
Distributed and Outsourced Software Engineering

(DOSE)

Assignment 4:

Testing and API Consolidation

(10 points of 100)

Deadline: Wednesday November 21th - 5 pm (Zurich time)

1. Questionnaire

Each team should have collected the time expended in Assignment 3. Please fill

in the questionnaire for Assignment 3 (API Design) here:

http://tinyurl.com/dose2012-questionnaire3

Remember:

 Only ONE person fills in the questionnaire, providing the TEAM’s data.

 Follow the input-format suggested at each question.

After Assignment 4, we will ask you to fill out another questionnaire on how much

time you’ve expended for communication and preparing the assignment. Thus,

please keep track of that data throughout the duration of this assignment.

http://tinyurl.com/dose2012-questionnaire3

2. Testing and API consolidation

In this task you should develop test cases for your project. You will use these tests

during the implementation (final project phase) to check the quality of your code.

During this assignment, the tests will help you to understand the APIs of the other

teams’ components. You should provide feedback to the API developers on how the

API could be improved.

2.1 Setup

Each team will develop tests for another team’s component. For example, assuming

a group with for 3 teams, you could have the following setup:

Team Develops component Tests component

Team 1 Logic GUI

Team 2 GUI AI

Team 3 AI Logic

Your group should decide which team tests which other team’s component.

2.2 AutoTest configuration

For the actual testing, you should write unit tests whenever possible. EiffelStudio has

an integrated testing tool called AutoTest. It supports different kinds of tests

(manual, extracted, generated). For this task, you should only write manual tests. A

tutorial on how to use AutoTest and how to write manual test cases can be found

here:

http://docs.eiffel.com/book/eiffelstudio/using-autotest

We also provide examples of test cases for the TicTacToe game. Check out the latest

version from the repository (and read the explanatory comments in the code).

http://docs.eiffel.com/book/eiffelstudio/using-autotest

The tutorial explains how you can tag your test cases. In order to structure the tests

of all the different groups, you should tag each test case using the pattern:

testing: “user/your_class_prefix”

For example, all test cases of the TicTacToe game are tagged with

Using these tags, you can filter for the test cases relevant to your game within

AutoTest. For example, all TicTacToe test cases show up when using the filter:

user/user/TTT

Before executing the tests using AutoTest tool, you should disable parallel test

execution (set preference value to 1):

2.2 Hand-in: Test cases and test plan

Commit all your test cases to the repository at

dose2012/src/dose_2012_tests/groupX_tests

where X is your group number. For this assignment, the tests cases can all be failing

as there are no implementations yet. They tests should, however, pass by the end of

the project.

 note
 testing: "user/TTT"
 local

Suggested Test Coverage

Assume you have requirements R1, R2, Rn which have been classified with different

priorities (e.g. High, Medium and Low); and during the API design you created public

routines pr1, pr2, prm and private routines r1, r2, rk.

Map the routines to their corresponding requirements. Based on the requirements’

priorities, you can then distinguish how well a routine should be tested:

 S1 (High): public routines for requirements of high priority

 S2 (Medium): public routines for requirements of medium priority

 S3 (Low): public routines for requirements of low priority

Note that it is sufficient to test public routines1.

You should write about 2-4 test cases for most of the routines in S1; at least 1

test case for about 50% of the routines in S2; and at least 1 test case for about

10% of the routines in S3.

As unit tests are not well suited for UI testing, the team in charge of UI testing

should implement unit tests where possible but otherwise document the UI testing

strategies (e.g. how to test manually) in a short (2-3 pages) test plan2. Commit your

test plan to the repository at (where X is you group number):

dose2012/testplans/groupX

If the workload for the individual teams is too unequal, you can reassign team

members to help out other teams.

1 Tests of private routines are often useful for the implementer of a routine but not for the clients.

2 We do not provide a template for the test plan. Prepare a concise document that states your

approach towards testing the game elements not covered by unit tests. Be instructional such that any

person from the DOSE project could execute your test plan.

