HY 351: AvdAuon kai 2xediaon NMAnpo@opIakwy 2ucTNUATWY
CS 351: Information Systems Analysis and Design

HY351:
AvaAvuorn kol Dxedioon IIAnpopop LAKOV ZUCTNPATOV
Information Systems Analysis and Design

T'tdvvneg TlitlLROC

ANidreEn 114
Huepopnvia :

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

AidpBpwon

210x01 TnG OCL

[NaTi va xpnoiyotroioouue Tnv OCL
Mapouaoiaon Tng OCL

AlaBepaiwoeig kal NAwooeg MNpoypaupartiopyou
— (Assertions and Programming Languages)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

Ti eivar n OCL (Object Constraint Language)?

Mia TutrikA YAwooa (formal language) yia tnv Tpodiaypa®r TTEPIOPITUWV
(constraints) o€ avTIKEIUEVOOTPEPH] JOVTEAQ
Eival dSnAwTikA (declarative) (Trepiypd@el TO 11 avTi TOU TTWC)

Eival yia yA\wooa ue 1utTouc (typed)
— Kai 1o @IAIKR a1t GAAEG TUTTIKEG YAWOOEG

Mepi mepiopiouwyv

« Kdartroliol TePIOPICUOI UTTOPOUV VA EKPEOACTOUV YPAPIKA UE TN
ypa®ikr YAwooa UML (11.X. N TTOAATTAGTATA TWV CUCXETIOEWV,
partition subclasses, KATT).

* [a katroloug GAAOUG auTd BV €ival EUKOAO/EPIKTO, TT.X.:
— [leplopiopoi TTou EPTTAEKOUV >2 KAQOEIG
— [leplopIOPOI TTOU EUTTAEKOUV TIMEG YVWPIOHATWY (KAl OUVOUQCUOUG QUTWYV)
— lNpouTtroBéocig kar MeTa-ouvOnkeg (pre/post-conditions) Aeitoupyiwv

H OCL pT1ropei va Toug eKppAcel e TUTTIKO TPOTTO

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 3

Mari va ypdagoupe mepilopiopouc o OCL;
Why to write OCL constraints?

[ari va eEKppaoouue pNTwS TETOIOUC TTEPIOPICUOUG;
lati kavouv ta povréAa uag mmo akpifn

» 0Qote va Ta KataAapaivoupue KaAUTEPQ
* 0oTe 01 TTPOYPAUMATIOTEG VA T UAOTTOIOUV (CWOTAH)

* NoTte va ptropoupe va Exoupe pia TUTTIKA eTaAnBeuon (formal validation) Tou
MOVTEAOU TTPIV TNV UAOTTOINON

— Kai dokIyaoieg (tests) yia T ¢daon TG UAOTTOINONG

MTTopoUV va PETAQPAOTOUV o€ «dlaBeRaIWOEIG» (assertions) OTIG YAWOOEG
TTPOYPANPATIONOU
— Mepikd epyaAeia CASE TTpoo@EpPOUV TETOIEG HETAPPAOTIKEG KO ETTAANBEUTIKEG
UTTNPETIEG

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 4

Ta diaypdupaTta kKAdoswyv d¢ev gival TToAU akpiPpn

Person
Company
name employment
name
age .
increaseAge() hire(p:Person)
fire(p:Person)

* Mropei évag aviAIKog va gpyaoTei o€ uia eTaipia;
» Mrropei pia etaipia va mpooAdBer éva drouo 1ou gival RN epyaldouevos 1ng;

To mapamravw SIaypauua dev Uag arroTpETTEl TITTOTA QTTO TA TTAPATTAVW

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

Ta diaypdpparta KAdoswy dev eival ToAU akpiph (II)

Person Company
name employment name
age hire(p:Person)
increaseAge() fire(p:Person)
' promote(p,incr)
Emploilment
salary
startDate
endDate

* Mrropei éva TTpOowTITO va apxioel va epyacleral mpiv 1n yéEvvnon Tou;

» Mrmopei pia mpoaywyn va UeIwael To HIoB0 evog epyalouévou;

* Ymapxel KATTOI0 KATWTEPO OPIO OTOUC MICOOUC yia autoucs 1Tou epyalovral atnv
eraipia mmavw amo 10 €n;

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

Ta diaypdpparta kAdoswy dev eival TToAU akpipn (IIT)
.. H omoudaiéTnTa Tn¢ yvwong utropadpou

Empregado Empresa
sobrenome eémprego nome
idade empregue (p)
aumenteldade() fogo(p)
: promova(p,inc)
Emp:rego
stipend
comeceData

termineData

* Oa umropouoare va avamTuéeTe Eva ouoTnua (oTov orroio va gixare AaBer utroywn
TOUG TTPONYOUUEVOUC TTEPIOPICIIOUS) AV Ta dIaypauuaTa KAQOEwWY NTav o€ uia
yAwooa mou d¢ev yvwpilare (r.x. ota lomavika);

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

Ta diaypdppara KAdoswyv dev gival ToAU akpiph (IV)

parent
0.2

Person

name children

age 0.*

parent ETITpemTé dIdypapua

children QVTIKEINEVWV
Y: Person

(object diagram)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

Object Constraint Language (OCL)

« OCLisa formal language used to describe expressions on UML models.

» OCL expressions typically specify invariant conditions that must hold for the
system being modeled.

* They can also specify queries over objects described in a model.

+ OCL is a typed language, so that each OCL expression has a type. To be well
formed, an OCL expression must conform to the type conformance rules of the
language. For example, you cannot compare an Integer with a String.

* When OCL expressions are evaluated, they do not have side effects; i.e. their
evaluation cannot alter the state of the corresponding executing system.

— However, OCL expressions could be used to specify operations / actions that, when
executed, do alter the state of the system.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 9

TTore Th xpnoiyormolouue,
Where to use OCL?

OCL can be used for a number of different purposes:

» To specify invariants on classes and types in the class model

» To describe pre- and post conditions on Operations and Methods

» To specify derivation rules for attributes for any expression over a UML model.
» To describe Guards in State Diagrams

» To specify target (sets) for messages and actions

» To specify type invariant for Stereotypes

* As a query language

UML modelers can use OCL to
» to specify application-specific constraints in their models.

+ to specify queries on the UML model, which are completely programming
language independent

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 10

O1 Kup10TEpOI TUTTOI TTEplopiopwy ThG OCL
The main types of OCL Constraints

* Invariants on classes (avaAAoiwTeg OUVORKES OTIC KAAOEIC)

— OUVONKEG TTOU TTPETTEI VA IKAVOTTOIOUVTAI ATTO OAQ TA OTIYMIOTUTIA MIAG
KAGONG
* [M.x.. salary > 1000 Euro

* pre-conditions on operations (mpo-cuverKeg oTIG AsIToupyieg)
— OUVOAKEG TTOU TTPETTEI VA IKAVOTTOIOUVTAI TIPIV TNV EKTEAEON MIAG AEITOUPYIOG

* [M.x. n Aeitoupyia «ATTOAUCN()» WTTOPEI va EKTEAEDTEI JOVO O€ £vav ATOUO TTOU
£xel AdN TTPoCANPBEi

* post-conditions on operations (ueTa-ouvenKeg aTIg AEITOUpYiEG)

— OUVOAKEG TTOU TTPETTEI VA IKAVOTTOIOUVTAI UETA TNV EKTEAECN MIOG AEIOUTPYIAG

* [M.x. yeta TNV ekTéAeon TG «AvaAnyn(TTood)» TO UTTOAOITTO TOU TPATTECIKOU
AoyapiaouoU TTPETTEI va £XEI MEIWOET KATA «TTOTOY.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 11

TTwc¢ pymopoupe va mpodiaypdyoupe €vav TePIopIoHO;
How we can specify a constraint?

» Declaration of the context of a constraint by referencing the
model element that a constraint applies to

+ Declaration of the type of a constraint (1nv, pre, post)

» Expressing the desired condition by referencing properties of
model elements and using various operations that are supported.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 12

AnAwon Zupeppalopévwy (Zuykeigévwy)
Context Declaration

[Mpoodiopilel TO OTOIXEIO OTO OTTOI0 APOPA O TTEPIOPICHOG
To context pTropei va eivai

— aclass (for invariants)
— an operation (for pre/post-conditions)

Mapadelypua:

Employee

name
age

salary
SetAge(a)
SetSalary(s)

Context Employee inv: self.salary > 1000

Aev gival icoduvapa. MNari;

Context Employee::SetSalary(salary) pre: salary > 1000

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 13

Ovouara kai oxoAia TTepiopIoUWY
Constraint names and comments

Employee Context Employee::SetAge (age)
hame pre: age >0
age
salary Context Employee::SetAge (age)
SetAge(a) pre positive_age : age >0
SetSalary(s) Optional constraint name

Allowing the constraint to be referenced by name.

Context Employee::SetAge (age)
pre positive_age : age > 0
-- the age should always be positive

\ Comment

Everything immediately following the two dashes up to and
including the end of line is part of the comment.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 14

self

Employee Context Employee
name inv: self.salary > 1000 \
age
salary
Context Employee
SetAge(a) i | > 1000
SetSalary(s) inv. salary

> equivalent
In most cases, the keyword self can be dropped
because the context is clear. As an alternative
for self, a different name can be defined playing
the part of self.

Context e: Employee
inv: e.salary > 1000)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

EmiAoyeic (T va avagépoupe aToixeia)
Selectors (how we reference elements)

Person 0.* employment 0.1| Company
name employee employer name
age president .
1 0 stockPrice()
context context
self.age /I returns the age of a particular person

self.employment// returns the employer (company) of a person
self.employer /I as before

self.employment// returns the set of all employees of a company
self.president // returns the singleton with the president of a company
self.stockPrice() // returns the value this method would return

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

Selectors (how we reference elements)

Bank

accountMumber:integer

0.1

0. |customer

Person

izMarried : Boclean

hirthDiate : Date
age - Integer
firstMame : String
lastiame : String
gender - Gender

isUnemployed : Boolzan

income({Date) : Integer

aenumerations
Gender
male
female
manager 0. =
1 managedCompanies ompany
name - String
numberOfEmployees - Integer
enployse employer
N T 0| StockPrice() @ Real
|
vire ! context Company
g1 Job inv: self.manager.isUnemployed = false
hushand | 0.1 title : String
startDate : Date
salary - Integer Because the multiplicity of the role manager is

i one, self.manager is an object of type

. Person. This happens when the multiplicity
Mariage of the association-end has a maximum of

place : Strirg one (“0..1" or “17) .
date : Date

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 17
Selectors
Referencing Association Classes
Person Company
employment
name : name
hire(c, date)
fire(c,date)
: The salary should be > 1000
Employment
salary
startDate
endDate
la 6Aoug Toug epyalouévoug;
Context Person inv: self.employment.salary > 1000 la évav;
lMepioodrepa apydrepa
(auth n ékppaaon O¢v givai
Tavia owaorn).
We use dot and the name of the association class starting with a lowercase letter
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 18

Selectors
Referencing Recursive Associations

Person parent The age of a children should be less than
age 0.2 the age of its parents.
child
0..n Here the name of the association class alone is not
: enough.

We need to distinguish the direction in which the

HasParent association is navigated.
Father-Boolean To make the distinction, the rolename of the direction in
which we want to navigate is added to the association

class name, enclosed in square brackets.

Context Person inv: self.hasParent[parent].age > self.age

self.hasParent.age is invalid

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

19

Selectors
Referencing Recursive Associations
Person Company owned
employment 0n
name . name -
hire(c, date) .
fire(c,date) owner
i 1.1
Employment
salary
startDate Owns
endDate numOfShares

Let c be a company. The name of the company that owns ¢
should be different than the name of c.

Context Company inv: self.owns[owner].name <> self.name

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

20

TMpaeig
Operations

» Boolean Operations

— XOr

« String operations
— concat(s1, s2), toUpper(s),

and Il A e Nil
or v
not Il =
implies /I —>

round()

Nil

if an attribute attr of an object obj
has no value then obj.attr returns
nil

Empty
« Comparison operations —
- <, >,<=,>5, <> ==
* Arithmetic
- +, -, %/, abs(), div, floor(),

if there are no associated objects
to an object obj through an
association assoc then
obj.assoc returns the empty bag

12
<> Empty

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas

21

Avagopd oc amapiOunToU¢ TUTTOUG
Referring to enumerations

* Enumerations

<<enumeration>>
Person JobType
. 1 admin
salary job
programmer
sex
secretary

Context Person inv: self.job==JobType::admin implies self.salary > 10.000

Context Person inv: self.name=="Yannis” implies self.sex::Male

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas

22

2.UMoyég otnv OCL
Collections in OCL

» Allow us to refer to the objects that are referred using associations
(typically in those with upper multiplicity > 1)

Person works Company
age 0,* 0, name
p1: Person c1:Company
1.works
c2.works P

c2:Company

p2: Person
c3:Company

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 23

Collections in OCL (II)

Single navigation of an association results in a Set,
combined navigations in a Bag, and
navigation over associations adorned with {ordered} results in an OrderedSet.

definedBy 3. i
Polygon |@— {orderedy Point

Collection is an abstract type, with the concrete collection types (Set, Sequence,
and Bag) as its subtypes.

Collection

/\

| |
Set Bag | | Sequence

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 24

AVTIKEideva kal 2UAAOYEC
Objects and Collections

Objects

— are instances of classes, including the
predefined ones (e.g. Integer)

+ Sets Collection
— a “set” of objects /N
— example: Set{p1, p2} | |

Set Bag | | Sequence

* Bag

— duplicates allowed

— example: Bag {p1, p1, p1, p2, p1}
Sequence

— is a bag of ordered elements

— example: Sequence {p1, p2, p3, p1} // <p1,
p2, p3, p1>

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 25

TTpaeic oe ZuAAoyég
Collection Operations

The type Collection defines a large number of predefined operations to enable the modeler to
manipulate collections.

As OCL is an expression language, collection operations never change collections (rather than
changing the original collection they project the result into a new one).

* c1->Size() /l number of elements of c1

* c1->count(elem) /I counts the number of occurrences of elem in c1
* c1->includes(elem) Il checks if elem is member of c1

* c1->includesAll(coll) /I checks if coll is contained in c1

+ cl1->excludes(elem) I returns True if elem is not member of in c1

* c1->isEmpty() Il checks if c1={}

« c1->forAll(expr) I returns True if expr is true for all elements of c1

* cl1->exists(expr) Il returns True if expr is true for at least one element of c1
* c1->select (expr) I returns the elements of c1 that satisfy expr

* cl1->reject (expr) /I returns the elements of c¢1 that do not satisfy expr

+ SET OPERATIONS:
— c1->union(c2), c1->intersection(c2), c1-c2

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 26

TTapadeiypara
Collection Operations: Examples

c2.works->forAll{ x | x.age>20 and x.age < 70}
— is False

c2.works->exists{ x | x.age>20 and x.age < 70}
— is True

c2.works->select{ x | x.age>20 and x.age < 70}
— will return {p2}
p1.works->intersection(p2.works)
— will return {c2}

p1.works - p2.works
— will return {c1}

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

p1.works->size() is 2 c2.works p1.works
p1.works->count(c3) is 0 " p1:Person 1-Compan
p1.works->includes(c2) age=18
— is True p2: Person \cZ:ComQany/
. . =30
p1.works->includes(c3) is False s 29T A c3:Company
c2.works->includesAll(c1.works)
— is True
c1.works->includesAll(c2.works)
— is False
c3.works->isEmpty()
— is True
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 27
Collection Operations: Examples (II)
c2.works p1.works
p1: Person c1:Company
age=18
p2: Person \Mpa_ny .
\@/ c3:Company

28

‘Eva avTikeigevo pmopei va avTIHETWTIOTEI WG HOVOoUVoAo
A single object can be treated as a singleton

A single object can be used as a Set as well. It then behaves as if it is a Set
containing the single object. The usage as a set is done through the arrow
followed by a property of Set.

context Company
inv: self.manager->size() = 1

Person 0.* employment 0.1 Company
name employee employer name
age
7 manager 07 stockPrice()

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 29

Select / Reject

The reject operation is available in OCL for convenience, because each reject can
be restated as a select with the negated expression. Therefore, the following two
expressions are identical:

collection->reject(v : Type | boolean-expression-with-v)
collection->select(v : Type | not (boolean-expression-with-v))

The collection of all the employees who are not married is empty:

context Company
inv: self.employee->reject(isMarried)->isEmpty/()

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 30

Collect operation

The select and reject operations always result in a sub-collection of the original collection.

When we want to specify a collection which is derived from some other collection, but which
contains different objects from the original collection (i.e., it is not a sub-collection), we
can use a collect operation.

The collect operation uses the same syntax as the select and reject and is written as one of:
collection->collect(v : Type | expression-with-v)
collection->collect(v | expression-with-v)
collection->collect(expression)
The value of the reject operation is the collection of the results of all the evaluations of
expression-with-v.
An example: specify the collection of birthDates for all employees in the context of a
company. This can be written in the context of a Company object as one of:
self.employee->collect(birthDate)
self.employee->collect(person | person.birthDate)
self.employee->collect(person : Person | person.birthDate)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 31

Collect (2)

Shorthand for Collect

Because navigation through many objects is very common, there is a shorthand
notation for the collect that makes the OCL expressions more readable.

Instead of
self.employee->collect(birthdate)

we can also write:
self.employee.birthdate

In general, when we apply a property to a collection of Objects, then it will
automatically be interpreted as a collect over the members of the collection
with the specified property. For any property name that is defined as a property
on the objects in a collection, the following two expressions are identical:

collection.propertyname
collection->collect(propertyname)

and so are these if the property is parameterized:
collection.propertyname (parl, par2, ...
collection->collect (propertyname(parl, par2, ...))

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 32

Collect (3)

When the source collection is a Set the resulting collection is not a Set but a
Bag.

If the source collection is a Sequence or an OrderedSet, the resulting collection
is a Sequence.

When more than one employee has the same value for birthDate, this value will be an
element of the resulting Bag more than once.

The Bag resulting from the collect operation always has the same size as the original
collection.

It is possible to make a Set from the Bag, by using the asSet property on the Bag.
Example:

self.employee->collect(birthDate)->asSet()

Results in the Set of different birthDates from all employees of a Company

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 33

Examples with Bags and other operations

Person
name employment Company
age n name
income

hire(c, date)
fire(c,date)
increaseAge() context
promote(inc)

« employment.age is a bag
 employment.income is a bag
+ employment.income->asSet() returns all distinct incomes of the employees

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 34

TTapadeiypara pe AvahAoiwTeg 2ZUVONKEG
Examples of Invariants (using collection operations)

Person Compan
employment pany
name
name
age

All persons should have positive age

Context Person inv: self.age >0

All persons that work for a company should be adults

Context Company inv: self.employment->forall(x | x.age > 18)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

35

Examples of Invariants (using collection operations)

A person can be a
manager of only one

company
Person manager manages Company
hame 1.* 0..1
name
age employee employer
0.* 0..*

All companies should have managers that are not employers of other companies

Context Company inv: not (self.manager->exists(x| x.employer->exists(y|y<>self))

Context Company inv: self.manager.employer->forall(x | x = self)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

36

Another example

parent
0.2

Person

name children parent

age 0. children
Y: Person

Context Person
inv: self.parent->excludes(self) and self.children->excludes(self)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 37

context Company

inv: self.employee->forAll(age <= 65)

inv: self.employee->forAll(p | p.age <= 65)

inv: self.employee->forAll(p : Person | p.age <=65)

These invariants evaluate to true if the age property of each employee is less or equal to 65.
The forAll operation has an extended variant in which more then one iterator is used.

Both iterators will iterate over the complete collection.
Effectively this is a forAll on the Cartesian product of the collection with itself.

context Company inv:
self.employee->forAll(e1, e2 : Person | e1 <> e2 implies e1.forename <> e2.forename)

This expression evaluates to true if the forenames of all employees are different.
It is semantically equivalent to:
context Company inv:

self.employee->forAll (e1 | self.employee->forAll (e2 | e1 <> e2 implies e1.forename <>
e2.forename))

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 38

Examples of Constraints (using collection operations)
Pre/Post-Conditions

Person
name employment Company
age name
income
hire(c, date)
fire(c,date)
increaseAge()
promote(inc)
Context Person::hire(c:Company) Context Person::fire(c:Company)
pre: not employment->includes(c) pre: employment->includes(c)
post: employment->includes(c) post: not employment->includes(c)
Context Person::increa e () L —"| @pre: the value of an attribute/association
post: age m before the execution of the operation

N—_—"

Context Person::Promote (inc) post: self.income =income@pre * (1+inc)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 39

When the pre-value of a property evaluates to an object, all further properties that
are accessed of this object are the new values (upon completion of the
operation) of this object.

a.b@pre.c -- takes the old value of property b of a, say object18,
-- and then the new value of ¢ of object18.

a.b@pre.c@pre -- takes the old value of property b of a, say object18
-- and then the old value of ¢ of object18.

The ‘@pre’ postfix is allowed only in OCL expressions that are part of a
Postcondition.

Asking for a current property of an object that has been destroyed during execution of the
operation results in OclUndefined. Also, referring to the previous value of an object that
has been created during execution of the operation results in OclUndefined.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 40

Post-conditions
Result, out-parameters

The reserved word result denotes the result of the operation, if there is one.

Context Person::getincome(d:Date): Integer
post: result = 1000

The right-hand-side of this definition may refer to the operation being defined (i.e., the
definition may be recursive) as long as the recursion is not infinite.

When the operation has no out or in/out parameters (like in this example), then the
type of result is the return type of the operation (here Integer).

When the operation has out or in/out parameters, the return type is a Tuple.

The postcondition for the income operation with an out parameter bonus could be:

Context Person::getincome(d:Date, bonus:Integer): Integer
post: result = Tuple{bonus=300, result=1000}

The return type of operation calls is Tuple(bonus: Integer, result: Integer).

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 41

Post-conditions
Result, out-parameters (2)

Context Person::getincome(d:Date, bonus:Integer): Integer
post: result = Tuple{bonus=300, result=1000}

The out parameters need not be included in the operation call (we have to provide
values only for the in or in/out parameters).

Let Yannis be an object of the class Person, and let d1 be a Date.
Then, Yannis.getincome(d1l) is a valid operation call.

The type of the result of this operation call is Tuple(bonus: Integer, result: Integer).

We can access these values using the names of the out parameters, and the
keyword result, for example:

Yannis.getincome(dl).bonus = 300 and
Yannis. getincome(dl).result = 1000

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas 42

Body: Indicating the result of a query operation

An OCL expression may be used to indicate the result of a query operation.

The expression must conform to the result type of the operation.
Like in the pre/post-conditions, the parameters may be used in the expression.
Pre/post-conditions, and body expressions may be mixed together after one operation

context.
Person
name employment 0.1 Company
age name
income
getCompany ()

Context Person::getCompany():Company
pre: self.employment->size()>0
body: self.employment

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas

43

Body: Indicating the result of a query operation (IT)

Bank wenumerations
Gender
male
accountMumber:Integer female
0..1

D_* |customer

Person o) o C
: 1 managedCompani L)
isMarried : Boclean name - String
isUnemployed : Boolean numberOfEmployees - Integer
birthDate : Date employse employer
age - Integer " 07| stockPrice() : Real
firstName : String 0. B

lastMame : String

T
|
|

gender : Gender |
1

income(Date) : Integer

0.1 Job
husband | 0.1 title : Sfring
startDate : Date
salary - Integer
T
|
Marriage
place : Strirg
dats : Date

Context Person::getCurrentSpouse():Person
pre: self.isMarried = true

body: self.marriage ->select(m| m.ended = false).spouse
U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas

44

(to be continued)

