
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 1

ΗΥ351:
Ανάλυση και Σχεδίαση Πληροφοριακών Συστημάτων
Information Systems Analysis and Design

Γιάννης Τζίτζικας

∆ιάλεξη/Φροντιστήριο: 16

HY 351: Ανάλυση και Σχεδίαση Πληροφοριακών Συστημάτων
CS 351: Information Systems Analysis and Design

Persistent Data Management Layer Design
(III)

and Java-related technologies

JDO

Η ενότητα αυτή περιλαμβάνει παρουσίαση τεχνολογιών που
μπορείτε να χρησιμοποιήσετε στην 3η φάση της εργασίας
(project) του μαθήματος.
Η ύλη όμως δεν θα εξεταστεί.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 3

The Landscape

• Persistence
– Saving your (persistent) application data

– Mapping your component/object model to the persistence store, typically
referred to as O/R (Object relational) mapping

• Data consistency and concurrent access

• Transactional semantics

• Managing your persistent state is non-trivial and complex

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 4

Object-Relational Impedance Mismatch

Java Data Object (JDO)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 6

What is JDO (Java Data Object) ?

• Standard for generic/transparent Java object persistence

• Provides developers with a Java-centric and object view of
persistence and data store access

• Designed to allow pluggable vendor “drivers” for accessing any
database/data store

• Connector Architecture used to specify the contract between JDO
Vendor and Application Server for instance, connection, and
transaction management

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 7

JDO Architecture

Persistence By Reachability

• Any object loaded directly or indirectly (by reference) from a JDO
loaded object is automatically persisted if the enclosing transaction
commits

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 8

JDO Non-Managed Runtime

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 9

Managed Environment

• J2EE-based, multi-tier
– Lifetime of PM, pooling, and caching limited to transaction scope

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 10

Byte Code Enhancement

Most JDO vendors use the bytecode modification for the following
reasons:
– Avoid potentially messy source code modification

– Allow persistence to be hidden from the programmer. The programmer is
database unaware

we will see more later on

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 11

JDO Deployment Process

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 12

Working with JDO Interfaces and Classes

A typical way to use JDO is the following:

• Use PersistenceManagerFactory to get a PersistenceManager
– PersistenceManager embodies a database connection

• Use a PersistenceManager to create a Transaction or a Query

• Use a Transaction to control transaction boundaries

• Use a Query to find objects

• Enhanced classes implicitly implement PersistenceCapable

• PersistenceCapable classes can implement InstanceCallbacks

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 13

JDO API for Persistence

public static void main(String[] args) {
PersistenceManagerFactory pmf =

JDOHelper.getPersistenceManagerFactory(System.getProperties());

PersistenceManager pm = pmf.getPersistenceManager();

Transaction tx = pm.currentTransaction();

tx.begin();

Author author = new Author(“Mr. Author");

Book book = new Book("Java Book", "0-11-570731-7");

author.addBook(book);

// do some other work with books, publishers etc

pm.makePersistent(author);

tx.commit();

pm.close();

}

JPOX: an implementation of JDO
http://www.jpox.org/docs/jdo/jdo_overview.html

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 15

JPOX: A reference implementation of JDO

• Recall what JDO is:
– JDO defines an interface (or API) to persist normal Java objects (or POJO's

in some peoples terminology) to a datastore. JDO doesn't define the type of
datastore. It is datastore-agnostic. You would use the same interface to
persist your Java object to RDBMS, or OODBMS, or XML, or whatever form
of data storage. JDO is a standard. JDO 1.0 has been in existence since
2002, whilst JDO 2.0 was approved in early 2005. JDO defines the interface
that an implementation has to implement.

• JPOX is an implementation of the JDO interface specification (JDO
1.0, JDO 2.0, JDO 2.1).
– There are also other implementations. The whole point of having a standard

interface is that users can, in principle, swap between implementations of
JDO without changing their code.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 16

JDO categorises classes into 3 types

The type of your class defines how it interacts with JDO. Some classes have no
interaction with JDO, whilst others require you to define their behaviour under
JDO.

• Persistence Capable classes
– are classes whose instances can be persisted to a datastore. JDO provide the

mechanism for persisting these instances, and they are core to JDO. These classes
need to be enhanced according to a JDO Meta-Data specification before use within a
JDO environment.

• Persistence Aware classes
– are classes that manipulate Persistence Capable instances through direct attribute

manipulation. These classes are typically enhanced with very minimal JDO Meta-
Data. The enhancement process performs very little changes to these classes.

• Normal classes
– are classes that aren't themselves persistable, and have no knowledge of persistence

either. These classes are totally unchanged in JDO, and require no JDO Meta-Data
whatsoever.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 17

Defining PersistenceCapable classes

Classes are defined as PersistenceCapable either by XML MetaData, like this

<class name="MyClass">

...

</class>

or, in JDO2.1, using Annotations. Like this :

@PersistenceCapable

public class MyClass

{ ...

}

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 18

Defining PersistenceAware classes

Classes are defined as PersistenceAware either by XML MetaData, like this

<class name="MyClass“ persistence-modifier="persistence-aware"/> >
...

</class>

or, in JDO2.1, using Annotations. Like this :

@PersistenceAware

public class MyClass

{ ...

}

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 19

Controlling the persistence of your objects.

• This is performed using a PersistenceManagerFactory/
PersistenceManager. The persistence of Java objects results in
changes to the lifecycle state of the objects.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 20

Persistence Manager Factory

• Any JDO-enabled application will require at least one
PersistenceManagerFactory. Typically applications create one per datastore
being utilised. A PersistenceManagerFactory provides access to
PersistenceManagers which allow objects to be persisted, and retrieved. The
PersistenceManagerFactory can be configured to provide particular behaviour.

• The simplest way of creating a PersistenceManagerFactory is as follows

Properties properties = new Properties();

properties.setProperty("javax.jdo.PersistenceManagerFactoryClass", "{my_implementation_pmf_class}");

properties.setProperty("javax.jdo.option.ConnectionDriverName","com.mysql.jdbc.Driver");

properties.setProperty("javax.jdo.option.ConnectionURL","jdbc:mysql://localhost/myDB");

properties.setProperty("javax.jdo.option.ConnectionUserName","login");

properties.setProperty("javax.jdo.option.ConnectionPassword","password");

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory(properties);

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 21

Persistence Manager Factory (cont)

• A slight variation on this, is to use a file ("jdo.properties" for example) to specify
these properties like this

javax.jdo.PersistenceManagerFactoryClass={my_implementation_pmf_class}

javax.jdo.option.ConnectionDriverName=com.mysql.jdbc.Driver

javax.jdo.option.ConnectionURL=jdbc:mysql://localhost/myDB

javax.jdo.option.ConnectionUserName=login

javax.jdo.option.ConnectionPassword=password

and then to create the PersistenceManagerFactory using this file

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory("jdo.properties");

A final alternative would be to call JDOHelper.getPersistenceManagerFactory(jndiLocation, context);,

hence accessing the properties via JNDI. Whichever way we wish to obtain the
PersistenceManagerFactory

Regarding the Properties of PersistenceManagerFactory, the first property specifies to use PMF of the
implementation required to be used, and the following 4 properties

define the datastore that it should connect to. For more about the properties

see http://db.apache.org/jdo/pmf.html

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 22

Persistence Manager

• Any JDO-enabled application will require at least one PersistenceManager (PM).
This is obtained from the PersistenceManagerFactory for the datastore. The
simplest way of creating a PersistenceManager is as follows

PersistenceManagerFactory pmf =
JDOHelper.getPersistenceManagerFactory(props);

PersistenceManager pm = pmf.getPersistenceManager();

A PersistenceManager is the key to all persistence operations in JDO. With it you
can persist, update, delete, and retrieve objects from the datastore.

A PersistenceManager has a single transaction.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 23

How to persist objects

• To persist an object, the object must first be marked as persistable using
MetaData (XML/Annotations). Then you would start the PM transaction, and use
makePersistent as follows

PersistenceManager pm = pmf.getPersistenceManager();

Transaction tx = pm.currentTransaction();

try{

tx.begin(); // starts the transaction

MyClass obj = new MyClass(); // create the object to persist

pm.makePersistent(obj); // persist is to the datastore

tx.commit(); // Commit the transaction, flushing the object to the datastore

} catch (Exception e) {

... handle exceptions

}

finally {

if (tx.isActive()) {

// Error occurred so rollback the transaction

tx.rollback();

}

pm.close();

}

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 24

How to persist objects (cont)

• The makePersistent method of PersistenceManager makes the object
persistent in the datastore, and updates the 'state' of the object from Transient
(at the start) to Hollow (after commit() of the transaction).

• When an object is persisted, if it has any other objects referenced from that
object they also will be made persistent. This is referred to as persistence-by-
reachability. The main benefit of this is that if you have an object graph to
persist, then you don't need to call makePersistent() on all objects, instead just
using one that can be used to find all of the others.

• persistence-by-reachability is also run at the time of calling commit() on the
transaction. This has the effect that if you had called makePersistent() on an
object and that had persisted another object, and before commit you had
removed the relation to this other object, then at commit() the reachability
algorithm will find that this other object is no longer reachable and will remove it
from persistence.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 25

How to retrieve objects

• So we've made some of our objects persistent, and now we want to retrieve
them in our application. Here's one way of retrieving objects of a particular type.

tx = pm.currentTransaction();

try {

tx.begin();

Extent e = pm.getExtent(mydomain.MyClass.class, true);

Iterator iter=e.iterator();

while (iter.hasNext()) {

MyClass my_obj=(MyClass)iter.next();

...

}

tx.commit();

} catch (Exception e){

if (tx.isActive()) {

tx.rollback();

}

}

The Extent interface is
one of the ways to
retrieve your objects. The
others use the Query
interface, allowing more
precise filtering over the
objects returned.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 26

How to update objects

• To update an object we firstly retrieve it, as above, and then we call any of its
mutator methods. For example

tx = pm.currentTransaction();

try {

tx.begin();

Extent e = pm.getExtent(mydomain.MyClass.class, true);

Iterator iter=e.iterator();

while (iter.hasNext()) {

MyClass my_obj=(MyClass)iter.next();

my_obj.setValue(25.0); // Change the value

...

}

tx.commit();

} catch (Exception e) {

if (tx.isActive()) {

tx.rollback();

}

}

When setValue() is
called on the persistent
object this change is
intercepted by JDO and
the value change will be
automatically sent to
the datastore ...
transparently!

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 27

How to delete objects

• So we can persist objects, and retrieve them. Now we want to remove one from
persistence.

try{

tx = pm.currentTransaction();

tx.begin();

... (code to retrieve object in question) ...

pm.deletePersistent(my_obj);

tx.commit();

} catch (Exception e) {

if (tx.isActive()) {

tx.rollback();

}

}

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 28

How to make an object transient

• As we have seen in the JDO States guide, an object can have many possible
states. When we want to take an object and work on it, but removing its identity
we can make it transient. This means that it will retain the values of its fields, yet
will no longer be associated with the object in the datastore. We do this as follows

try {

tx = pm.currentTransaction();

tx.begin();

... (code to retrieve object in question) ...

pm.makeTransient(my_obj);

tx.commit();

}

catch (Exception e){

if (tx.isActive()) {

tx.rollback();

}

}

... (code to work on "my_obj")

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 29

How to query your objects to the datastore

• Once you have persisted objects you need to query them.
– For example if you have a web application representing an online store, the user asks

to see all products of a particular type, ordered by the price. This requires you to
query the datastore for these products.

• The JDO specifications (ver 1.0.1 and ver 2.0) require that implementations
provide a Query capability using its own query language (JDOQL).
– JDOQL is oriented around the objects that are persisted, and provides an interface

for selecting these objects within the framework of a query.
– JPOX provides such a JDOQL Query mechanism. The JDO 2.0 specification requires

that implementations provide a SQL query mechanism (for datastores that support
SQL). JPOX provides this. In addition, JPOX provides a query language that is
positioned between JDOQL and SQL that has SQL-like syntax yet allows access to
the field names of classes - JPOXSQL .

• Which query language is used is down to the developer. The data-tier of an
application could be written by a primarily Java developer, who would typically
think in an object-oriented way and so would likely prefer JDOQL. On the other
hand the data-tier could be written by a datastore developer who is more familiar
with SQL concepts and so could easily make more use of SQL.
– This is the power of an implementation like JPOX in that it provides the flexibility for

different people to develop the data-tier utilising their own skills to the full without
having to learn totally new concepts.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 30

How to query your objects to the datastore

• Let's now try to understand the Query interface in JDO , We firstly need to look
at a typical Query

Query query = pm.newQuery("javax.jdo.query.JDOQL",

"SELECT FROM org.jpox.MyClass WHERE param2 < threshold");

query.declareImports("import java.util.Date");

query.declareParameters("Date threshold");

query.setOrdering("param1 ascending");

List results = (List)query.execute(my_threshold);

In this Query, we select our query language (JDOQL in this case), and the query is
specified to return all objects of type org.jpox.MyClass (or subclasses) which have the field
param2 less than some threshold value. We've specified the query like this because we
want to pass the threshold value in dynamically. We then import the type of our threshold
parameter, and the parameter itself, and set the ordering of the results from the Query to
be in ascending order of some field param1. The Query is then executed, passing in the
threshold value. The example is to highlight the typical methods specified for a Query.
Clearly you may only specify the Query line if you wanted something very simple. The
result of the Query is cast to a List since in this case it returns a List of results.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 31

Query Language differences

JPOX provides 3 query languages for the user.
• The most portable, provided across all datastores, is JDOQL.

• The is another one using the RDBMS query language SQL.

• In addition JPOX provides its own extension to SQL called JPOXSQL. The latter
is non-portable across JDO implementations, and so by using it you would be
reducing the portability of your JDO application.

The 3 languages have clear differences in their syntax, but also in the application of
the various methods on the Query. This table attempts to highlight the
differences.

• For more details see: http://www.jpox.org/docs/1_1/query.html

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 32

Named Queries

• The query described above is constructed dynamically. Queries of that form are
perfect for situations like a web system where the user selects something and
you want to present them with particular information based on their selections.
There do however exist other types of situation where you know a particular
query will be needed. In this case it isn't desirable to have to construct it at
runtime. This functionality is added in the JDO 2.0 specification, allowing the
user to specify queries in the JDO Meta-Data.

• To highlight how to do this, lets say we have a class called Product (something
to sell in a store). We define the JDO Meta-Data for the class in the normal way,
but we also have some query that we know we will require, so we define the
following in the Meta-Data.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 33

Named Queries (cont)

• So we have a query called "SoldOut" defined for the class org.jpox.example.Product that
returns all Product (and subclasses) that have a status of "Sold Out". So in our
application all we need to do now is

<jdo>

<package name="org.jpox.example">

<class name="Product">

...

<query name="SoldOut" language="javax.jdo.query.JDOQL">

<![CDATA[

SELECT FROM org.jpox.example.Product WHERE status == "Sold Out"

]]></query>

</class>

</package>

</jdo>

Query query = pm.newNamedQuery(org.jpox.example.Product.class,"SoldOut");

List results = (List)query.execute();

Note that this syntax is based around the single-string form of JDOQL and applies to
JPOX 1.1.0-beta-1 onwards. You now have the means to use the 2 principal types of
queries in JDO.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 34

Result Class

• When you perform a query, using JDOQL or SQL the query will, in general,
return a List of objects. These objects are by default of the same type as the
candidate class. This is good for the majority of situations but there are some
situations where you would like to control the output object. This can be
achieved by specifying the Result Class.

query.setResultClass(myResultClass);

The Result Class has to meet certain requirements. These are

•Can be one of Integer, Long, Short, Float, Double, Character, Byte, Boolean,
String, java.math.BigInteger, java.math.BigDecimal, java.util.Date, java.sql.Date,
java.sql.Time, java.sql.Timestamp, or Object[]

•Can be a user defined class, that has either a constructor taking arguments of
the same type as those returned by the query (in the same order), or has a public
put(Object, Object) method, or public setXXX() methods, or public fields.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 35

Result Class (cont)

Where you have a query returning a single field, you could specify the Result Class
to be one of the first group for example. Where your query returns multiple fields
then you can set the Result Class to be your own class. So we could have a
query like this

Query query = pm.newQuery(pm.getExtent(org.jpox.samples.Payment.class,false));

query.setFilter("amount > 10.0");

query.setResultClass(Price.class);

query.setResult("amount, currency");

List results = (List)query.execute();

and we define our Result Class Price as follows
public class Price {

protected double amount = 0.0;

protected String currency = null;

public Price(double amount, String currency) {

this.amount = amount;

this.currency = currency;

} ...

}

In this case our query is returning 2
fields (a Double and a String), and
these map onto the constructor
arguments, so JPOX will create objects
of the Price class using that
constructor. We could have provided a
class with public fields instead, or
provided setXXX methods or a put
method. They all work in the same way.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 36

Result Fetching

When a Query is executed it executes SQL in the datastore, which returns a
ResultSet. JPOX could clearly read all results from this ResultSet in one go and
return them all to the user, or could allow control over this fetching process.
JDO2 provides a fetch size on the Fetch Plan to allow this control. You would
set this as follows

Query q = pm.newQuery(...);

q.getFetchPlan().setFetchSize(FetchPlan.FETCH_SIZE_OPTIMAL)

fetch size has 3 possible values.

•FETCH_SIZE_OPTIMAL - allows JPOX full control over the fetching. In this case JPOX will
fetch each object when they are requested, and then when the owning transaction is
committed will retrieve all remaining rows (so that the Query is still usable after the close of
the transaction).

•FETCH_SIZE_GREEDY - JPOX will read all objects in at query execution. This can be
efficient for queries with few results, and very inefficient for queries returning large result
sets.

•A positive value - JPOX will read this number of objects at query execution. Thereafter it
will read the objects when requested.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 37

Result Fetching (cont)

In addition to the number of objects fetched, you can also control which fields are
fetched for each object of the candidate type. This is controlled via the
FetchPlan. See also Fetch Groups.

• JPOX also allows an extension to give further control. As mentioned above,
when the transaction containing the Query is committed, all remaining results
are read so that they can then be accessed later (meaning that the query is still
usable). Where you have a large result set and you don't want this behaviour
you can turn it off by specifying a Query extension

q.addExtension("org.jpox.query.loadResultsAtCommit", "false");

• so when the transaction is committed, no more results will be available from the
query.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 38

Query Timeouts

• JPOX provides a useful extension to JDO queries by allowing control over the
timeout of the query. So, for example, if you have a query that can cause
problems in terms of the time taken, you can set a timeout on the query to retain
the usability of your application.

• A JDO2 standard way of doing this (from 1.1.0-beta-6) for each query is to do

query.addExtension("org.jpox.query.timeout","20");

• The value passed in is in seconds. You can also specify this for all queries using
a PMF property "org.jpox.query.timeout".

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 39

Result Set Control

• JPOX provides a useful extension to JDO by allowing control over the
ResultSet's that are created by queries. You have at your convenience 4
properties that give you the power to control whether the result set is read only,
whether it can be read forward only, the number of rows to be fetched etc. You
can specify these on a per-Query basis (from version 1.1.0-beta-6) as follows
query.addExtension("org.jpox.query.fetchSize", "20");

query.addExtension("org.jpox.query.fetchDirection", "forward");

query.addExtension("org.jpox.query.resultSetType", "scroll-insensitive");

query.addExtension("org.jpox.query.resultSetConcurrency", "read-only");

Alternatively you can specify these on the PersistenceManagerFactory so that they apply to all
queries for that PMF. Again, the properties are
•org.jpox.query.fetchSize - controls the number of records fetched from the datastore each time more
are required.

•org.jpox.query.fetchDirection - controls the direction that the ResultSet is navigated. By default this is
forwards only. Use this property to change that.

•org.jpox.query.resultSetType - controls the type of ResultSet.

•org.jpox.query.resultSetConcurrency - controls whether the ResultSet is read only or updateable.

Bear in mind that not all JDBC drivers support all of the possible values for these options. That
said, they do add a degree of control that is often useful.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 40

Transactions

• When managing the persistence of objects using a PersistenceManager it is
normal to handle all datastore operations in a transaction. For this reason each
PersistenceManager has its own transaction. Consequently a typical JDO
persistence method will look something like this

PersistenceManager pm = pmf.getPersistenceManager();

Transaction tx = pm.currentTransaction();

try {

tx.begin(); // Start the PM transaction

... perform some persistence operations

tx.commit(); // Commit the PM transaction

}

finally {

if (tx.isActive()) {

tx.rollback(); // Error occurred so rollback the PM transaction

}}

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 41

Transactions (cont)

JDO supports the two main forms of transaction

• Transactions can lock all records in a datastore and keep them locked until they
are ready to commit their changes. These are known as Pessimistic (or
datastore) Transactions

• Transactions can simply assume that things in the datastore will not change until
they are ready to commit, not lock any records and then just before committing
make a check for changes. These are known as Optimistic Transactions.

You select the type of transaction to be used by a PersistenceManager (PM) either
by setting the PMF property javax.jdo.option.Optimistic, or on the transaction
you call

pm.currentTransaction().setOptimistic(true);

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 42

Some internals of JPOX:
JPOX bytecode enhancer

• JDO requires that all classes to be persisted must implement the
PersistenceCapable interface . Users could manually do this
themselves but this would impose work on them. JDO permits the
use of a byte-code enhancer that converts the users normal
classes to implement this interface. JPOX provides its own byte-
code enhancer (this can be found in the jpox-enhancer.jar). The
enhancement process adds the necessary methods to the users
class in order to implement PersistenceCapable.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 43

JPOX bytecode enhancer (cont)

• This example doesn't show all PersistenceCapable methods, but
demonstrates that all added methods and fields are prefixed with
"jdo" to distinguish them from the users own methods and fields.
Also each persistent field of the class will be given a jdoGetXXX,
jdoSetXXX method so that accesses of these fields are intercepted
so that JDO can manage their "dirty" state.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 44

JPOX bytecode enhancer (cont)

• The MetaData defines which classes are required to be persisted,
and also defines which aspects of persistence each class requires.
For example if a class has the detachable attribute set to true, then
that class will be enhanced to also implement Detachable

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2007 45

(for more info about JDO and JPOX)

For more about JDO

• Apache JDO (http://db.apache.org/jdo) is the project controlling the
direction of the JDO standard and, as such, is the place to go for
information specific to the standard API.

• You could also download a Free JDO1 book
(http://www.orientechnologies.com/docs/JavaDataObjects-
RobinRoos-1.0.pdf) and do some reading.

For more about JPOX

• See the tutorial http://www.jpox.org/docs/1_1/tutorials/tutorial.html

• Eclipse Plugin
– http://www.jpox.org/docs/1_1/tutorials/eclipse.html

