
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 1

ΗΥ351:
Ανάλυση και Σχεδίαση Πληροφοριακών Συστημάτων
Information Systems Analysis and Design

Γιάννης Τζίτζικας

∆ιάλεξη : 14
Ημερομηνία :

OCL: Object Constraint Language
(cont)

HY 351: Ανάλυση και Σχεδίαση Πληροφοριακών Συστημάτων
CS 351: Information Systems Analysis and Design

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 2

Αρχικά και Παραγόμενα Γνωρίσματα
Initial and Derived Attributes

An OCL expression may be used to indicate the initial or derived value of an
attribute or association end.

context Typename::attributeName: Type
init: -- some expression representing the initial value

context Typename::assocRoleName: Type
derive: -- some expression representing the derivation rule

The expression must conform to the result type of the attribute.
If the context is an association end the expression must conform to the classifier at that end

when the multiplicity is at most one, or Set or OrderedSet when the multiplicity may be
more than one. Initial, and derivation expressions may be mixed together after one
context.

Context Person::income: Integer

init: parents.income->sum()*1% -- pocket allowance

derive: if underAge

then parents.income->sum()*1% -- pocket allowance

else job.salary -- income from regular job

endif

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 3

Let Expressions

Sometimes a sub-expression is used more than once in a constraint.
The let expression allows one to define a variable which can be used in the constraint.

context Person inv:
let income : Integer = self.job.salary->sum() in
if isUnemployed then

income < 100
else

income >= 100
endif

A let expression may be included in any kind of OCL expression. It is only known within this
specific expression.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 4

«definition» expressions

The Let expression allows a variable to be used in one OCL expression.
To enable reuse of variables/operations over multiple OCL expressions we can use

the stereotype «definition».

All variables and operations defined in the «definition» constraint are known in the
same context as where any property of the Classifier can be used.

The syntax of the attribute or operation definitions is similar to the Let expression,
but each attribute and operation definition is prefixed with the keyword ’def’.

context Person
def: income : Integer = self.job.salary->sum()
def: nickname : String = ’Little Red Rooster’
def: hasTitle(t : String) : Boolean = self.job->exists(title = t)

The names of the attributes / operations in a let expression may not conflict with the
names of respective attributes/ associationEnds and operations of the Classifier.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 5

Re-typing or casting

In some circumstances, it is desirable to use a property of an object that is defined
on a subtype of the current known type of the object. Because the property is not
defined on the current known type, this results in a type conformance error.

When it is certain that the actual type of the object is the subtype, the object can be
re-typed using the operation oclAsType(OclType). This operation results in the
same object, but the known type is the argument OclType.

When there is an object obj of type Type1 and Type2 ìs a subtype of Type1, then it
is allowed to write:
obj1.oclAsType(Type2) --- evaluates to object with type Type2

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 6

Accessing overridden properties of supertypes

Whenever properties are redefined within a type, the properties of the supertypes can be
accessed using the oclAsType() operation.

Whenever we have a class B as a subtype of class A, and a property p1 of both A and B, we
can write:

context B inv:
self.oclAsType(A).p1 -- accesses the p1 property defined in A
self.p1 -- accesses the p1 property defined in B

In this model fragment there is an ambiguity with the OCL
expression on Dependency:

context Dependency inv:
self.source <> self
This can either mean normal association navigation, which is

inherited from ModelElement, or it might also mean navigation
through the dotted line as an association class. Both possible
navigations use the same role-name, so this is always
ambiguous. Using oclAsType() we can distinguish between
them with:

context Dependency
inv: self.oclAsType(Dependency).source->isEmpty()
inv: self.oclAsType(ModelElement).source->isEmpty()

ModelElement

Dependency

* source

* target

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 7

Predefined properties on all objects

There are several properties that apply to all objects, and are predefined in OCL.

• oclIsTypeOf (t: OclType) : Boolean
– returns true if the type of self and t are the same,e.g.

context Person
inv: self.oclIsTypeOf(Person) -- is true
inv: self.oclIsTypeOf(Company) -- is false

• oclIsKindOf (t: OclType) : Boolean
– The oclsIsTypeOf deals with the direct type of an object. The oclIsKindOf property

determines whether t is either the direct type or one of the supertypes of an object.
• oclInState (s: OclState) : Boolean

– will be discussed later on
• oclIsNew () : Boolean

– It returns true if, used in a postcondition, the object is created during performing the
operation. i.e., it didn’t exist at precondition time.

• oclAsType (t : OclType) : instance of OclType
– we have discussed this already

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 8

.allInstances()

All properties discussed until now in OCL are properties on instances of classes. The types
are either predefined in OCL or defined in the class model. In OCL, it is also possible to
use features defined on the types/classes themselves. These are, for example, the class-
scoped features defined in the class model. Furthermore, several features are predefined
on each type.

A predefined feature on classes, interfaces and enumerations is allInstances, which
results in the Set of all instances of the type in existence at the specific time
when the expression is evaluated.

Example
We want to make sure that all instances of Person have unique names:

context Person
inv: Person.allInstances()->forAll(p1, p2 | p1 <> p2 implies p1.name <> p2.name)

The Person.allInstances() is the set of all persons that exist in the system at the time that the
expression is evaluated and is of type Set(Person).

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 9

Type conformance rules

Type conformance rules:
• Type1 conforms to Type2 when they are identical or when Type1 is a subtype of

Type2 (standard rule for all types).
• Collection(Type1) conforms to Collection(Type2), when Type1 conforms to

Type2. This is also true for Set(Type1)/ Set(Type2), Sequence(Type1)/
Sequence(Type2), Bag(Type1)/Bag(Type2)

• The types Set (X), Bag (X) and Sequence (X) are all subtypes of Collection (X).

Type conformance is transitive: if Type1 conforms to Type2, and Type2 conforms
to Type3, then Type1 conforms to Type3 (standard rule for all types).

For example, if Bicycle and Car are two separate subtypes of Transport:
Set(Bicycle) conforms to Set(Transport)
Set(Bicycle) conforms to Collection(Bicycle)
Set(Bicycle) conforms to Collection(Transport)

However
Set(Bicycle) does not conform to Bag(Bicycle), nor the other way around.

They are both subtypes of Collection(Bicycle) at the same level in the hierarchy.

Use of OCL expressions in UML models
(apart from class diagrams)

Χρήση εκφράσεων OCL στα μοντέλα UML
(πέραν των διαγραμμάτων κλάσεων)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 11

OCL και ∆ιαγράμματα Καταστάσεων
OCL and State Diagrams

• Event:
– if nil then when the task is completed we

continue

• Condition
– logical condition (transition occurs if its

value is True)

– the guards of transitions from a state
must be mutually exclusive so that to
have a unique next state

• Action
– processes that occur quickly and are not

interruptible

Transition labels: Event[Condition]/Action
• all three are optional

IdleActive

OCL expression
An OCL expression acting as
value of a guard is of type
Boolean.
The expression is evaluated at the
moment that the transition
attached to the guard is attempted

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 12

OCL and State Diagrams (II)

Checking

do/ Check item

Dispatching

do/ initiate delivery

DeliveredWaiting

[All items checked && all
items available]

DeliveredItems Received [all items available]

[All items checked &&
some not in stock]

Item Received[some
items not in stock]

[Not all items checked] / get next item

 / get first item

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 13

OCL and State Diagrams (III)
Predefined properties on all objects
oclInState (s : OclState) : Boolean

oclInState (s : OclState) : Boolean

This operation returns true if the object is in the state s.
Values for s are the names of the states in the statemachine(s) attached to the

Classifier of object. For nested states the statenames can be combined using
the double colon.

On StandBy NoPower

Off

Here the values for s can be
– On
– Off
– Off::Standby
– Off::NoPower.

If the classifier of object has the
above associated statemachine
valid OCL expressions are:
– object.oclInState(On)
– object.oclInState(Off)
– object.oclInstate(Off::Standby)
– object.oclInState(Off::NoPower)

If there are multiple statemachines attached to
the object’s classifier, then the statename
can be prefixed with the name of the
statemachine containing the state and the
double colon ‘::’, as with nested states.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 14

OCL και ∆ιαγράμματα Αλληλεπίδρασης
OCL and Interaction Diagrams

:Order careful:
Distributor

regular:
Distributor

: Messenger

dispatch

dispatch

confirm

dispatch

[for each line item]loop

[value>10K]alt

[needsConfirm]opt

[else]

OCL can be used for expressing the conditions under which a message (in a
sequence or communication diagram) is sent

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 15

Ποια εργαλεία CASE υποστηρίζουν την OCL και πως;
Which UML CASE Tools support OCL and how?

• We can attach OCL constraints to our diagrams using an
appropriate stereotype and a dashed line should connect it to its
contextual element

• OCL constraints are exchanged using XMI

• Tools that support OCL
– ArgoUML allows expressing them

– OCL Evaluator (a tool for editing, syntax checking & evaluating OCL)

– Octopus OCL 2.0 Plug-in for Eclipse

– Enterprise Architect
• Allows writing OCL expressions, however they are not actually used to enrich the

model (with constraints that cannot be expressed in the diagrams), but for model
checking. The parser also seems to allow expressions that are not correct.
Overall, OCL support is currently very limited in EA.

Assertions and Programming Languages

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 17

Assertions and Programming Languages

• Assertion techniques (preconditions, postconditions, invariants)

• History of assertion techniques:
– Hoare 1972

– Meyer 97a (he proposed the idea Design by Contract)

• Assertions support in Programming Language:
– Eiffel supports them

– In Java it is also possible (e.g. using JAF, standard from J2SE 1.4)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 18

Techniques for adding Assertion Support in a PL

• Built in
– Syntactic correctness of assertions is checked by the compiler

– The runtime environment performs the runtime assertion checks

• Preprocessing
– Formulate assertions separate from the program or include the assertions as

comments. A preprocessor translates the assertions to program code

– Pros : separation (separation of programmatic logic from contracts)

– Con: the original program code is modified (e.g. the line numbers of compiler errors
do not fit the line numbers of the program)

• Metaprogramming
– Traditionally this is possible only in dynamically typed and interpreted languages

– Programs that have the possibility to reason about themselves have so called
reflective capabilities (Java has a reflection API)

– The main advantage of metaprogramming approaches is that no specialized
preprocessor has to be used but the native compiler. Nevertheless a specialized
runtime environment has to be used to enable assertion checking

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 19

Assertions and Java

• "An assertion is a statement containing a boolean expression that the programmer
believes to be true at the time the statement is executed".

• It is a facility provided within the java programming language to test the correctness or
assumptions made by your program. Assertions are checks provided within the system to
ensure the smooth running of the program.

• Why Assertions?
• Why we need another level of checking when exceptions can do the job?
• Exceptions are primarily used to handle unusual (abnormal) conditions arising during

program execution.
– They do not guarantee smooth or correct execution of the program.

• Assertions are used to specify conditions that a programmer assumes are true.
– If a programmer can swear that the value being passed into a particular method is positive no

matter what a calling client passes, it can be documented using an assertion to state it.
Assertions help state scenarios that ensure the program is running smoothly. Assertions can be
efficient tools to ensure correct execution of a program. They also improve the confidence about
the program.

– We can turn them off

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 20

Assertions and Java

The expression is the one we wish to assert as true.
If the assumption fails, the expression evaluates to be false which
means the assertion failed. In case the expression succeeds the
program continues normally.

assert expression1;Syntax

When an assertion fails the program throws an AssertionError
on to the stack trace.

Examples:
assert i<0;
assert (!myString.equals(""));

Java Assertion Facility (JAF)
(builtin since Java 1.4)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 21

Assertions and Java

Syntax assert expression1 : expression2;

The first argument takes a Boolean expression, while the second expression
would be the resulting action to be taken if the assertion fails. The Expression2
should be a value and can also be a result of executing a function. The compiler
would throw an error if the second expression returns a void value.

When an assertion fails the program throws an AssertionError on to the stack trace.
The program creates an object AssertionError with the return type of
Expression2. The overloaded AssertionError constructor would then convert the
returned data type into String and dump it on the stack trace with a meaningful
message.

Examples:
assert age>0 : "The value of age cannot be negative” +age;
assert ((i/2*23-12)>0):checkArgumentValue();
assert isParameterValid():throw IllegalParameterError();

In the second example the method checkArgumentValue() must return a value

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 22

Assertions and Java

• for the javac compiler to accept code containing assertions, you
must use the -source 1.4 command-line option
– javac -source 1.4 MyClass.java

• By default, assertions are disabled at runtime
– enable assertions at runtime:

• -enableassertions or –ea

– disable assertions at runtime:
• -disableassertions or –da

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 23

OCL Constraints and Java

class Account {

private float balance = 0 ;

public void withdraw(float amount){

assert amount<= balance;

balance = balance - amount;

}

public float getBalance(){

return balance;

}

Context Account:withdraw(amount:Real)

pre: amount <= balance

post: balance = balance@pre - amount

Context Account:getBalance():Real

post: result = balance

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 24

OCL Constraints in Java (2)

class Employee {

public void SetAge(int age){

assert age>0;

this.age = age;

}

}

Context Employee:SetAge (age)

pre: age > 0

Design by contract

class Employee {

public void SetAge(int age) throws ArgumentException {

if (age<=0) {

throw new ArgumentException(“negative age”);

}

this.age = age;

}

}

Defensive Programming

(throwing exceptions)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 25

Example: Rectangle and Square

Rectangle

setWidth(w)

setHeight(h)

getArea()

itsWidth

itsHeight

Square

setWidth(w)

setHeight(h)

class Rectangle {

public:

virtual void setWidth(double w) {itsWidth=w;}

virtual void setHeight(double h){itsHeight=h;}

double getArea() {return itsHeight * itsWidth;}

private:

double itsWidth;

double itsHeight;

};

class Square: public Rectangle {

public:

virtual void setWidth(double w);

virtual void setHeight(double h);

};

void Square::setWidth(double w)

{Rectangle::setWidth(w); Rectangle::setHeight(w); };

void Square::setHeight(double h)

{Rectangle::setWidth(h); Rectangle::setHeight(h); };

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 26

Example: Rectangle and Square (II)

class Rectangle {

public:

virtual void setWidth(double w) {itsWidth=w;}

virtual void setHeight(double h){itsHeight=h;}

double getArea() {return itsHeight * itsWidth;}

private:

double itsWidth;

double itsHeight;

};

class Square: public Rectangle {

public:

virtual void setWidth(double w);

virtual void setHeight(double h);

};

void Square::setWidth(double w)

{Rectangle::setWidth(w); Rectangle::setHeight(w); };

void Square::setHeight(double h)

{Rectangle::setWidth(h); Rectangle::setHeight(h); };

void g(Rectangle* r)

{

r->setWidth(5);

r->setHeight(4);

assert(r->getArea()==20);

}

It will function correctly if r is a rectangle.

It will not function correctly if r is a square

The class Square actually violates
an “invariant” of the class
Rectangle,

specifically the width-height
independence.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 27

Example: Rectangle and Square (III)

This could be expressed in the class Rectagle using OCL by

a post condition of setWidth: i.e. the height is the old value of height;

and a post condition of setHeight i.e. the width is the old value of width.

Context Rectangle:setWidth(w)

post: itsWidth = w and

itsHeight = itsHeight@pre

Context Rectangle:setHeight(w)

post: itsHeight = h and

itsWidth = itsWidth@pre

[Meyers]:

When we override a method A with a method B

the precondition of B should be that of A or a weaker condition, and

the postcondition of B should be that of A or a stronger (more strict) condition.

This reveals the problem in our example: the postcondition of Square:setWidth is weaker

(although it should be stronger according to the above rule).

So, if for example we had copied the postconditions of the Rectangle’s methods to the
methods of Square, we would have seen the problem while testing the class Square .

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 28

Where things go

• At the beginning each application was dependent on the hardware
of the machine (machine code programming)

• With compilers (i.e. programming languages) each application can
be compiled for different machines and OSs assuming there is a
compiler for them (one compiler is needed, thousands of
applications exploit it)

• With Java and bytecodes even the compilation is somehow
“bypassed”

• With UML and OCL the specification of an application can be
independent even from the PL

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 29

Χρήσιμες αναφορές

• Που μπορείτε να βρείτε την προδιαγραφή (specification) της UML 2.0 OCL
– http://www.omg.org/cgi-bin/doc?ptc/2005-06-06
– http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UM

L
• Εργαλεία

– OCL Evaluator (a tool for editing, syntax checking & evaluating OCL)
– Octopus OCL 2.0 Plug-in for Eclipse

• Μια διαδικτυακή πύλη για την OCL
– http://www-st.inf.tu-dresden.de/ocl/

• Ένα ενδιαφέρον άρθρο
– J. Warmer and A. Kleppe, “The Object Constraint Language: Precise Modeling with

UML”, Addison-Wesley 1999.
• Άλλες πηγέs

– http://en.wikipedia.org/wiki/Object_Constraint_Language
– http://www.omg.org/docs/ad/99-12-05.pdf
– http://www.brucker.ch/projects/hol-ocl/
– http://www.eclipse.org/articles/Article-EMF-Codegen-with-OCL/article.html (for EMF)

