it is equivalent to T2 T1

Properties of Schedules

There may be more than one serial schedules
equivalent to some serializable schedule

21

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Notation: opi(X) <<S opj (X) means that operation opi of some

transaction Ti on item X, precedes operation opj of some transaction Tj

on item X in schedule S

 Cases:

If opi(X)<<S1 opj (X) then opi(X)<<S2 opj (X) where S2 is a serial

schedule equivalent to S1

If opi(X)<<S1 opj (X) and opj (Y) <<S1 opi (Y), then S1 is not

serializable.

If it were, then, in the equivalent serial schedule S2, transaction Ti

should both precede and follow transaction Tj.

Testing Schedule Serializability

22

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 The case in which two users want to update the same item in a database.

Suppose transaction T1 reads item A first : R1(A)

Assume transaction T2 reads item A: R2(A)

T2 writes immediately its value to A, before T1 performs the

update: W2(A)

T1 writes its value to A: W1(A)

Hence any changes made by T2, are lost.

Testing Serializability: The lost update problem

23

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Schedule: S1 = R1(A) R2(A) W2(A) W1(A) C1 C2

 Conflicting Operations:

R1(A), W2(A)

R2(A), W1(A)

 Assume there is a serial schedule S2 equivalent to S1.

 S1: R1(A) << S1 W2(A) ➔S2: R1(A) << S2 W2(A)

T1 must precede T2

 S1: R2(A) << S1 W1(A) ➔S2:R2(A) << S2 W1(A)

T2 must precede T1

 The schedule is non-serializable

Testing Serializability: The lost update problem

24

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Occurs when a transaction writes a value before reading it

 Schedule: S1 = W1(A) W2(A) W2(B) W1(B) C1 C2

 Conflicting Operations:

W1(A) W2(A)

W2(B) W1(B)

 Assume there is a serial schedule S2 equivalent to S1.

 S1: W1(A) << S1 W2(A) ➔S2: W1(A) << S2 W2(A)

T1 must precede T2

 S1: W2(B) << S1 W1(B) ➔S2:W2(B) << S2 W1(B)

T2 must precede T1

 The schedule is non-serializable

Testing Serializability: The blind write problem

25

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Given a schedule S, a precedence graph graph PG(S) for S is a directed

graph whose

 vertices correspond to the transactions T in the schedule and

 set of edges consists of an edge Ti → Tj whenever there exist two

conflicting operations opi, opj in S and opi << S opj

 Example:

S1 = R1(A) R2(A) W1(A) W2(A) C1 C2

Schedule S2 = W1(A) W2(A) W2(B) W1(B) C1 C2

Testing Serializability: Precedence Graphs

T1 T2PG(S1)

PG(S2)

26

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

 Theorem: A schedule S is serializable if and only if the precedence

graph PG(S) contains no cycle

 Lemma 1: In any finite directed acyclic graph G, there is always a

vertex u with no incoming edges

 Proof:

Case 1: If PG(S) has no cycles, S is serializable

•Assume that there are m transactions T1, T2, … Tm in S. We need

to find a reordering Ti1, Ti2, … T im of the transactions in order to

construct an equivalent serial schedule

•By Lemma 1, in the precedence graph PG(S) there will be some

vertex Tk with no incoming edges. Let Ti1 be Tk.

Serializability

27

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

• Since Tk has no incoming edges in PG(S), there is no pair of conflicting

operations of Tk and some other transaction Tj such that the operation of Tj

should precede that of Tk. Hence in the equivalent serial schedule, Tk. should be

the first to be executed.

• Remove Tk from PG(S) along with all its incident edges. The resulting graph is

still acyclic. Hence we can find a vertex Tl that has no incoming edges. Let Ti2

be Tl .Then Tl should follow Tk in the serial schedule.

• Continue this process until the precedence graph contains one vertex. The

corresponding transaction is the last one in the serial schedule.

Case (2): If S is serializable, then PG(S) is acyclic.

• Let PG(S) contain a cycle: T1 << S T2 <<S T3 …. << Tk << S T1

(contradiction)

Serializability

HY 360 - Lecture 14

	Slide 1: Transaction Processing (Διαχείριση Δοσοληψιών)
	Slide 2: Transaction Management
	Slide 3: Transaction Processing (Διαχείριση Δοσοληψιών)
	Slide 4: Inconsistent view of Data (Ασυνέπεια στα Δεδομένα)
	Slide 5: Inconsistent view of Data: Process Interleaving (Ασυνέπεια στα Δεδομένα: Παρεμβολές μεταξύ Διαδικασιών)
	Slide 6: Inconsistent view of Data: Process Interleaving
	Slide 7: Transaction Management
	Slide 8: Transaction Management: ACID Properties
	Slide 9: Transaction Management: ACID Properties
	Slide 10: Transaction Management (ACID Properties)
	Slide 11: Transaction Management (ACID Properties)
	Slide 12: Transaction Management (ACID Properties)
	Slide 13: Example: Scheduling
	Slide 14: Example: Scheduling
	Slide 15: Interleaving of DB Operations
	Slide 16: Serial vs Concurrent Execution (Example)
	Slide 17: Serial vs Concurrent Execution (Example)
	Slide 18: Serial vs Concurrent Execution (Example)
	Slide 19: Testing Serializability
	Slide 20: Properties of Schedules
	Slide 21: Testing Schedule Serializability
	Slide 22: Testing Serializability: The lost update problem
	Slide 23: Testing Serializability: The lost update problem
	Slide 24: Testing Serializability: The blind write problem
	Slide 25: Testing Serializability: Precedence Graphs
	Slide 26: Serializability
	Slide 27: Serializability

