
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 1

ΗΥ351:
Ανάλυση και Σχεδίαση Πληροφοριακών Συστημάτων
Information Systems Analysis and Design

Γιάννης Τζίτζικας

∆ιάλεξη : 18
Ημερομηνία :
Θέμα :

HY 351: Ανάλυση και Σχεδίαση Πληροφοριακών Συστημάτων
CS 351: Information Systems Analysis and Design

Implementation, Installation and After

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 2

Outline

• The Implementation phase

• Managing Programming

• Testing

• Documentation

• Reuse

• Transition

• Transition management

• System support & maintenance

• Project assessment

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 3

Refresher:
Implementation phase and Development Methodologies

Planning

Analysis

Design

Implementati
on

System

Planning

Analysis

Design

Implementatio
n

System

Design

Implementatio
n

Design

Implementatio
n

Design

Integration

Planning

Analysis

Implementatio
n

Design

Analysis

system v1

Implementatio
n

Design

Analysis

system v2

Implementatio
n

Design

Analysis

system v3

Planning

Implementation

Design

Analysis

System

prototype

Implementation

system

Planning

Implementation

Design

Analysis

design

prototype

Implementation

system

Analysis

Design

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 4

Implementation Phase

• Commonly, this is the longest and most expensive part of the
process.

• General steps
– 1. Construction

– 2. Installation & Transition: The new system replaces the existing one

– 3. Support Plan: formal and informal post-implementation review, as well as
a systematic way for identifying changes needed for the system

Planning

Analysis

Design

Implementation

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 5

Software Implementation

• CASE tools (code generators, reverse engineering tools)

• Compilers, interpreters and run-time support

• Visual Editors

• Integrated Development Environments (IDEs)

• Configuration management (e.g. SVN, CVS, RCS)

• Class browsers, Component Managers

• DBMSs (e.g. JDBC software to be installed at client-side)

• CORBA (IDL compiler)

• Testing Tools (e.g. JUnit)

• Installation Tools

• Conversion Tools (for transferring data from the old to the new system, e.g.
Data Junction)

• Documentation generators

The implementation of a system requires a range of tools

Some indicative development tools

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 7

Development and Configuration Control Tools and
Frameworks

• Ant (http://ant.apache.org/)

• Maven (maven.apache.org)

• SVN (http://subversion.tigris.org/)

• GForge (http://gforge.org/)

• Trac (http://trac.edgewall.org/)

• CruiseControl (http://cruisecontrol.sourceforge.net/)

• Hudson (https://hudson.dev.java.net/)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 8

Ant

• Apache Ant is a software tool for automating software build
processes. It is similar to make but is written in the Java language,
requires the Java platform, and is best suited to building Java
projects.

• The most immediately noticeable difference between Ant and
make is that Ant uses XML to describe the build process and its
dependencies, whereas make has its Makefile format. By default
the XML file is named build.xml.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 9

Ant
Sample build.xml file

<?xml version="1.0"?>
<project name="Hello" default="compile">

<target name="clean" description="remove intermediate files">
<delete dir="classes"/>

</target>
<target name="compile"
description="compile the Java source code to class files">

<mkdir dir="classes"/>
<javac srcdir="." destdir="classes"/>

</target>
<target name="jar" depends="compile"
description="create a Jar file for the application">

<jar destfile="hello.jar">
<fileset dir="classes" includes="**/*.class"/>
<manifest>

<attribute name="Main-Class" value="HelloProgram"/>
</manifest>

</jar>
</target>

</project>

This is about a simple Java "Hello, world" application. It defines three targets -
clean, compile and jar, each of which has an associated description. The jar target
lists the compile target as a dependency. This tells Ant that before it can start the
jar target it must first complete the compile target.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 10

Maven (maven.apache.org)

• Maven is a software tool for Java programming language project management and
automated software build. It is similar in functionality to the Apache Ant tool (and to a
lesser extent, PHP's PEAR and Perl's CPAN), but has a simpler build configuration
model, based on an XML format. Maven is hosted by the Apache Software Foundation,
where it was formerly part of the Jakarta Project.

• Maven uses a construct known as a Project Object Model (POM) to describe the software
project being built, its dependencies on other external modules and components, and the
build order. It comes with pre-defined targets for performing certain well defined tasks
such as compilation of code and its packaging.

• A key feature of Maven is that it is network-ready. The core engine can dynamically
download plug-ins from a repository, the same repository that provides access to many
versions of different Open Source Java projects, from Apache and other organisations
and developers. This repository and its reorganized successor, the Maven 2 repository,
strives to be the de facto distribution mechanism for Java applications, but its adoption
has been slow. Maven provides built in support not just for retrieving files from this
repository, but to upload artefacts at the end of the build. A local cache of downloaded
artefacts acts as the primary means of synchronizing the output of projects on a local
system.

• See Maven in 5 minutes: http://maven.apache.org/guides/getting-started/maven-in-
five-minutes.html

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 11

Subversion (svn)

• It could be used to share files bewteen several developers and to keep
track of the history of a modified file.

• Subversion (svn) is a free/open source version control system. The central
point is called a repository. The repository is like a file server that
remembers every changes made to your files and directories. This allows
you to recover old versions of your files or examine the history of how your
files have changed. Svn can access a repository (equivalent to a directory)
across networks which allows yours files to be shared/used/modified by
people working on different computers. At the beginning, the revision
number is 0 (R0). Any successful submission to the repository will increment
this number by 1.
The typical work cycle with subversion is illustrated on the next slides

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 12

Subversion (svn)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 13

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 14

comparing

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 15

GFORGE

GForge can provide a centralized access point for
several useful utilities and tools which could be used
in a project. Some of these tools include:

• A version control repository (SVN)

• Mailing lists

• Discussion forums

• Bug tracking

• A web interface to SVN

• Task lists

• A website which provides some usage statistics,
including the project members, the number of
mailing lists, SVN statistics, the number of items in
the discussion forums, etc

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 16

Trac

• Trac is an enhanced wiki and issue
tracking system for software
development projects. It provides an
interface to Subversion, an integrated
Wiki and convenient reporting
facilities. It allows wiki markup in
issue descriptions and commit
messages, creating links and
seamless references between bugs,
tasks, changesets, files and wiki
pages. A timeline shows all project
events in order, making the
acquisition of an overview of the
project and tracking progress very
easy.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 17

• CruiseControl is a framework for a continuous build process. It includes, but is
not limited to, plugins for email notification, Ant, and various source control tools.
A web interface is provided to view the details of the current and previous builds.

• CruiseControl is distributed under a BSD-style license and is free for use.
CruiseControl adheres to an open source model and therefore makes the
source code freely available.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 18

Hudson

Hudson monitors executions of repeated jobs, such as building a
software project or jobs run by cron. Among those things, current
Hudson focuses on the following two jobs:

• Building/testing software projects continuously, just like
CruiseControl or DamageControl. In a nutshell, Hudson provides
an easy-to-use so-called continuous integration system, making it
easier for developers to integrate changes to the project, and
making it easier for users to obtain a fresh build. The automated,
continuous build increases the productivity.

• Monitoring executions of externally-run jobs, such as cron jobs
and procmail jobs, even those that are run on a remote machine.
For example, with cron, all you receive is regular e-mails that
capture the output, and it is up to you to look at them diligently and
notice when it broke. Hudson keeps those outputs and makes it
easy for you to notice when something is wrong.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 19

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 20

Construction

CodingCoding TestingTesting DocumentationDocumentation

Managing/planning

Managing Programming
(∆ιαχείριση Προγραμματισμού)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 22

Managing Programming

Tasks

• Assigning the programmers
– e.g. assign to each one a set of classes or a package

• Coordinating the activities
– e.g. weekly meetings, coding standards, coding using three areas:

development area, testing area, production area

• Managing the schedule

• The Programmer Paradox
– After an appropriate number of people are assigned to a

programming task, adding more people slows down rather than
speeds up completion of the project.

• If a project is so complex that requires having a large team,
the best strategy is to break the project into a series of smaller
parts that can function as independently as possible.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 23

Managing the Schedule
(∆ιαχείριση Χρονοδιαγράμματος)

• Use initial time estimates as a baseline

• Revise time estimates as construction proceeds

• Fight against scope creep

• Monitor “minor” slippage (one day here, one day there,... => behind schedule)

• Create risk assessment and track changing risks

• Fight the temptation to lower quality to meet unreasonable schedule demands

Avoid Classic Mistakes

1. Research-oriented development => if you use state-of-the art technology, lengthen planned
time

2. Using “low-cost” personnel => lengthen planned time

3. Lack of code control (different persons work on the same code)

4. Inadequate testing => allocate sufficient time for testing

Testing
(Έλεγχοι)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 25

However it is a bad practice to leave testing for the end

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 26

Testing

• The purpose is not to demonstrate that the system is free of errors;

• The purpose is to detect as many errors as possible … :)

Testing Philosophy

• It is dangerous to test early modules without an overall testing plan

• It may be difficult to reproduce sequence of events causing an error

• Testing must be done systematically and results documented carefully

Testing is a form of insurance.

It costs more to repair software bugs when people are depending on the programs
than in earlier stages before the systems are in use.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 27

Types/Stages of Testing

• Unit testing
– Tests each module to assure that it performs its function

• Integration testing
– Tests the interaction of modules to assure that they work together

• System testing
– Tests to assure that the software works well as part of the overall

system

• Acceptance testing
– Tests to assure that the system serves organizational needs

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 28

Unit Testing

• Black Box Testing
– Focuses on whether the unit meets requirements stated in specification

• White-Box Testing
– Looks inside the module to test its major elements

Integration Testing

• User interface testing

– Tests each interface function

• Use-case testing

– Ensures that each use case works correctly

• Interaction testing

– Tests each process in a step-by-step fashion

• System interface testing

– Ensures data transfer between systems

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 29

System Testing

• Requirements Testing

– Ensures that integration did not cause new errors

• Usability Testing

– Tests how easy and error-free the system is in use

• Security Testing

– Assures that security functions are handled properly

• Performance Testing

– Assures that the system works under high volumes of activity

• Documentation Testing

– Analysts check that documentation and examples work properly

Acceptance Testing
• Alpha Testing

– Repeats tests by users to assure they accept the system

• Beta Testing
– Uses real data, not test data

Case study: Java Unit Testing

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 31

Case: Testing Java Code

• JUnit is a freely available Java unit test framework. extensively
used in the Java community because of its elegance of design and
ease of use.

• Why use a testing framework?
– Using a testing framework is beneficial because it forces you to explicitly

declare the expected results of specific program execution routes.

– When debugging it is possible to write a test which expresses the result you
are trying to achieve and then debug until the test comes out positive.

– By having a set of tests that test all the core components of the project it is
possible to modify specific areas of the project and immediately see the
effect the modifications have on the other areas by the results of the test,
hence, side-effects can be quickly realized.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 32

– JUnit promotes the idea of first testing then coding, in
that it is possible to setup test data for a unit which
defines what the expected output is and then code
until the tests pass. It is believed by some that this
practice of "test a little, code a little, test a little, code a
little..." increases programmer productivity and stability
of program code whilst reducing programmer stress
and the time spent debugging. It also integrates with
Ant (http://jakarta.apache.org/ant)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 33

Short Introduction to JUnit

Suppose you want to test the following code

To test this code,
you need a
second Java class
that will

1) import
junit.framework.*

2) extend TestCase.

public class Math {
static public int add(int a, int b) {

return a + b;
}

}

import junit.framework.*;

public class TestMath extends TestCase {

public void testAdd() {
int num1 = 3;
int num2 = 2;
int total = 5;
int sum = 0;
sum = Math.add(num1, num2);

assertEquals(sum, total);
}

}

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 34

Short Introduction to JUnit

• Notice that the routine is named testAddNumbers. This convention
tells you that the routine is supposed to be a test and that it's
targetting the "add" functionality.

• The last step is how to run your JUnit tests. You can do this
several ways, including your command line, Eclipse or the JUnit
Test Runner, or plain Ant. To run a Junit test with an Ant script,
add this to your Ant script:

<junit printsummary="yes" haltonfailure="yes" showoutput="yes" >
<classpath>

<pathelement path="${build}"/>
</classpath>

<batchtest fork="yes" todir="${reports}/raw/">
<formatter type="xml"/>
<fileset dir="${src}">

<include name="**/*Test*.java"/>
</fileset>

</batchtest>
</junit>

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 35

Assertion Statements

There is a list of the different types of assertion statements that are
used to test your code. Any Java data type or object can be used
in the statement. These assertions are taken from the JUnit API.

• assertEquals(expected, actual)
• assertEquals(message, expected, actual)
• assertEquals(expected, actual, delta) - used on doubles or floats,

where delta is the difference in precision
• assertEquals(message, expected, actual, delta) - used on

doubles or floats, where delta is the difference in precision
• assertFalse(condition)
• assertFalse(message, condition)
• assertNotNull(object)
• assertNotNull(message, object)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 36

Assertion Statements (cont)

• assertNotSame(expected, actual)
• assertNotSame(message, expected, actual)
• assertNull(object)
• assertNull(message, object)
• assertSame(expected, actual)
• assertSame(message, expected, actual)
• assertTrue(condition)
• assertTrue(message, condition)
• fail()
• fail(message)
• failNotEquals(message, expected, actual)
• failNotSame(message, expected, actual)
• failSame(message)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 37

Another example

// A Class that adds up a string based on the ASCII values of its
// characters and then returns the binary representation of the sum.
public class BinString {
public BinString() {}

public String convert(String s) {
return binarise(sum(s));

}

public int sum(String s) {
if(s=="") return 0;
if(s.length()==1) return ((int)(s.charAt(0)));
return ((int)(s.charAt(0)))+sum(s.substring(1));

}

public String binarise(int x) {
if(x==0) return "";
if(x%2==1) return "1"+binarise(x/2);
return "0"+binarise(x/2);

}
}

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 38

the test class

import junit.framework.*;
public class BinStringTest extends TestCase {

private BinString binString;

public BinStringTest(String name) {
super(name);

}

protected void setUp() {
binString = new BinString();

}

public void testSumFunction() {
int expected = 0;
assertEquals(expected, binString.sum(""));
expected = 100;
assertEquals(expected, binString.sum("d"));
expected = 265;
assertEquals(expected, binString.sum("Add"));

}

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 39

the test class (cont)

public void testBinariseFunction() {

String expected = "101";

assertEquals(expected, binString.binarise(5));

expected = "11111100";

assertEquals(expected, binString.binarise(252));

}

public void testTotalConversion() {

String expected = "1000001";

assertEquals(expected, binString.convert("A"));

}

}

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 40

setUp and tearDown

• TestCase allows us to use the method setUp to set up any
necessary variables or objects (setUp is called before the
evaluation of each test)
– Note that binString was already declared at the top of the file like usual

with private BinString binString;

• setUp has a brother called tearDown which is called after the
evaluation of each test and can be used to dereference variables
or whatever so that each test may be performed without issuing
side-effects that may affect the outcome of the other tests.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 41

Tips

• Using an IDE (like Eclipse, NetBeans) you can create tests very
quickly and easily

• Tests running can be automated

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 42

case NetBeans
creating test

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 43

case NetBeans
selecting the elements for which tests should be created

We are now presented with a Create Tests
window. You will notice several check
boxes. If the methods that you are trying
to test are not static meaning that they
need an instance of the object to be called
then you will probably want to specify a
setUp method for the test case. This will
be where you can instantiate your object
before running the tests. Also if your tests
allocate any special resources you may
want to select tearDown so you can
properly dispose of the resources. After
we are done with this you may click the
next button.

• An alternate way to create tests for individual classes is to right click on the file that
you wish to create a test for then goto JUnit Tests and then Create Tests. This will
allow you to create a single test for a particular class.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 44

The results of running the tests

Documentation
(Τεκμηρίωση)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 46

User Documentation

• Intended to help users operate the system

• High quality documentation takes about 3 hours per page

• The task should not be left to the end of the project

• Time required to develop and test user documentation should be built into project plan

• On-line documentation is growing in importance

Types of User Documentation

• Reference documents
– i.e. “Help”. It helps users to use the system

• Procedures manuals
– It help users to perform business tasks using the system (one business

process may requires performing several system-supported tasks)

• Tutorials

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 47

Organizing On-Line Reference Documents

Documentation navigation controls

Documentation topics

• Commands and menus

• Common tasks

• Definitions

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 48

Organizing On-Line Reference Documents

Documentation navigation controls

Documentation topics

• Commands and menus

• Common tasks

• Definitions

Some Guidelines:

• Use the active voice

• Minimize use of “to be” verbs

• Use consistent terms

• Use simple language

• Use friendly language

• Use parallel grammatical structure

• Use steps correctly

• Use short paragraphs

Reuse !
(Επαναχρησιμοποίηση)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 50

Why Reuse?

• Economic reasons
– If we can reuse design or components we can save time and money

• Quality reasons
– If we can reuse a design or component that has been tested and proved to work

properly, then the quality of our system enchances
• less risk

Recall that the main objective of Information System Analysis and Design is to build systems
that meet the client’s requirements given specific time and budget constraints.

Why we don’t reuse a lot?

• Planning for reuse too late
– If reuse is appropriate (for the project at hand) it is something that needs to be

planned for even before a project starts. This requires having the appropriate people
and tools in place to make it possible

• The level of coupling between different classes
– we usually adapt the code we write to the current project (so the resulting code is not

directly reusable)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 51

Planning a Strategy for Reuse

The SELECT Perspective [Allen and Frost 1998]

• Repository-based component management software.
– Components are placed in a repository as a means of publishing them and making

them available to other users. The repository is made up of catalogues and the
catalogues contain details of components, their specifications and their interfaces.

– Component management software tools provide the functionality for adding
components to the repository and for browsing and searching for components. These
may be integrated with CASE tools to allow the storage of analysis and design
models as well as source code and executables.

Now we even have search engines for code!
•Google (http://www.google.com/codesearch)

•Krugle (http://www.krugle.org/)

•codase (http://www.codase.com/)

•SourceBank (http://archive.devx.com/sourcebank/)

•...

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 52

Planning a Strategy for Reuse (II)

Reuse-driven Software Engineering Business
– key notions: reuse from the start

– Instead of considering components as executables (or as packages of
executables designed to deliver a particular service), we can consider reuse
in terms of any of the work products of systems development.

– So models used before coding are also subject to reuse:
• Requirements Capture Unit

• Design Unit

• Testing Unit

• Component Engineering Unit

• Architecture Unit

• Component Support Unit

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 53

Component Standards

Borland Delphi

Microsoft Visual Basic

Microsoft Windows

CORBA

Java

Microsoft .NET

Object Pascal units compiled into .dll files - Dynamic Link Libraries

.vbx files - Visual Basic Extensions

.ocx files

.ole files - Object Linking and Embedding

DDE - Dynamic Data Exchange

.dll files - Dynamic Link Libraries

COM - Common Object Model

DCOM - Distributed Common Object Model

.idl files - Interface Definition Language

IOP - Inter-ORB Protocol

.jar files - Java Archive packages

JavaBeans

MSIL - Microsoft Intermediate Language

CLR - Common Language Runtime

WSDL - Web Service Description Language

Installation and After
(Εγκατάσταση και μετά)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 55

Transition
(Μετάβαση)

• Transitioning to new systems involves managing change from pre-existing norms and
habits.

• Change management involves:
– Unfreezing -- loosening up peoples’ habits and norms

– Moving -- transition from old to new systems

– Refreezing -- institutionalize and make efficient the new way of doing things

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 56

Installation and After

Installation and after

Transition Transition Change ManagementChange Management MaintenanceMaintenance

Transition
(Μετάβαση)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 58

Migration Plan
(Πλάνο «μετάβασης»)

It describes who will perform what

• Technical aspects
– Installing hardware and software

– Converting data

• Organizational aspects
– Training users on the system

– Motivating employees to use the new system
to aid in their work

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 59

Migration Plan

Style

• Direct: the new system instantly replaces the old

• Parallel: for a period of time both (old and new) systems are used. The old is
turned off when the new is proven fully capable

Location

• Pilot: One or more locations are converted to work out bugs

• Phased: Locations are converted in sets

• Simultaneous: All locations are converted at the same time

Modules

• Whole system: All modules converted in one step

• Modular: If modules are loosely associated, they can be converted one at a time

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 60

Transition Strategies
(Στρατηγικές Μετάβασης)

Dennis at al. 2005

Factors for selecting the a conversion strategy:
• Risk: Seriousness of consequences of remaining bugs

• Cost: Parallel requires paying for two systems for a period of time. Simultaneous requires more staff
to support all locations

• Time: Parallel, phased, and modular require more time

Change Management
(∆ιαχείριση Αλλαγής)

The process of helping persons of the
organization to adapt to the new system

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 62

Change Management

Key Roles

• The sponsor is the business person who initiated the request for the new system

• The change agent is the person(s) who lead the change effort

Understanding Resistance to Change

• What is good for the organization, is not necessarily good for the individuals who
work there

• Adapting to new work processes requires effort, for which there may be no
additional compensation

• No computer system will be successfully adopted unless management policies
support its adoption

• Management tools for supporting adoption
– Standard operating procedures (SOPs)

– Measurements and rewards

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 63

Change Management (II)

Motivating Adoption

• The information strategy aims to convince adopters that change is better

• The political strategy uses organizational power to motivate change

• Differentiate between ready adopters, reluctant adopters, and resistant adopters

TRAINING
(Εκπαίδευση)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 65

Training

• Every new system requires new skills

• New skills may involve use of the technology itself

• New skills may be needed to handle the changed business processes

What to Train

• Should focus on helping users accomplish their tasks

• Use cases provide an outline for common activities and a basis to plan training

Types of Training

• One-to-One

• Classroom

• Computer-based

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 66

Institutionalization of the System
(«Εγκαθίδρυση» του Συστήματος)

Types of System Support

• On-demand training at time of user need

• Online support
– Frequently asked questions (FAQ)

• Help desk
– Phone service for known issues

Sources of Change Requests

• Problem reports from the operations group

• Requests for enhancements from users

• Requests from other systems development projects

• Change requests from senior management

Post-implementation

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 68

Post Implementation Activities
(∆ραστηριότητες Μετά την Υλοποίηση)

• Provide support
– Assistance in using the system

• Provide maintenance
– Repair or fix discovered bugs or errors

– Add minor enhancements to provide added value

• Assess the project
– Analyze what was done well

– Discover what activities need improvement in the future

System Support and Maintenance using CASE tools

Case Study: Enterprise Architect

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 70

EA: Maintenance Model

Aim

• The Maintenance Model captures issues, bugs, tests and other
information related to maintaining and updating the software
system. This model is typically created once the first release of the
product is shipped, and is used to ensure all bugs and problems
are stored and handled in the correct way.

Diagram

• The Maintenance Model allows visual representation of issues
arising during and after development of a software product.. The
Model can be enhanced with the integration of change elements
and testing.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 71

EA: Maintenance Elements

The maintenance elements are defects, changes, issues and
tasks. They all apply to individual model elements and may be
used to record and capture problems, changes, issues and tasks
as they arise and document the solution and associated details.
They are defined as follows:
– A defect can be considered as a failure to meet a requirement for the current

model element.·

– A change can be considered as a change in requirement for the current
model element.

– An issue is a record of a risk or other factor that might affect the project
being recorded for the current model element.

– A task is a means of recording work in progress and work outstanding for
the current model element.

Note that each of these maintenance elements applies at the model
element level.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 72

EA: Coloring scheme and Diagrammatic Elements

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 73

EA: Maintenance Model pattern

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 74

EA: Maintenance Workspace

• EA makes it easy to record and capture problems and issues as they arise and document the
solution and associated details. The Maintenance window provides a quick method of viewing and
modifying the list of defects, changes, issues and to do items associated with a particular model
element. Access this window by selecting Maintenance from the View menu, or by pressing Alt+4.

• Four tabs provide access to Element Defects, Element Changes, Element Issues and Element
Tasks - click on the tab of interest then select model elements in diagrams or in the Project Browser
to see the associated maintenance items. You can include defects, changes, issues and tasks in the
main RTF documentation and HTML produced by EA. The RTF setup dialog has check boxes to
show or hide element defects, changes, issues and tasks

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 75

EA: Assign People to Defects or Changes

• As an example of how you might use the relationship matrix to monitor issues or
changes - the screen below illustrates staff (actors) being linked through
Realization connectors to Issues. Each highlighted square indicates a
responsibility that a staff member has to work on or correct a named issue.

• This same approach can be used for any mix of model elements.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 76

Project Assessment
(Αποτίμηση Έργου)

• Important for continued project improvement

• Especially important for junior personnel to improve quickly

Project Team Review

• Each member prepares 2-3 page document regarding her or his actions during
the project

• Focus on improvement not penalties

• Excellent behaviors are acknowledged and diffused to others

• Team leader summarizes and distributes lessons learned

System Review

• Examine the extent to which the costs and benefits of the system are realized

• Use this information to help in more accurately estimating costs and benefits for
future projects

Recall CMM (Lecture 2)

