TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anpritpng MAeouvodkng

Transaction Processing (Alaxeiplon AocoAnyLwv)

® In modern applications databases are

BMshared by more than one users at the same time

Bwho can query and update them
e |t is not possible to provide each user with their own copy of the database
° A database management system must ensure that:

M concurrent access is provided

Beach user has a consistent view of the data

Lecture 14

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anpritpng MAeouvodkng

Transaction Management

® The problems encountered in the development of large database
applications led to the development of transaction management techniques

M Creation of inconsistent results (Consistency)
e the machine crashes in the middle of the execution process

M Errors in concurrent execution (Concurrency)

e arbitrary concurrent execution of processes lead to the inconsistent views of
data

B Uncertainty as to when changes become permanent:

® can we be confident about the results residing in secondary storage even if
processes have completed successfully?

_2

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Transaction Processing (Alaxeiplon AocoAnLwv)

® A transaction is a series of database operations (reads and writes) that
form a single logical entity with respect to the application being
modeled.

BExample: a transfer of funds between accounts is considered a
logical entity

® A transaction commits when it finishes execution normally otherwise it
aborts

® User transactions appear to execute in isolation, although they may
execute concurrently

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Inconsistent view of Data (Acuveneila ota Aedopeval)

R T e I T

accounts 1234 Doe John Checking 200.00
5678 Doe John Savings 100.00

® Process P1 transfers $400 from account 1234 to account 5678
e Transfer is implemented by
1. (S1) subtracting $400 from the balance of account 1234
2. (S2) adding $400 to the balance of account 5678

® Accounts can be found in the following 3 states:

Balance 1234 Balance 5678
Before P1 S900 $100
After S1 S$500 $100

After 52 $500 $500 .

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv

Anuntpng MAe§ouodkng

Inconsistent view of Data: Process Interleaving
(Acuvenela ota Asdopeva: MapepBoAec petaét AladilkaoLwy)

® Process P2 performs a credit check
on the account holder and requires
a minimum of $900 as the total
balance of the accounts to approve
the issuance of a credit card

e P2 reads the balance values of the
two accounts and computes their

sum
® P2 and P1 are running concurrently

® Execution is incorrect since the ‘real’

sum is 1000%

sum:=0

subtract 400S from
the balance of 1234
balance:=500

add balance of 1234 to sum
sum:=sum+500 = 500

add balance of 5678 to sum
sum:=500 + 100 = 600

reject

add $400 to the
balance of 5678

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv

Anuntpng MAe§ouodkng

Inconsistent view of Data: Process Interleaving

e |t is equivalent to serial
executions P1, P2

e This execution is correct

Bboth processes see the
correct data

® Transaction management must
ensure that only correct
interleaving of processes takes
place

sum:=0

add balance of 1234 to
sum
sum:=900

subtract 4005
from the balance
of 1234
balance:=500

add balance of 5678 to
sum
sum:=900+ 100 = 1000

add $400 to the
balance of 5678

Issue approval

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anpritpng MAeouvodkng

Transaction Management

e Transactions guarantee the following properties:
W Atomicity (ATopkOTNTA)
B Consistency (ZUVETELQ)
B/solation (Mepovwpevn Ektédeon Atadikaoltwy)
B Durability (Alapkela)
® Known as ACID Properties

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Transaction Management: ACID Properties

® Atomicity

BTransactions are considered atomic when considering their effect on
the database:

e all operations that make up the transaction are executed or none
is: the set of operations that make up the transaction is
considered indivisible

e result of the transaction is preserved even when crashes occur:

» a database recovery procedure performs a rollback to bring
the database back to its state prior to transaction execution

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anpritpng MAeouvodkng

Transaction Management: ACID Properties

e Consistency

Ba transaction should preserve a domain-specific consistency constraint
independently of whether it is executed concurrently with other
transactions or in isolation.

® [solation (serializability)
Bserial schedule: when fransactions are executed one after the other

Bany schedule of inferleaved execution of transactions is equivalent to
some serial schedule

e Durability
BAfter a fransaction commits, it is guaranteed to be recoverable

® transactions are durable to crashes

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Transaction Management (ACID Properties)

e Atomicity and durability are trivially satisfied by any transaction that
performs only read operations

® Notation:
BTransactions: T, T,, ... T,
BR. (X): transaction T. reads database item X
BR. (X,u): transaction T, reads database item X, v is the valve read
BW. (X): transaction T. writes database item X
BW:. (X,u): transaction T. writes database item X, u is the value written
BC. : tfransaction T, commits

WA transaction T. aborts

10

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Transaction Management (ACID Properties)

® A schedule or history is an interleaved sequence of operations.
BTransactions: T,, T,
WSchedule : R,(A) W,(A) R,(A) R,(B) R,(B) W,(B) C, C,

® A schedule is the result of the translation of processes - specified in some
high-level language - into a series of primitive operations

® The scheduler component of the transaction processing component of a
DBMS ensures that only “correct” schedules are executed

11

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Transaction Management (ACID Properties)

e Given a set of transaction specifications, the scheduler component
produces a schedule that is equivalent to some serial execution of the

transaction
e If no such schedule is possible, the transaction manager aborts or delays
some of the transactions

® The scheduler also detects deadlocks

M Situations in which none of the transactions participating in the
schedule can proceed unless one of them is aborted

12

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Example: Scheduling

® Schedule S =R, (A) W,(A) R,(A) R,(B) R,(B) W,(B) C, C,
Winvolves transactions T,, T,
Wis not equivalent to any serial execution of the two transactions.
® [nterpretation of the schedule
=T, =R,(A), Ry(B), C,
WT, =R, (A), Wy(A), R2(B),W,(B), C,

13

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anpritpng MAeouvodkng

Example: Scheduling

mSchedule S = R, (A) W,(A) R,(A) R,(B) R,(B) W,(B) C, C,
®T, = R;(A), Ry(B), C;
BT, =R, (A), W,(A), Ry(B), Wy(B), C,
® Sis correct only if it is equivalent to one of the serial schedules T,, T, or
Ty T,
W Case 1: serial schedule S" =T,, T,

e S: T, reads A after T, has modified it.
e S’ : the values of A and B read by T, have not been modified by T,

W Case 2: serial schedule S" =T,, T,
e S: T1 reads B before T, writes it.

e §’: T, modifies the values of A and B, then T, reads it.

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Interleaving of DB Operations

¢ Interleaving of database operations can yield large performance gains

® While some transaction is performing |/O, another transaction can use the
CPU

e System throughput
Bthe number of transactions that can finish execution in a given period of

time) increases whereas response time remains constant

Throughput
rougip Response
Time

Number of users Number of users

Interleaved Execution
Serial Execution 15

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Serial vs Concurrent Execution (Example)

® Transaction Manager services database transactions

e Each transaction uses both CPU and |/O Resources
B T.: (cpu operation) R,() (cpu operation) W /() C,
B The system has a single CPU with a 5ms interval and a single disk.
B Each |/O operation requires 50ms of wait time.

e Serial Execution: Resource usage

Time

16

TMavernorruio Kpritng, Turua EmoTriung YnoAoyiotwv AnpAtpng MAeouodkng

Serial vs Concurrent Execution (Example)

e Serial Execution
B a transaction needs 110ms
W throughput is 1 transaction per 110ms (9.09 transactions per second)
BCPU is underutilized: active 9.09% of the time

17

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anpritpng MAeouvodkng

Serial vs Concurrent Execution (Example)

® |nterleaved Execution

e e — — o — — — — —

CPU
o L. R | L W _‘

Time

® throughput has increased

® throughput will increase with the number of transactions processes executed
concurrently

e additional improvements: more than one |/O devices are used

18

TMavernorruio Kpritng, Turua EmoTriung YnoAoyiotwv AnpAtpng MAeouodkng

Testing Serializability

e Criteria to determine given a set of transactions S if

Minterleaved schedules for S are equivalent to some serial execution for the
transactions in S

e Conflicting database operations when they
. belong to different transactions
. refer to the same data item

i. at least one of them is a write operation

19

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anpritpng MAeouvodkng

Properties of Schedules

e Two schedules are called equivalent if for any initial state of the database,
they result to the same database state.

e Two schedules are equivalent if all pairs of conflicting operations occur in
the same order

e A schedule is called serializable if it can be shown to be equivalent fo some
serial execution of its transactions

® Only serializable schedules are acceptable

e Example:
"T, = R;(A), Ry(B), W;(A), C,

BT, = W,(A), Ry(A), C,
5S = W,(A) R,(A) R,(B) Ry(A) W,(A)

M /s S serializable?¢

® Yes, it is equivalent to T, T, 20

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Testing Schedule Serializability

® Notation: op,(X) << op; (X) means that operation op; of some
transaction T; on item X, precedes operation op. of some transaction T
on item X in schedule S

® Cases:
HIf op;(X)<<s; op; (X) then op;(X) <<, op. (X) where S2 is a serial
schedule equivalent to S1
HIf op,(X)<<s; op; (X) and op, (Y) <<g; op;(Y), then ST is not
serializable.

HIf it were, then, in the equivalent serial schedule S2, transaction T.
should both precede and follow transaction T.

21

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Testing Serializability: The lost update problem

® The case in which two users want to update the same item in a database.
BSuppose transaction T, reads item A first : R, (A)
B Assume transaction T, reads item A: R,(A)

BT, writes immediately its value to A, before T, performs the
update: W,(A)
BT, writes its value to A: W, (A)

®Hence any changes made by T,, are lost.

22

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Testing Serializability: The lost update problem

® Schedule: S1 = R,(A) R,(A) W,(A) W, (A) C, C,
e Conflicting Operations:
WR;(A), Wy(A)
HR,(A), W, (A)
® Assume there is a serial schedule S2 equivalent to S1.
® ST: R (A) << g; Wy(A) PS2: Ri(A) << 55 Wy(A)
BT1 must precede T2
o ST: Ry(A) << W,(A) DS2R,(A) << 5, W, (A)
BT2 must precede T1

o The schedule is non-serializable

23

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Testing Serializability: The blind write problem

® Occurs when a fransaction writes a value before reading it
® Schedule: S1 = W, (A) W,(A) W,(B) W,(B) C, C,
e Conflicting Operations:
W, (A) W, (A)
=W, (B) W, (B)
® Assume there is a serial schedule S2 equivalent to S1.
© ST: W (A) << g Wy(A) S2: W (A) << 5, Wy(A)
BT1 must precede T2
° S1: W,(B) <<, W,(B) DS2W,(B) << ;, W, (B)
BT2 must precede T1

o The schedule is non-serializable

24

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Testing Serializability: Precedence Graphs

e Given a schedule S, a precedence graph graph PG(S) for S is a directed
graph whose

M vertices correspond to the transactions T in the schedule and

B set of edges consists of an edge Ti — Tj whenever there exist two
conflicting operations op;, op; in S and op; << ¢ op;

e Example:

BS1 = R, (A) R,(A) W, (A) W,(A) C, CQ/\

PG(S1) T1 T2

PG(s2) | T —
mSchedule S2 = W, (A) W,(A) W,(B) W,(B) C, C,

25

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Serializability

® Theorem: A schedule S is serializable if and only if the precedence
graph PG(S) contains no cycle

B Lemma 1: In any finite directed acyclic graph G, there is always a
vertex u with no incoming edges

¢ Proof:
BCase 1: If PG(S) has no cycles, S is serializable

® Assume that there are m transactions T,, T,, ... T_in S. We need
to find a reordering T;, T.,, ... T . of the transactions in order to
construct an equivalent serial schedule

eBy Lemma 1, in the precedence graph PG(S) there will be some
vertex T, with no incoming edges. Let T;; be T,.

26

TMavernorruo Kpritng, Turnua Emorriung YnoAoyiorwv Anprtpng MAegouodxng

Serializability

e Since T, has no incoming edges in PG(S), there is no pair of conflicting
operations of T, and some other transaction T. such that the operation of T.
should precede that of T, Hence in the equivalent serial schedule, T, should be
the first to be executed.

® Remove T, from PG(S) along with all its incident edges. The resulting graph is
still acyclic. Hence we can find a vertex T, that has no incoming edges. Let T,
be T, .Then T, should follow T, in the serial schedule.

e Continue this process until the precedence graph contains one vertex. The
corresponding transaction is the last one in the serial schedule.

B Case (2): If S is serializable, then PG(S) is acyclic.

® Let PG(S) contain a cycle: T1 << (T2 <<, T3 ... << Tk << T1
(contradiction)

HY 360 - Lecture 14 21

	Slide 1: Transaction Processing (Διαχείριση Δοσοληψιών)
	Slide 2: Transaction Management
	Slide 3: Transaction Processing (Διαχείριση Δοσοληψιών)
	Slide 4: Inconsistent view of Data (Ασυνέπεια στα Δεδομένα)
	Slide 5: Inconsistent view of Data: Process Interleaving (Ασυνέπεια στα Δεδομένα: Παρεμβολές μεταξύ Διαδικασιών)
	Slide 6: Inconsistent view of Data: Process Interleaving
	Slide 7: Transaction Management
	Slide 8: Transaction Management: ACID Properties
	Slide 9: Transaction Management: ACID Properties
	Slide 10: Transaction Management (ACID Properties)
	Slide 11: Transaction Management (ACID Properties)
	Slide 12: Transaction Management (ACID Properties)
	Slide 13: Example: Scheduling
	Slide 14: Example: Scheduling
	Slide 15: Interleaving of DB Operations
	Slide 16: Serial vs Concurrent Execution (Example)
	Slide 17: Serial vs Concurrent Execution (Example)
	Slide 18: Serial vs Concurrent Execution (Example)
	Slide 19: Testing Serializability
	Slide 20: Properties of Schedules
	Slide 21: Testing Schedule Serializability
	Slide 22: Testing Serializability: The lost update problem
	Slide 23: Testing Serializability: The lost update problem
	Slide 24: Testing Serializability: The blind write problem
	Slide 25: Testing Serializability: Precedence Graphs
	Slide 26: Serializability
	Slide 27: Serializability

