HY 351: AvdAuon kai 2xediaon NMAnpo@opIakwy 2ucTNUATWY
CS 351: Information Systems Analysis and Design

HY351:
AvaAuorn kol Zxedioon IIAnpopop LAKOV
Information Systems Analysis and Design

ZuoTnpidtev 'ﬁﬁi =

> tpwya Aiaxeipiong Acdopévwy (I)
Data Management Layer Design (T)

T'tdvvneg TlitlLROC

Nidhe€n 115
Huepopnvia :

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas

d A6 Ta MovTéAa AvaAuonc

ota MovtéAa 2 xediaong

YwnAou smimrédou Kabop ,'0” ?/ \
ETTIXEIPNUATIKEC AVAYKEC Amaitoggy AvaAuTikil Kataypa@n
KOTOYEYPAPMEVEG OTNV | Suykekpipévwy amaITioEwy

MpéTaon ZuoTAuaTog
MovreAotroinon
AvaAuon
MovTeAotroinon
AgiToupyikn_/AOPIKRA/ZUpTTEPIPOPAG

\(FunctionaI/StructuraI/BehavioraI) J

Avabeswpnaon, EKAET
Mn Neir/kéc Aarraitnd

2xediaon s
< « 2xediaon Emimrédou Aiaxeipiong B
N<W<Aedouévwy B

2xediaan Emkoivwviag ue Xpnorn
2xediaan PuaikNG APXITEKTOVIKAG

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas

[uvan
VEIG

D

] AidpBpwon

* Introduction
* Object-persistence formats
— Files (Sequential and Random Access)
— Databases (Relational, Object-Relational, Object-Oriented)

* Relational Databases,

* ER Model

* ER Model vs Class Diagrams
* ER Model => Relational Model

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

d T1 cival To oTpwya diaxeipiong dedopévwy
What is the Data Management Layer ?

To oTpwua diaxeipiong dedoPEVWY apopd ToV TPOTTO POVIUNG ATTOBAKEUONG KAl
dIaxEipIoNG TwV BESOPEVWV ATTO TA TTPOYPAUMATA TOU TTANPOY. CUCTHHATOG

2.€ VA AVTIKEINEVOOTPEPEG OUOTNUA UTTOPOUME VA DIOKPIVOUE TA QVTIKEIMEVA O€
MOVIMA KOl EQREPT

«(_Persistence objects {poévipa avTikeiyeva):
— QUTA TTOU TTPETTEI Va €ival ATTOBNKEUPEVA O OTABEPN PVAUN

+ Transient objects (e@rApepa avTiKEiyEVQ):
— dlaypdagovTal atrd TNV Pvrun META TN XPNOIYOTIOINGT) TOUG

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

W 77ic va oxedidoouue To oTpdua diaxeipions Sedouévwy;

Mrropouue va 1o kGvouue o€ 4 Bruara:
(A) EmAoyn Tou popgotutrou (format) ammoBrikeuong

(B) AvtioToixnon Twv avTikelpéEvwy TTpoBAnuatog (problem domain objects) o€
MOP@OTUTTOUG POVIKNG aTTOoBrKEUONG aVTIKEINEVWY (Object-persistence formats)

(C) BeATioTOTTOINON TWV HOPQPOTUTTWYV POVIKNG OTTOBNKEUONG AVTIKEINEVWV
Optimizing the object-persistence formats

(D) Zxediaon Twv KAGoewv TTPOCRAONG KAl XEIPIOPOU OEOOPEVWV
Design data access and manipulation classes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

I What is the Data Management Layer ?

The data management layer is about
how data is stored and handled by the programs that run the system

In an object-oriented system we are concerned with both persistent objects and
transi .

— Persistence objects are those that must be stored using some kind of storage
mechanism

— Transient objects will be erased from memory after they have been used.

How to design the data management layer ?

A design approach of 4 steps:

(A) Select the format of the storage

(B) Map problem domain objects to object-persistence formats
(C) Optimizing the object-persistence formats

(D) Design data access and manipulation classes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

pAyopn emIoKOTTNON TWV TEOOdPWY PNHATWYV

8 /ow to design the data management layer
(A) Select the format of the storage

There are four basic formats used for object persistence:
» Apxeia (files)
« Bdoeig Acdopévwy (databases)

— relational database (RDB)

— object-relational databases (ORDB)

— object-oriented databases (OODB)

Object persistence

format 8

Files/databases

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

How to design the data management layer
(B) Map problem domain objects to object-persistence formats

* Tadiaypdupata kKAacswv NS UML opidouv TIG douEG OedOUEVWV TTOU XPEIACETAI
n €pappoyn

* MepikéG pOvVOo aTTd QUTEG TIG DOUEG ATTAITOUV YOVIMN aTToBrKEUoN

« Av mpokeiTal va xpnoiyotroijooupe éva DBMS 1rpétrel va avTioTOIXiOOUPE QUTEG

TIG OOPEG O€ DOMEG TTOU UTTOPOUV VA aVAYVWPEICTOUV Kal VA JIOXEIPIOTOUV ATTO TO
DBMS

* To mponyoupevo Brua e¢aptaTal amrd 1o povTéAo dedopévwy (data model) TTou
utrooTnpifel To DBMS 10 o1T0i0 uTTopéEi va gival oxealakod (relational),
QVTIKEINEVO-OXETIOKO (object-relational)) avTikeipevooTpepEg (object-oriented).

problem domain |
classes A

L L]
/

Object persistence J[\¥ ! v
format L] |f|| | [

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 9

How to design the data management layer
(C) Optimizing the object-persistence formats

AlaoTdoeic BeATIOTOTTOINONG:

« AToBnKeuTIKOU XWpPou (storage efficiency)
— minimizing storage space

« Taxurnrag mpoéoPaong (speed of access)
— minimizing time to retrieve desired information

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 10

4 How to design the data management layer
(D) Design data access and manipulation classes

* O1kAdoeig TTpooBacng Kal XEIPIOHOU BESONEVWV AEITOUPYOUV OAV «UETAPPACTEGY
METACU TWV MOVIMWY QVTIKEIMEVWY KAl TWV AVTIKEIMEVWY TTPOBAANATOC

— DAM (Data Access and Manipulation) classes act as “translators” between the persistent
objects and the problem domain objects.

* [lpétrel va yrropouv va diaBAacouyv Kal va ypdyouv JOVIUA AVTIKEIMEVA KAl AVTIKEIMEVA TOU
TTPOPBARUATOG
— They should be able to read and write both persistent objects and problem domain objects.

problem domain || || [T][]
classes

DAM classes |:| |:| |:|

Object persistence

classes | | |:| | | |:|

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 11

AVOAUTIKOTEPN TTEPIYPAPH TWV TTPONYOUPEVWYV BNUATWY

(A) EmiAoyn poppoTUTOU amoOnkeuaong
(Select the format of the storage)

» Sequential Access
— They allow sequential file operations (read, write, search)
— Typically efficient for reports using all or most of the file’s data
— Types
» Unordered sequential files
» Ordered sequential files

— e.g. in ascending order by customer number
 Random Access
— Data stored in unordered fashion
— Typically efficient for finding individual records

— However they do not support fast sequential accessing (e.g. report writing could be
inefficient)

Most oo PLs support sequential and random access files as part of the language
e.g. FilelnputStream, FileOutputStream, RandomAccessFile (in java.io package)

Moreover they offer mechanisms for converting objects into a form that can be written out to
a file (serializing them) and for reading them back into memory from a file.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 13

., | Types of Application Files

“y
VIvER

Master files
» store core information for the application (e.g. information about customers, orders, payments, etc)
» Usually new records are appended to these files

Transaction files
» store information that can be used to update the master file
» it can be destroyed after the update of the master file

Audit

» stores “before” and “after” images of data so that an audit can be performed if the integrity of data is
questioned (e.g. in order to check who and when changed the salary of an employee)

History
» stores old information that is no longer used (old customers, old orders, etc)
Look-up

» contain static values, like the list of all countries, the list of all telephone codes of Greece.
Typically used for validation purposes.

Configuration files and Backup files

* e.g. for localizing the system (so that labels, button captions and menu entries to be displayed in
the language of the country where the system is being used)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 14

Select the format of the storage

Databases

d Databases

Basic functionalities offered by a DBMS
» Referential Integrity of data
* Query Language

* Transactions
» Authorization, Security
* Recovery

« Concurrent access of data by large number of users and applications programs

T

Relational Object-Relational

U. of Crete, Information Systems Analysis and Design

Object-Oriented

Yannis Tzitzikas

16

t‘i@ Relational, Object-Oriented and Object-Relational Databases

* Relational Databases
— Based on the relational model (tables, 1NF, primary keys, foreign keys,
relational algebra, SLQ, views, normalization)
— Examples of relational DBMSs: Sybase, DB2, Oracle, MySQL, MS Access
(end-user DBMS)

» Object-Relational Databases
— Extend the relational model to include useful features from object-orientation,
e.g. complex types.
— Add constructs to relational query languages, e.g. SQL, to deal with these
extensions
— Example of ORDBMSs: PostgreSQL, UniSQL, Oracle

» Object-Oriented Databases
— Extend OO programming to include features required for database system,
e.g. persistent objects.
— Examples of OODBMSs: ObjectStore, Versant, Objectivity, O2, Gemstone

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 17

35 T 1S Modeling vs Database Modeling

* Modeling an application program and modeling a database are
sometimes disjoint activities
— The former is done by application developers
— The latter by database designers/administrators

However, we will see how from the application model (that we have
already specified using UML), we can proceed and model the needed

database.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 18

> xeolakég Bdoeic Acdopévwy
Relational Databases

Relational Databases

The relational model has been dominant for over 20 years

It dominates in business information systems

It was standardized with SQL’'92

* Modeling primitives

— Tables consist of columns and rows
— Cells can only contain values of atomic types (1NF)

» object types, structured types, collections and references are not supported
+ references between tables are maintained by comparing values in columns

Key notions:

1NF, Primary key, Foreign key, Structured Query Language (SQL),
Functional Dependency, Normalization.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

20

Relational DBMSs

"Relational Databases Rule the Roost" published in SD Times in July 2004

MySQL is the #3 database among those polled

QL Server
QOracle
MySaL
DB2 l
Others
Sybase
Postgres
Informix
FileMaker
Pervasive
None 1 1 | |]
SowcesOTWws O 40 20 30 40 S0 60 70 80

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

Tables

A relational table is defined by a fixed set of columns
Columns have built-in or user-defined types (i.e. domains)
Tables can have any number of rows (tuples)

There are no duplicate rows in a table

A column value may be allowed to be NULL

Every table has a primary key

— A key is a minimal set of columns such that the values in these columns
uniquely identify a single row in a table

— A table can have many such keys

— One of these selected by the user is the primary key (the rest are called
candidate or alternate keys)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

4 Domains and Rules

» A domain defines the legal set of values that a column can take
— It can be anonymous: e.g. gender char(1)
— It can be named, e.g. gender Gender
» create domain Gender char(1);

— A named domain can be used in the definition of many columns in different tables
+ Changes to the domain definition are automatically reflected in column definitions

* Columns and domains can have “business rules” that constrain them
Default value (e.g. if no value is provided for city, assume “Heraklio”)
Range of values (e.g. range of ages: 10-90)

List of values (e.g. the allowed color is “green”, “yellow”, “red”)

Case of value (e.g. the value must be in lowercase)

Format of value (e.g. the value must start with the letter “F”)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 23

il A diagrammatic technique for Tables
and its definition in SQL

-- Domain: “Gender”
create distinct type “Gender” as CHAR(1) with
comparisons;
emp_id CHAR(7) <pk> not null -- Table “Employee”
first_name ~ VARCHAR(20) not nul create table d'fmp'oy%eH/iRm ol
, emp_i not null,
date_of_birth DATE <ak> not null “family_name* VARCHAR(30) not null,
gender Gender not null “first_ name “ VARCHAR(20) not null,
phone1 VARCHAR(12) null “ date_of_birth* DATE not null,
phone2 VARCHAR(12) null “ gender” “Gender” not null
constraint “C_gender” check (“gender” in
salary DEC(8,2) null (B M M),
“ phone1” VARCHAR(12),
“ phone2“ VARCHAR(12),
“salary “ DEC(8,2),
primary key (“emp_id"),
unique (“date_of birth”, “family_name”)
);

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 24

Referential Integrity (AkepaioTnTta Avagopwv)

» A foreign key is defined as a set of columns in one table whose values are either
NULL or are required to match the values of the primary key in the same or
another table.

» This primary-to-foreign key correspondence is called the referential integrity.

Employee Department
emp_id CHAR(7) <pk> not null dep_id SMALLINT <pk> not null
family_name VARCHAR(30) <ak> not null dept_name VARCHAR(50) <ak> not null
first_name VARCHAR(20) not null address VARCHAR(120) null
date_of birth DATE <ak> not null T
gender Gender not null
phone1 VARCHAR(12) null dept_id=dept_id
phone2 VARCHAR(12) null Upd(R);Del(N)
salary DEC(8,2) null
dept_id SMALLINT <fk> null
alter table “Employee”
add foreign key “RefToDepartment” (“dept_id”)
references “Department” (“dept_id”)
on delete set null;
U. of Crete, Information Systems Analysis and Desig Yannis Tzitzikas 25

H Referential Integrity

What should happen if a department row is updated or deleted?
Specifically, if dept_id is updated or when a row of department is deleted ?

Upd() -> concerns updates
Del() -> concerns deletions

Declarative referential integrity constraints associated with delete and update operations
+ Upd(R); Del(R)
— Restrict the update or delete information

» Here: do not allow this operation (i.e the update/deletion of a department) if there are
tuples of Employee linked to that department

* Upd(C);Del(C)
— Cascade the operation
* Here: update or delete all linked employees rows
* Upd(N);Del(N)
— Set null
* Here: set dept_id of the linked Employee rows to NULL
* Upd(D); Del(D)
— Set default
» Here: set dept_id of the linked Employee rows to the default value

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 26

Triggers

Declarative referential integrity constraints allow only simple
business rules to be recorded.

A more expressive solution is triggers (standardized in SQL:1999)

A trigger is a small program (e.g. written in an extended SQL) that

is executed automatically (triggered) as a result of a modification

operation on a table on which the trigger has been defined.

— A modification can be any of the SQL modification statements: insert,
update, or delete.

A trigger can be used to implement business rules

— E.g. updates are not allowed in weekends

— After deleting a department all deptlds of the Employee rows (that have the
deleted deptld) should be set to Null.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 27

H Example of Trigger (Sybase)

Internal table

go

create trigger keepdpt

on Department
for delete
as
if @@rowcount =0
return /* avoid firing trigger if no rows affected */

if exists
(select * from Employee, deleted where Employee.dept_id = deleted.dept_id)
begin
print ‘Test for RESTRICT DELETE failed. No deletion’
rollback transaction
return
end
return

This trigger actually implements the Del(R) declarative constraint

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 28

Stored Procedures

system.

commercial DBMS)

cannot be otherwise called.

» Triggers are a special kind of stored procedures
— They trigger themselves on insert, update and delete events on a table, and

« A stored procedure is given a name, can have input and output
parameters, and it is compiled and stored in the database.

It is written in an extended SQL that allows variables, loops,
branches, and assignment statements

« Stored procedures turn a database into an active programming

— Stored procedures (first introduced by Sybase now part of every major

— So for each table we can have at most 3 triggers, while we can have
unlimited number of stored procedures.

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas

29

), Stored Procedures (II)

A client program can call a stored
procedure rather than sending a
complete query to the server.

» Sending a query requires parsing it
and checking its syntax (at the server
side)

» Stored procedures are more efficient
(less network traffic, parsing and
compilation steps are done only once)

» A stored procedure can be exploited by
many clients

SQL query

(from the client application

Stored procedure call

(from the client application

Parse

Validate syntax
and object references

Check authorization gerver
Database

Optimize

Compile

‘—><—

'

Locate procedure
(perhaps in procedure cache)

Check authorization

:

Substitute parameters

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas

30

« See HY360

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas

31

* |s a stored and named SQL query

* This is a very useful feature for
— Providing different perspectives of the data

instead of tables)

— For database security (restring users to the contents of certain views)
— For alleviating the query formulation effort (SQL queries that use views

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas

32

The traditional way to design a relational database is to start from
the Entity-Relationship model.

Below we will review ER model and we will compare it with UML class
diagrams

The Entity-Relationship Model

* Introduction
+ The Entity-Relationship model
. — Entities, Relationships, Attributes,Generalization
+ ER diagrams vs UML Class Diagrams
* Conceptual Database Design (ER Design)

— Documentation for ER Diagrams
* business rules, data dictionary

* ER model => Relational model

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

34

@ | The Entity Relationship Model

» The Entity Relationship (ER) model is a conceptual model for
describing the data requirements for a new information system in
direct and easy to understand graphical notation.

It views the real world as entities and relationships.

» A basic component of the model is the Entity-Relationship diagram
which is used to visually represents data objects.

* ER Model History

— The Entity-Relationship (ER) model was originally proposed by Peter in 1976
[Chen76] as a way to unify the network and relational database views.

— Since Chen wrote his paper the model has been extended and today it is
commonly used for database design

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 35

85 T The Utility of the ER model

For the database designer, the utility of the ER model is:

« it maps well to the relational model. The constructs used in the ER model can
easily be transformed into relational tables.

» itis simple and easy to understand with a minimum of training. Therefore, the
model can be used by the database designer to communicate the design to the
end user.

» In addition, the model can be used as a design plan by the database developer
to implement a data model in a specific database management software.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 36

4 Basic Constructs of ER Model

* Entities

* Relationships

 Attributes entity

relationship
/ / | attribute
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas
Entities
20 Products Orders Invoices

» Entities are the principal data object about which information is to be collected.

* They are usually recognizable concepts, either concrete or abstract, such as
person, places, things, or events which have relevance to the database.

» An entity occurrence (also called an instance) is an individual occurrence of an
entity. An occurrence is analogous to a row in the relational table.

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas

Relationships

Person owns Car
Employee worksFor Project
Person places Order

A Relationship represents an association between two or more entities.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 39

Attributes

» Attributes describe the entity of which they are associated.

» A particular instance of an attribute is a value, e.g. «Yannis» is one value of the
attribute Name.

* The domain of an attribute is the collection of all possible values an attribute can
have. The domain of Name is a character string.

» Attributes can be classified as:
— identifiers

» An identifier (more commonly called key), uniquely identifies an instance of an entity. We
underline them in diagrams

— descriptors

» A descriptor describes a non-unique characteristic of an entity instance.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 40

Different notations for ER diagrams

name Person owns Car -
identity platesNum
Person
address color
Person Gy
Identit: platesNum
name model
address color
Person Coap
Identit owns platesNum
name model
address color

U. of Crete, Information Systems Analysis and Design

(ST Relationship EPI'“" GETID
X Name /
Departmnen: One Many Project
Ceplin | Hanages ¢| EruidiD
I t \
A
Nelationship Altribute
Hame
Mandat ory Optional

Exstence

Yannis Tzitzikas

Existence

A

Multi-valued attribute

U. of Crete, Information Systems Analysis and Design

Composite attribute

Yannis Tzitzikas

Relationships can also have Attributes

name

Person

address

0

owns

dateOfBuy

Car model

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 43
Degree of a relationship
Person OLlES Car degree 2: binary relationship
Supplier degree 3: ternary relationship
consistsOf Recursive relationships
Part componentOf
Slees managerOf

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 44

{ Reminder: Multiplicity Constraints of UML Class Diagrams

Person 0.* employment 0.1 Company
name employee employer name
age i
1 4 hasPresident - stockPrice()

Multiplicity constraints

— how many objects may participate in a given relationship?
— multiplicity indicates lower & upper bounds

* = 0.* =0..0 // no constraint

1 = 1.1 /l mandatory and single-valued association
0.1 // optional single-valued association

1..* /[l mandatory and multi-valued association

— other more general multiplicity constraints
1..11 (for soccer teams)
3..4 (wheels of a car)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

45

4 Multiplicity (or Cardinality) Constraints

(ER vs UML)
Person 0.* employment 0.1 Company
N name employee employer| name
UML age « hasPresident
1 0..1
employee employer
(0,1) (O,N)
ER Person Company
name name
hasPresident
e (0,1) ‘. (1,1)

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas

46

Attributes and Cardinalities

Default cardinality for attributes: (1,1)

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas 47

4 Strong and Weak Entities
(Independent and Dependent Entities)

Flight

(1,N)

BankAccount

(1,N)

has

log

Seat

travel

Transaction [« | Weak entily

0.1 1’1 Passenger

(1,1)

» Strong (or Independent) entity
— does not rely on another entity for identification.

» Weak (or dependent) entity
— relies on another entity (which it is related though a relationship) for identification.

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas 48

Strong and Weak Entities

1,N
Flight () Seat {21 1’1 Passenger

(1.N) (1,1)
travel

Weak entities
+ they do not have their own identifiers

« they can only have partial identifiers, 1.e. attributes that can identify the instances
of the weak entity that are associated with the same instance of the strong entity
(the strong entity is called the «owner» of these instances)

« The identifiers of a weak entity are formed by the identifiers of the strong entity
plus the partial identifiers of the weak entity

» A weak entity can be the owner of other weak entities

* A weak entity can be associated with more than one strong entities (through
different relationships)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 49

| AND/XOR for Relationships

XOR

oraerk

Part * Orders either order a part, or

ﬁ request a service. Not both
@ Service

AND
FilledBy

Shipment .
* For any given order, whenever
there is at least one invoice there
Invoice is also at least one shipment and

vice versa.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 50

Generalization (or specialization) Hierarchies

Vehicle

Car Truck loadCapacity

» Generalization occurs when two or more entities represent categories of the
same real-world object

» A generalization hierarchy is a form of abstraction that specifies that two or more
entities that share common attributes can be generalized into a higher level
entity type called a supertype or generic entity.

* The lower-level of entities become the subtype to the supertype.
» Subtypes are dependent entities.

(Specialization is the dual counterpart of generalization)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 51

Generalization Hierarchies

Account

A

Savings-Account| | Checking-Account

A

[
Standard Gold Senior

» Generalization hierarchies can be nested. That is, a subtype of one hierarchy
can be a supertype of another. The level of nesting is limited only by the
constraint of simplicity.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 52

»H Generalization and Inheritance

(ON) (11) —— pateshium
Person owns Vehicle @

Car Truck loadCapacity

!

* The subtypes inherit
— attributes
— participation in relationship types (with the same cardinality constraints)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 53

i Disjoint and Overlapping Subtypes

Subtypes can be either mutually exclusive (or disjoint), or overlapping (or
inclusive).

« A mutually exclusive category is when an entity instance can be in only one
category.
— A vehicle cannot be automobile and bicycle.
* An overlapping category is when an entity instance may be in two or more
subtypes.
— A student can also be an employee.

Vehicle .- Disjoint Person | .- Overlapping
Automobile | | Bicycle Student || Employee

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 54

Partial vs Total Subtypes

* Partial
— an entity occurrence may not necessarily belong to one subtype

* Total
— every entity occurrence should belong to one subtype

Vehicle Person Person
Nm‘ial and disjoint Nta/ and disjoint }Qﬁa/ and Overlapping
Automobile | | Bicycle Man || Woman Student | | Employee
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 55

Example

Account

--- Total, overlapping

Savings-Account| | Checking-Account

A -- Total, disjoint

Standard Gold Senior

Account

--- Total, overlapping

Savings-Account| | Checking-Account

4 --------------------------------------- Partial, disjoint

Gold Senior BirthDate

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 56

' The ER metamodel (as an E-R Diagram)

CONSTRUCT
Minimum
A T Cardinality
K Name I P
@ ’
GENERALIZATION Basic
CONSTRUCT ATTRIBUTE
Maximum
Cardinality
COMPOSITE
ATTRIBUTE
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

57

ER Diagrams vs UML Class Diagrams

What is the difference between ER diagrams and UML Class
Diagrams?

Class Diagrams are a superset of ER diagrams.
ER diagrams focus only on data, while Class Diagrams go a step
further by allowing modeling the behaviour.

— In the context of database design, these logical operations can be turned
into triggers or stored procedures.

ER diagrams allow N-ary (N>2) relationships
— Class Diagrams mainly comprise binary but n-ary could be used too
ER diagrams allow the specification of identifiers

— class diagrams do not
+ we could however use a stereotype or tagged values to indicate them

Class diagrams allow specifying multiple and dynamic classification

— ER diagrams do not
Class diagrams can have methods and constraints (e.g. pre/post-conditions
expressed in OCL)

- ER diagrams do not

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 59

ER vs UML: Notations

Person C . . \
10N 1_1 plates?\rluem Notice the dlffere_nt
name ways that each kind
of diagram uses for
expressing the same
multiplicity constrairD
!Derson Car
d * | platesNuem
name 1 owns p

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 60

The first ER Diagram

Deparment
Depld
DepName
Address
oN Supplier
g Supld
DpLE St
0-1 Address

Employee Proj_ Work 0-N O-N
Erol .

FirstName | -O-N 0-N__| Project Supp_Part_Proj

LastName Projid [N Supp_Part
MiddleName [0-N 017 Title

YearOfBirth i)
S;;rry | Proj_Manager oN ol consistsOf

0-N

supporter
0-N Part
Emp_Dep PartDescription [—0-N w

QuantityOnHand

1-1
Dependent
FirstName
LastName
YearOfBirth

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 61

The first ER Diagram as UML Class Diagram

Deparment
Depld
DepName -
Ad%ress Supplier
Supld
0.1 Name
Status
Dept_Emp Address
. Proj_Work 1
timePercentage *
Employee . id: Pro_Pro.Project — Y
Empld / Pro_Emp.Employee *\ 1 Sup.p_Part_Pro j
FirstName 1 Pro_Emp Pro fProject|1 * Quantlty
LastName 0.1 - Projid Su id: Sup_Par.Part Supp_Part
MiddleName \/ Title P4 sup_Sup.Supplier
YearOfBirth * Sup_Pro.Project
Salary Proj_Manager *
1
1 \Sup_Par Component

1 -
Quantity
Emp_De
p_Dep Part / id: Com_Par.Part

supporter b -
* PartNo * consistsOf.Part
PartDescription \/
Dependent QuantityOnHand 1 Com_Par
FirstName -
LastName
YearOfBirth

As translated automatically by a
CASE tool (specifically by DB-MAIN)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 62

Some ER Transformations

Ternary to Binary

(1.N)

(1,1) (1,1) (1,N)

(I) Customer © CAB A Account
(0.N)
1
ranc
(V)
(1)
Customer CB Branch BA Account :(

an

(LN) ~(11) (1,1, \ON OK

Customer CA Account AB Branch

1N 1) (1.1 (ON

(M)] [Customer @ Branch
(1.N) CB (O,N)
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 64

| Resolving Many-to-Many Relationships

(1.N) (O.N) :
Employee Project

1,N 1,1 1,1
Employee (T.N) EA (1.1) Assignment() AP (0.N)

Project

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 65

| Eliminate redundant relationships

* A redundant relationship is a relationship between two entities that is equivalent
in meaning to another relationship between those same two entities that may
pass through an intermediate entity.

1N 1) (1,1 (ON
["Customer | @ @ Branch

(1.N)

(O.N)

CB

1,N 1) (1,1 (ON
Customer |- G Acoount |- 48 >

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 66

Conceptual Database Design

d Conceptual Database Design
(ER Diagram Design)

Questions
* What are the entities and relationships in the enterprise?

What information about these entities and relationships should we
store in the database?

» What are the integrity constraints or business rules that hold?

» There is no standard process for doing so.

« Some methodologies propose a staged development process
— first model entities and relationships
— then key attributes,
— finally non-key attributes

» Other experts argue that in practice, using a phased approach is impractical
because it requires too many meetings with the end-users

The OO Analysis and Design methodology (on which this course focuses)

has given us one (use cases-> reqs gathering and determination, domain class diagrams,...)
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

68

| Documentation of an ER Diagram

In many cases the diagram is not enough
We complement it with

+ documentation that describes the properties of the data that cannot be expressed using
the constructs of the model

* A widely-used documentation concept for conceptual schemas is the business rule.

A business rule can be:

» the description of a concept relevant to the application (also known as a business object)
* an integrity constraint on the data of the application

* aderivation rule, whereby information can be derived from other information

The Data Dictionary

« Comprises two tables: the first describes the entities; We have already
the second the relationships seen OCL
* Business rules that describe constraints
— <concept> must/mustnot <expression on concepts>
» Business rules that describe derivations
— <concept> is obtained by <operation on concepts> over Class Diagrams

which is a formal language
for expressing all these

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 69

From an ER model
to a Relational Database Schema

ER Diagram

L I]
\

\

Tables |¢|Tf||‘||“_"|

Entities and Relationships must be converted so they can be stored in tables

H ER=>Relational (1)

 Entity E=>Table T
— single-valued attributes of E => attributes of T
— identifier attributes => candidate keys of T
« A multi-valued attribute of E => Table T
— attributes of T: identifier of E plus the multi-valued attribute

AT personid
1 1
Person Person(personld, name, city, street,number)
Hobbies(personld, hobby)
hobbies
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 71

H ER->Relational (2)

* M-N Relationship R => Table T

— T contains all identifier attributes of the entities that participate in R
— T also contains the attributes of R

percent
personld @

(1.N) (O,N)

name Employee works Project

Employee(personld, name)
Project(projNum, title)
Works(personld, projNum,percent)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 72

* N-1 Relationship between E1 and E2 => no new table
— we add to the table of E2 the key of E1 (foreign key)

— if the participation of E2 is (1,1) and not (1,0) then this attribute cannot have
null values

Car

Person

Person(personld, name)
Car(plates, color, personld, dateOfBuy) // personld: foreign key

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 73

R=>Relational (4)

* 1-1 Relationship between E1 and E2 => no new table

— 1f(0,1) (0,1) we add to one of the tables that correspond to E1 or E2 the key of the
other.

Woman

el
marriedTo

Man(mld, mName,wld) // wid: foreigh key
Woman(wld, wName)

Equivalent alternatives

Man(mld, mName)
Woman(wld, wName, mld) // mid: foreigh key

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 74

H ER->Relational (5)

* 1-1 Relationship between E1 and E2 => no new table
— if (1,1)(1,1) then both tables can be combined into one

WinAccount

Student(studld, name, username, password)

Equivalent alternatives

WinAccount(username, password, studld, name)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 75

I8 ER=>Relational (all in one)

Entity E=>Table T
— single-valued attributes => attributes of relation

— identifier attributes => candidate keys of the relations

« A multi-valued attribute of E => Table T
— attributes of T: identifier of E plus the multi-valued attribute

* M-N Relationship R => Table T
— T contains all identifier attributes of the entities that participate in R
— T also contains the attributes of R

* N-1 Relationship between E1 and E2 => no new table

— we add to the table of E2 the key of E1 (foreign key)

— if the participation of E2 is (1,1) and not (1,0) then this attribute cannot have null
values

* 1-1 Relationship between E1 and E2 => no new table

— 1f(0,1) (0,1) we add to one of the tables that correspond to E1 or E2 the key of the
other. we add to the table of E2 the key of E1 (foreign key)

— if (1,1)(1,1) then both tables can be combined into one

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 76

4 How to map generalization/specialization hierarchies to the
relational model?

Recall the Lecture about
“Class and Method Design:
How to eliminate inheritance”

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 7

| Class and Method Design>Eliminating Inheritance>
Method 1: Flattening

Assuming sA, sB and sC are abstract

sA sB sC o1 s
a1 a3 a7 a o
a2 a4 a8 a2 a2
\/\/ a3 a3
4
i Cc2 :5 ag
a

ab ad5 a6 a6

ab ab

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 78

Class and Method Design>Eliminating Inheritance>
Method 1b: Flattening all in one table

« If the subtypes are disjoint

» Create one table with all attributes
» Define an extra attribute to discriminate the subtype

ABC

B C
a1l a1l
a2 a2

method 1 a3 a5
a4 ab
A
a1l
a2
B c method 1b
a3 a5 Assuming B,C are disjoint
a4 ab

U. of Crete, Information Systems Analysis and Design

al
a2
a3
a4
ab
ab
BorC

Yannis Tzitzikas

79

4 Class and Method Design>Eliminating Inheritance>
Method 1c: Flattening all in one table

» If the subtypes are not disjoint

» Create one table with all attributes
» Define an extra flag attribute for each subtype

B C

a1l a1l

a2 a2

a3 a5

a4 ab

ethod 1b
Assuming B,C are disjoint

ABC

a1l
a2
a3
a4
ab
a6

BorC

ABC

method 1
A
al
a2
B C
a3 ad
a4 a6

U. of Crete, Information Systems Analysis and Design

method 1c

Assuming B,C are not disjoint

Yannis Tzitzikas

A 4

al
a2
a3
a4
ad
a6
isB
isC

80

Class and Method Design>Eliminating Inheritance
Method 2: Convert all IsA-links to Associations

Assuming sA, sB and sC are abstract
SA SC
sA sB
sC 1] a1 a7 |1
al a3 a7 a2 as
~ 7 "~ Ct sB C2
c1 Cc2 | a5 [0.1 1.1] a3 [1.1 0.1 a5 |!
a5 a5 ab a4 a6
ab ab A
{XORY}
Assuming sA, sB and sC are concrete
sA sC
sA sB sC 1 y
al a3 a7 a2 a7 1
a2 a4 a8 2 a8
T~ T~ — C1 sB c2
C1 C2
0..1 a5 (0.1 1.1 a3 [1.1 0.1] a5 |01
ab a6 TXOR]
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 81

From a Class Diagram
to a Relational Database Schema

class diagram | ’\ll 1L L]

\

Tables |‘|Tf||‘||“_"|

Objects must be converted so they can be stored in tables

M8 Class Diagram => Relational Model

diagram to a Relational Schema.

be turned into triggers or stored procedures.

» The structural part of the class diagram can be mapped to a relational schema
by employing the techniques that we described earlier for mapping an ER

« Some part of the behaviour of the class diagram (e.g. some operations) could

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas

83

{ Class Diagram => Relational Model

 However UML class diagrams define the data structures required by the entire
application. Not every class of the class diagram needs persistent storage.

we have to identify the classes that need persistence
we can mark those classes (e.g. using a stereotype)
we can create a class diagram that contains only these
we can mark the identifiers (keys) of those classes (e.g. using a stereotype)

Person

<<db>>

Person

y For permanent
| storage

N\

[
\ [

idNum
firstName
lastName
dateOfBirth
/age

sex

<<pk>>

idNum
firstName
lastName
dateOfBirth
sex

Class diagram

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas

84

E.g. see

— http://Iwww.sparxsystems.com.au/resources/uml_datamodel.html
— http://www.agiledata.org/essays/umlDataModelingProfile.htmI#RFP

OMG (Object
Management Group)
issued an RFP for an
official UML Data
Modeling Profile in
December 2005

http://www.omg.org/cgi-
bin/doc?ab/05-12-
02

A UML profile can be used to support the modelling of relational databases in UML. It can
include extensions for tables, data base schema, table keys, triggers and constraints.

Employee Salary
{access rights = HR}
- rEmployes_POID: CHAR[1E) ==P K== <= Surrogate=> 1 e 1# -
- Employee_Number: INT24 ==AkK== [key = AK-1} Salary_POI0: CHAR[1E] =<FP kK==
e Giwven_MName: WARCHAR[Z0) Employee_FOI0: CHAR[16] ==<FH==
) Middle_Name: ¥ARCHAR{30) Amourt: FLOAT
H Surname: YARCHAR[40) Start_Date: DATE
H Preferred_Name: YARCHAR[40] 1 End_Date: DATE
0 Start_Date: DATE .
\ Social_Security_Number: CHAR[10] 2<AK== [key = AK-2] ==
B _ Fh
. 13 ~ h-‘ one
e i . n 1.* | Phone_POID: CHAR[1E] 2=Pk==
|Ermployeet 3 ‘\‘ Employee_POID: CHAR[16] ==FK==
==Indesx== H IEmploy=es o Usage_Type_POID: CHAR[1E) =<FkK==
H ==indax== e Format_Type_POID: CHAR[16] <=FK==
i N - | Phone_Number: INT24
') s
IEmployesZ? L L) C
<=Index== dn
WEmployee

Employss_Humber: INT24

U. of Crete, Information Systems Analysis and [Cepyright 20022006 Scott W. Ambler

<<View>> {read onlyr}

Employee_Mumber: INT24 {ordered by}
Full_Name: VARCHAR[100]
Middle_Name: YARCHAR[20)

Social _Security_Mumber: CHAR[10)
War k_Phone: INT24

Cell_Phone: INT24

HR Database --
Employee Info

Last Updated: 14032003

=<Physical Data Model==

Another Example
source: http://www.sparxsystems.com.au/resources/uml_datamodel.html

Class Diagram

Parent

- QlD: GUID
Mame: Sting
Sex Gender

*

et am e(Sting)
getlame) : Sting
setSexstnng)
getSex): Sthing

+ o+ 4+ o+

m_Addrezs | 0N

1

Address

QID: GUID
City Sting
Phione: String
State: String
Street String

HOH HE B!

getC it Sting
getStreet(): String
setl it String)
zetstreet(String)

+ o+ 4+ o+

AParent dass with unigue 1D (D10
and Mam e and Sexatiributes maps to
& relational table.

==realises==

Relational Schema

thl_Parent

Address0ID: WARCH AR
Mame: WARCHAR

PH QID: WARCHAR
Sex WARCHAR

The &ddres s azsodation from the logical model becomes
5 foreign keyrelationship inthe data model

The Address class in the logical
madel becomes atable in the
data model

==reglizess=

U. of Crete, Information Systems Analysis and Design

thl_Address

City VARCHAR
FK QD WARCH AR
Phone: %ARCH AR
State: VAR CHAR
Strest WVARCHIR

Yannis Tzitzikas

86

(C) Optimizing the object-persistence formats
(assuming the Relational Model)

(C) Optimizing the object-persistence formats

Dimensions of optimization:
» Storage efficiency (minimizing storage space, reduce redundant data)
» Speed of access (minimizing time to retrieve desired information)

A well-formed logical data model does not contain redundancy or many null values
— muplitple possible interpretation of null values may lead to mistakes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

88

Normal forms

There are six: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF
A table that is in a higher NF is also in all lower NFs

A table must be at least in 1NF (i.e. with no structured or multi-
valued columns).

A table in a low NF can exhibit so-called update anomalies:
undesirable side effects as a result of a modification operation.

— E.g. if the same information is repeated many times (which may drive to
inconsistencies and storage space redundancies)

We can normalize a table to a higher NF by splitting it vertically
— (the original table can be reconstructed using join operations)

A db with very frequent updates should be in a high NF
A rather static db can be in a low NF (more efficient, less joins)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

89

8 Functional Dependencies (in brief)

X-Y: t1[X] = t2[X] = t1[Y] = t2[Y]

Armstrong’s axioms

some ftrivial fds: A - A, X—=>Y and Yc X

if K is the primary key of a relation R
then K»>R

— Y X= XY
- X=Y = WX->WY
- XV, Y>Z = X7

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

90

t@ 4 Normal Forms (in brief)

A table is in:
* 1NF: If the domain of each attribute consists of atomic values only
— i.e. structured or multi-valued attributes are not allowed.

« 2NF:ifitis in 1NF and every non-key attribute is functionally dependent on the
whole primary key
— If the primary key consists of more than one attribute and there is a column that
depends on only a part of the primary key, then the table is not in 2NF.
« 3NF:ifitis in 2NF and no nokey attribute is transitively dependent on the
primary key

— If there is an attribute that depends on a non-primary key column then the
table in not in 3NF

More at HY360

+ BCNF: }
* 4NF: based on multivalued dependencies

For practical purposes it is usually adequate to normalize data into 3NF

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 91

d Normal Forms: Examples

Not in 2NF:

Room(buildingNum, roomNum, street, streetNum, citypostalcode, city, numOfSeats)
is not in 2NF because buildingNum — street,...

In 2NF:
Room(buildingNum, roomNum, numOfSeats)
Building(buldingNum, street, streetNum, citypostalcode, city)

Not in 3NF:

Building(buldingNum, street, streetNum, citypostalcode, city)
is not in 3NF because citypostalcode — city

In 3NF:
Building(buldld, street, streetNum,citypostalcode)
CPostCode(citypostalcode, city)
we moved the attribute that depend on non-key attributes to another relation

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 92

] View Integration

L O 300

U. of Crete, Information Systems Analysis and Design

As part of the logical database
design, normalized tables likely have
been created from a number of
separate ER diagrams.

We should merge these tables and
remove any redundancy. This task
is usually called view integration.

Common view integration problems:
— synonyms

« 2 or more attributes have different
name but the same meaning

— homonyms

» 2 or more attributes have the same
name but different meaning

We have to identify such cases and
fix them

Yannis Tzitzikas 93

CASE Tools

specific DBMSs.

SQL code.
integration.

- EA ..

« CASE tools targeting system design and implementation normally
provide a data-modeling technique that targets a vast variety of

» They provide a capability for constructing a combined
logical/physical model and immediately generating the relevant

» They also support a number of functions that are useful for view

» Using them we can save a lot of time

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas 94

ER=>Relational
Example: First ER Diagram

Deparment
Depld
DepName
Address
N Supplier
f Supld
Pept_Emp St
0-1 Address

Employee Proj_Work O-N oN
Empld timePercentage - /
FirstName | -0-N 0-N_| Project . Supp_Part_Proj S P
LastName Projid [0N Quantity

MiddleName [-0-N 0-17] Title

YearOfBirth Proj_Manager i

oo B 0N oN congls';\:sOf
supporter :

0-N Part
PartNo
Emp_Dep PartDescription —0-N \Quantity /
QuantityOnHand
1-1
Dependent

FirstName
LastName
YearOfBirth

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

ER=>Relational
Example: Its translation to the relational model

Supp_Part_Proj Supplier Supp_Part
Proj_Work ID Par 1D_Sup ID_Par
Dependent Employee ID_Emp ID_Pro ,S\ll;ﬂ:g ID_Sup
E;:ttl’\\ll:nn: ID_Emp ID_Pro ID_Sup Status id: ID_Par
X Empld timePercentage Quantity Address ID_Sup
YearOfBirth FirstName id: ID_Pro _ id: 1D_Par id.1D._S ace
Supporter LastName ID_Emp Project ID_Sup fd: 1D_sup <~ |ref: ID_Sup
ref: Supporter MiddleName acc ID_Pro ID_Pro ace acc
acc YearOfBirth ref: ID_Pro Projld acc ref: ID_Par
Salary ref: ID_Emp Title ref: ID_Sup
Deparment ID_Dep[0-1] acc ID_Emp[0-1] acc
1D_Dep id: ID_Emp id:ID_Pro | . |ref:1D_Pro
Depld acc acc acc Part Component
DepName ref: ID_Dep ref: ID_Emp ref: ID_Par ID Par C P_ID_Par
Address acc acc PartNo ID_Par
id: ID_Dep PartDescription Quantity
acc QuantityOnHand id: C_P_ID_Par
id: ID_Par ID_Par
acc acc
ref: ID_Par
acc
ref: C_P_ID_Par

Generated by DB-MAIN

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

ER => SQL DDL

Tables and Constraint Section

Header section

Tables section

-- * Standard SQL generation

* *

-- * Generator date: Nov 8 2004

2005 *

-- Database Section

create database SCHEMA compact;

-- DBSpace Section

*

-- * Generation date: Mon Nov 21 15:12:39

-- Tables Section

create table Component (
C_P_ID_Par char(10) not null,
ID_Par char(10) not null,
Quantity char(1) not null,

constraint ID_Component primary key
(C_P_ID_Par, ID_Par));

create table Deparment (
ID_Dep char(10) not null,
Depld char(1) not null,
DepName char(1) not null,
Address char(1) not null,
constraint ID primary key (ID_Dep));

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 97
y ER => SQL DDL
Index Section
Constraint section Index section
-- Constraints Section -- Index Section
alter table Component add constraint FKconsistsOf te index ID C t
foreign key (ID_Par) create index ID_Componen
references Part; on Component (C_P_ID_Par,
alter table Component add constraint FKCom_Par ID_Par);
foreign key (C_P_ID_Par)
references Part; create index FKconsistsOf
alter table Dependent add constraint FKEmp_Dep on Component (ID_Par);
foreign key (Supporter) -
references Employee; .
alter table Employee add constraint FKDept_Emp create index ID .
foreign key (ID_Dep) on Deparment (ID_Dep);
references Deparment;
alter table Project add constraint FKProj_Manager create index FKEmp_Dep Instructions for the physical
foreign key (ID_Emp) on Dependent (Supporter); phy
references Employee; Data layer of the db
alter ta!)le Proj_Work add constraint FKPro_Pro create index ID
foreign key (ID_Pro) .
references Project; on Employee (ID_Emp);
alter table Proj_Work add constraint FKPro_Emp
foreign key (ID_Emp) create index FKDept_Emp
references Employee; on Employee (ID_Dep);
alter table Supp_Part add constraint FKSup_Sup_1
e) create ndex ID
’ on Part (ID_Par);
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 98

.] ER: Reading and References

+ Systems Analysis and Design with UML Version 2.0 (2nd edition) by A. Dennis, B.
Haley Wixom, D. Tegarden, Wiley, 2005. Chapter 11

+ Requirements Analysis and System Design (2nd edition) by Leszek A. Maciaszek,
Addison Wesley, 2005, Chapter 8

« Slides from
— CS360 University of Crete: HY360 (www.csd.uoc.gr/~hy360)
— University of Texas at Austin (Data Modeling)

* More about the transition “Natural Language Specifications => ER Diagram”
can be found at:

— A. Min Tjoa, Linda Berger: Transformation of Requirement Specifications
Expressed in Natural Language into an EER Model. ER 1993: 206-217

— H. M. Harmain and Robert J. Gaizauskas, CM-Builder: An Automated NL-
Based CASE Tool, Automated Software Engineering", 45-54, 2000

» Database modeling in UML
— For Enterprise Architect:
* see http://www.sparxsystems.com.au/resources/uml_datamodel.html

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

99

