
1

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 1

ΗΥ351:
Ανάλυση και Σχεδίαση Πληροφοριακών Συστημάτων
Information Systems Analysis and Design

Γιάννης Τζίτζικας

∆ιάλεξη : 17
Ημερομηνία : 24-1-2007
Θέμα :

Σχεδίαση Φυσικής Αρχιτεκτονικής
(Physical Architecture Design)

HY 351: Ανάλυση και Σχεδίαση Πληροφοριακών Συστημάτων
CS 351: Information Systems Analysis and Design

.+ Software + communication

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 2

∆ιάρθρωση

• Τι είναι η Σχεδίαση Φυσικής Αρχιτεκτονικής
• Οι 4 βασικές λειτουργίες ενός Πληροφοριακού Συστήματος
• Διαστωματωμένες Αρχιτεκτονικές Λογισμικού

– Layered Software Architectures
• Αρχιτεκτονικές Λογισμικού

– Client-server, N-tier architectures,Virtual machine
– Service-oriented computing, P2P

• Πρωτόκολλα Επικοινωνίας
• Το σχεδιαστικό μοτίβο MVC

2ο Μέρος (Επόμενο μάθημα):
• Σχετικά Διαγράμματα της UML

– Component and Deployment Diagrams

2

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 3

Από τα Μοντέλα Ανάλυσης στα Μοντέλα Σχεδίασης

Υψηλού επιπέδου
επιχειρηματικές ανάγκες
καταγεγραμμένες στην
Πρόταση Συστήματος

Αναλυτική Καταγραφή
Συγκεκριμένων απαιτήσεων

Καθορισμός
Απαιτήσεων

Μοντελοποίηση

Μοντελοποίηση
Λειτουργική /Δομική/Συμπεριφοράς
(Functional/Structural/Behavioral)

Μοντέλα Σχεδίασης

Αναθεώρηση, Εκλέπτυνση
Μη Λειτ/κές Ααπαιτήσεις

Ανάλυση

Σχεδίαση
• Σχεδίαση Κλάσεων και Μεθόδων
• Σχεδίαση Επιπέδου Διαχείρισης

Δεδομένων
• Σχεδίαση Επικοινωνίας με Χρήστη
• Σχεδίαση Φυσικής Αρχιτεκτονικής

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 4

Τι είναι η Σχεδίαση Φυσικής Αρχιτεκτονικής (ή της αρχιτεκτονικής του συστήματος);
System (or Physical) Architecture Design ?

System Architecture Design comprises plans for
(a) the hardware,
(b) the software,
(c) the communications

for the new application.

3

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 5

The 4 primary software components of a system

All software systems could be divided into 4 basic functions
– Data storage
– Data access logic
– Application logic
– Presentation logic

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 6

∆ιαστρωματωμένα Συστήματα
Layered Systems

• The functionality of the application is
partitioned to a set of layers

• Each layer uses the services of the lower
layers and offers services to the upper layers

• Advantages
– Abstraction during design
– Allow reuse
– Can define standard layer interfaces

• Disadvantages
– Sometimes it is difficult to identify with clarity

the layers.
– Sometimes this architecture is not very

efficient (redundant)

Layer N

Layer N-1

Layer 3

Layer 2

Layer 1

Layering: Διαστρωμάτωση

4

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 7

∆ιαστρωματωμένα Συστήματα: Παραδείγματα
Examples of Layered Systems

The Unix Operating System

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 8

∆ιαστρωματωμένα Συστήματα: Παραδείγματα
Examples of Layered Systems

OSI Network Protocol

5

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 9

∆ιαστρωματωμένη Αρχιτεκονική: Κλειστή vs Ανοικτή
Layered Architectures: Closed vs Open

Closed
– each layer can use services of

the immediately lower layer
– minimizes dependencies

Layer N

Layer N-1

Layer 3
Layer 2

Layer 1
Open

– each layer can use services of
any lower layer

– increased dependencies however
the code can be more compact

Layer N

Layer N-1

Layer 3
Layer 2

Layer 1

Recall the trade-off between understandability and efficiency: increasing the
understandability of a design usually results in inefficiencies, while focusing only on
efficiency usually results in design that is difficult to understand by someone else

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 10

Ενδεικτικό ∆ιάγραμμα Ακολουθίας μιας κλειστής διαστωματωμένης
αρχιτεκτονικής
The form of sequence diagrams in a closed layered architecture

layer5 layer4 layer3 layer2 layer1

6

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 11

Παράδειγμα υλοποίησης μιας Κλειστής ∆ιαστρωματωμένης Αρχιτεκτονικής
Example of implementing a Closed Layered Architecture

public abstract class L1Provider {
public abstract void L1Service();

}

public abstract class L2Provider {
protected L1Provider level1;

public abstract void L2Service();
public void setLowerLayer(L1Provider l1)

{
level1 = l1;

}
}

public abstract class L3Provider {
protected L2Provider level2;

public abstract void L3Service();
public void setLowerLayer(L2Provider l2)

{
level2 = l2;

}
}

public class DataLink extends L1Provider {
public void L1Service() {

println("L1Service doing its job");
}

}
public class Transport extends L2Provider

{
public void L2Service() {

println("L2Service starting its job");
level1.L1Service();
println("L2Service finishing its job");

}
}
public class Session extends L3Provider{

public void L3Service() {
println("L3Service starting its job");
level2.L2Service();
println("L3Service finishing its job");

}
}

public class Network {
public static void main(String args[]) {

DataLink dataLink = new DataLink();
Transport transport = new
Transport();
Session session = new Session();

transport.setLowerLayer(dataLink);
session.setLowerLayer(transport);

session.L3Service();
}

}

EXECUTION RESULT:

L3Service starting its job
L2Service starting its job
L1Service doing its job
L2Service finishing its job
L3Service finishing its job

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 12

Πλήθος στρωμάτων
Number of Layers

Layer 2
Layer 1

Layer 3
Layer 2
Layer 1

Layer 3
Layer 2
Layer 1

Layer 4
Layer 3.a

Layer 2
Layer 1

Layer 4.a
Layer 3.a
Layer 4.a

Layer 3.c
Layer 4.c

7

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 13

Θεωρώντας τα 4 βασικά συστατικά λογισμικού ενός ΠΣ ως στρώματα
Considering the 4 primary software components of an IS as Layers

• Presentation logic
• Application logic
• Data access logic
• Data storage

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Layer 3

Layer 2

Layer 1

Layer 4

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 14

problem domain
classes

DAM classes

Object persistence
classes

RDBMS ORDBMS

• Notice that in this way the problem domain classes remain
unchanged

• We have kept them independent from the underlying database
management system.

• Changing DBMS requires changing only the DAM classes

Υπενθυμιστικό: Σχεδίαση Στρώσης ∆ιαχείρισης ∆εδομένων
Refresher: Data Mgmt Layer Design

Data Storage

Data Access Logic

Application Logic

Presentation LogicUser Interface
classes

8

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 15

Τα 3 κυριότερα εξαρτήματα υλικού ενός συστήματος
The 3 primary hardware components of a system

• Client computers

• Servers

• Network

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 16

Τύποι Αρχιτεκτονικών
Kinds of Architectures

• Client computers

• Servers

• Network

x
Data Storage

Data Access Logic

Application Logic

Presentation Logic

Primary Hardware components Primary Software components

= architectures

According to the distribution of the 4 basic layers to hardware
nodes we can distinguish the following architectures:

(a) Server-based computing
(b) Client-based computing
(c) Client-server-based computing
(d) 3/4/N tiers computing

9

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 17

(a) Server-based Computing

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server Clients/Terminals

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 18

(b) Client-based Computing

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server Clients/Terminals

10

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 19

(c) Client-Server-based Computing (2 Tiers)

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server Clients/Terminals

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 20

(d) 3 tiers based computing

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server Clients/Terminals

11

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 21

(d’) 4 tiers based computing

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server Clients/Terminals

Application Logic
Web server

Some more details about the previous architectures

12

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 23

(a) Server-based Computing

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server Clients/Terminals

Characteristics
• The server does almost everything. The client
is actually a very thin client
[-]: The Server has very high load

•the clients do not contribute to the
computation

[+]: Not so difficult to implement
[+] If platform changes (e.g. OS) we have to

rewrite only the thin client

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 24

(b) Client-based Computing

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server Clients/Terminals

Characteristics
[+] The server has less load
[-] The clients are very heavy (they should be

computationally powerful machines)
[-] sometimes a lot of data have to be

communicated through the network
[-] If we the OS changes then we have to rewrite

the 3 layers of the client
•(in server-based computing we could keep
the server running in the old OS) and we
would need to change only the thin client so
that to run in the new OS

13

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 25

(c) Client-Server-based Computing (2 Tiers)

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server
Clients/Terminals

Characteristics
This is like having a thick client (thin client: if
responsible only for the UI)
[+] The client has less load (comparing to

client-based computing)
[+] The server has less load comparing to

server-based computing
[-] We have to rewrite the application logic if

platform changes
[-] Sometimes a lot of data have to be

communicated through the network
[+] Good overall performance

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 26

Client Server:
Class and Interaction Diagrams

14

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 27

(d) 3 tiers based computing

Data Storage

Data Access L.

Application L.

Presentation L.

Server Clients/Terminals

Characteristics
[+] Good load balancing

the server and the client have less
load

[+] the UI component is independent of
the rest system
•server-based computing has also
this property but in that case the
server has excessive load
• This architecture is suited for
heterogeneous environments

[-] more complex implementation - more
data are transferred through the network

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 28

(d) 3 tiers: Example

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server
Clients/Terminals

Java
AWT

Appl
Views

Control
Objects

Busine
ss

LogicQuery
Mgr

File
Mgmt

DBMS

15

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 29

3-tier

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 30

(d) N-Tiered Client-Server architectures

General Remarks
• Advantages

– Separates processing to better balance load
– The system is more scalable

• Disadvantages
– Higher load on the network
– More difficult to implement and test

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server Clients/Terminals

Application Logic

Web server

16

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 31

Επιλέγοντας Αρχιτεκτονική Λογισμικού
Selecting a Computing Architecture

Server-Based Client-based Client-server

Cost of infrastructure Very high Medium Low

Cost of development Medium Low High

Ease of development Low High Low-medium

Interface capabilities Low High High

Control and security High Low Medium

Scalability Low Medium High

Virtual Machine

17

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 33

Εικονική Μηχανή
Virtual Machine

• It is a form of layered architecture
• It allows using the same API independently of the underlying OS/hardware
• The compiler produces intermediate code (bytecodes in Java) which can be

handled by the virtual machine

Data Storage

Data Access L.

Application L.

Presentation L.

Server Clients/Terminals

Virtual Machine Virtual Machine Virtual Machine

Service-Oriented Computing
Υπηρεσιοστρεφής Υπολογισμός

18

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 35

Υπηρεσιοστρεφής Υπολογισμός
Service-oriented Computing

Software is considered as a set of services
We can have
• service providers
• consumers
• registries (catalogs of available services)

Consumer Provider

Registry

publish servicefind service

request service provide service

SOA: Service Oriented Architecture

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 36

Υπηρεσιοστρεφής Υπολογισμός (2)
Service-oriented Computing (2)

• Based on open standards (SOAP, REST, WSDL, UDDI)
• Data is exchanged using XML

Characteristics
[+] complete separation between
providers & consumers
[+] the same service can be provided
with different characteristics (quality,
price, speed, etc) from different providers
=> competitiveness
[+] open standards
[-] not mature technology, no registries
for business services

Consumer Provider

Registry

publish service
find service

request service provide service

• Web Services
– Data are exchanged in XML (SOAP, REST)
– Data are transferred using HTTP
– The “interface” provider-consumer is described in XML (WSDL)

19

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 37

Υπηρεσιοστρεφής Υπολογισμός (3)
Service-oriented computing (3)

Registry
Service

.

.

Extra Reading
• [1] “Model-driven Web Services

Development“
– http://folk.uio.no/roygr/EEE-2004.pdf

• [2] “From UML to BPEL (Model Driven
Architecture in a Web services world)”
– http://www-

128.ibm.com/developerworks/webservi
ces/library/ws-uml2bpel/

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 38

Service-oriented computing and UML
(Based on [1])

• With UML we can express the contents and behavior of web
services in a more understandable way than WSDL

20

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 39

Service-oriented computing and UML
(Based on [1])

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 40

From UML to BPEL
(Based on [2])

• The Business Process Execution Language for Web Services
(BPEL4WS or BPEL for short) is an XML-based standard for
defining how you can combine Web services to implement
business processes. It builds upon the Web Services Definition
Language (WSDL) and XML Schema Definition (XSD).

• [2] describes a tool which takes processes defined in the Unified
Modeling Language (UML) and generates the corresponding BPEL
and WSDL files to implement that process.

• A UML Profile is used for defining stereotypes relating to Business
Process Execution Language for Web Services. A Mapping is
provided for automatically generating Web services artifacts
(BPEL, WSDL, XSD) from a UML model meeting the profile.

21

∆ιομότιμες Αρχιτεκτονικές
Peer-to-Peer (P2P) architectures

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 42

Peer to Peer

• Pure
– all are equal. No layering. Each peer depends on the others

Peer Peer

System System System

Peer

22

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 43

Peer-to-Peer Architectures

Napster server

peer 1 peer 2

1: register
(user, files) 2: lookup (x)

3: peer 1 has x

4: download docx.mp3

1

1

2

2
2

2

2

3

3

3

3
3

q

Napster-style

Gnutella-style

Napster-style
Napster-style

CAN (Content Addressable Network)

Chord (DHT)

Hybrid (Napster) Decentralized (Gnutella)

Hierarchical (Kazaa)

Πρωτόκολλα Επικοινωνίας
Communication Protocols

23

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 45

Πρωτόκολλα Επικοινωνίας
Communication Protocols

How objects of different layers at different machines can communicate ?

• RPC (Remote Procedure Call):
– can invoke a remote procedure, send results, (RPC is widely supported in

languages such as C, C++)

• RMI (Remote Method Invocation)
– in java (recall www.csd.uoc.gr/~hy252)

• DCOM
– Microsoft’s Distributed Component Object Model

• CORBA (Common Object Request Broker Architecture)
– The object-oriented industry standard by OMG (1995)

• SOAP (Simple Object Access Protocol)
– uses XML to encapsulate messages and data that can be sent from one

process to another

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 46

Communication Protocols
Platform dependent vs Open Standards

• RMI or DCOM are language/operating system specific protocols
– they restrict the design to implementation on certain platforms

• CORBA or SOAP are open standards
– they allow building component-based systems that are not tied to particular

platforms

24

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 47

Case: CORBA

• CORBA separates the interface of a class (the operations it can carry out) from
the implementation of that class.

• The interface can be compiled into a program running on one computer.
• An object instance can be created or accessed by name.
• To the client program it appears to be in memory on the same machine,

however, it may actually be running on another computer.
• When the client program sends it a message to invoke one of its operations, the

message and its parameters are converted into a format that can be sent over
the network (known as marshalling). At the other end the server unmarshals the
data back into a message and parameters and passes it to the implementation
of the target object.

• This object then carries out the operation and, if it returns a value, that value is
marshalled on the server, unmarshalled on the client and finally provided as a
return value to the client program

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 48

CORBA (2)

• CORBA achieves this by means of programs known as ORBs (Object Request
Brokers) that run on each machine.

• The ORBs communicate with each other by means of an Inter-ORB Protocol
(IOP).

• Over the Internet, the protocol used is IIOP (Internet IOP).

ORB ORB
IIOP

internet

25

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 49

CORBA (3)

• To use this facility, the developer must specify the interface (public attributes
and operations) of each class in an Interface Definition Language (IDL).

• The IDL file is then processed by a program that converts the interface to a
series of files in the target language or languages.

Module CretanTourismApplication
{ interface Location

{attribute string locationCode;
attribute string locationName;
void addHotel(in Hotel hotel);
void removeHotel(in string hotelCode);
int numberOfHotels(); };

};

The IDL file for a class Location

• In Java, this program is called IDL2JAVA and
produces
– a file that defines the interface in Java,
– a stub file that provides the link between

the client program and the ORB,
• it implements the interface on the client

and is compiled into the client program
– a file that provides a skeleton for the

implementation of the server
• it implements the interface on the server;

the developer updates this file (provides
the implementation) and it is compiled on
the host

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 50

CORBA (4)
Supporting different PLs, Wrapping legacy systems

• CORBA is known as middleware, as it
acts as an intermediary between clients
and servers.As such it enables the
implementation of a 3 or 4 tier
architecture that isolates the UI and
client programs from the implementation
of classes on one or more servers. Clients/Terminals

Broker

Server

Server

• CORBA also provides interoperability between different languages: a Java
client program can invoke operations on a C++ object that exist on a separate
machine.

• CORBA also makes it possible to encapsulate pre-existing programs (legacy
systems) written in non-object oriented languages by wrapping them in an
interface. To the client it looks like an object, but internally it may be
implemented in a language like COBOL.

26

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 51

CORBA (5)
More advanced features

Systems developed using CORBA can be set up so that the remote objects are
located on a named machine and accessed by name. This is what we need in
the majority of applications.

CORBA also provides a number of more advanced services:

• Services for locating objects by name when it is not known where they are
running.

• Services for locating objects that implement a certain interface and for
interrogating an object to determine its interface (operations, parameter types
and return types) in order to dynamically invoke its operations.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 52

Ιστο-βασισμένες εφαρμογές
Web-based applications

Web Server

Web Browser

Server

Clients/Terminals

HTML pages

http & html

Very static architecture

HTTP (HyperText Transfer Protocol): transfers hypertext documents over
the internet
– HTML (HyperText Markup Language): defines hypertext documents

27

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 53

Web-based applications: Adding .. “dynamism”

Web Server

Web Browser

Server

Clients/TerminalsApplications / files / databases

CGI
CGI (Common Gateway Interface):

CGI scripts are programs (e.g. a
unix shell script or a perl script)
that reside on the web server and
can be invoked by elements of the
web pages

Web Server

Web Browser

Server

Applet

applet

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 54

Web-based applications

Web Server

Web Browser

Server

Clients/TerminalsApplications / files / databases

CGI

Dynamic

• ASP (Active Server Pages)
– limited to Microsoft Platform

• JSP (Java Server Pages)
– JSP is designed to be platform and

server independent, created from a
broader community of tool, server, and
database vendors

alternatives

28

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 55

Web-based applications

• So Web Servers and the Web Browsers become parts of our information
system.

• Here we have to design our layers assuming the Web platform

Web Server

Web Browser

Server

Clients/TerminalsApplications / files / databases

DYNAMIC

Data Storage

Data Access Logic

Application Logic

Presentation Logic

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 56

Servlets

• Servlets are to servers what applets are to browsers.
• Servlets are modules that extend request/response-oriented servers, such as

Java-enabled web servers.
– A servlet might be responsible for taking data in an HTML order-entry form and

applying the business logic used to update a company's order database.
• Servlets can be embedded in many different servers because the servlet API,

which you use to write servlets, assumes nothing about the server's
environment or protocol. Servlets have become most widely used within HTTP
servers; many web servers support Java Servlet technology.

29

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 57

Servlets (II)

Servlets are an effective replacement for CGI scripts.
• They are easier to write and run faster

So we can use servlets to handle HTTP client requests.
• We can have servlets to process data POSTed over HTTPS using an HTML form,

including purchase order or credit card data. A servlet like this could be part of an order-
entry and processing system, working with product and inventory databases, and
perhaps an on-line payment system.

Other Uses for Servlets
• A servlet can handle multiple requests concurrently, and can synchronize requests. This

allows servlets to support systems such as on-line conferencing.
• Servlets can forward requests to other servers and servlets. Thus servlets can be used to

balance load among several servers that mirror the same content, and to partition a
single logical service over several servers, according to task type or organizational
boundaries.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 58

A Simple Servlet (Hello World)

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse
response)

throws IOException, ServletException
{

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<html>");
out.println("<body>");
out.println("<head>");
out.println("<title>Hello World!</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1>Hello World!</h1>");
out.println("</body>");
out.println("</html>");

}
}

30

Pattern
Model-View-Controller (MVC)

Application Logic

Presentation Logic

Σχεδιαστικό Μοτίβο
Model-View-Controller (MVC)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 60

Model-View-Controller (MVC)

• This pattern is used in applications where the UI is very important
• Motivation

– same data may be displayed differently
– display and application must reflect data changes immediately
– UI changes should be easy and even possible at runtime
– Porting the UI to another platform should not affect core application code

• Solution
– Divide application into 3 parts

• Model
• View
• Controller

31

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 61

Model-View-Controller

Model

Responsibilities
-- core application

View

Responsibilities
-- render the model on the screen
-- manage movement and resizing

of the view
-- intercept user events

Controller

Responsibilities
-- synchronize changes
in the model and its views

Model: provides the essential functionality of the application (application logic)
View: supports a particular style of interaction with the user (display output)
Controller: accepts user input in the form of events and synchronizes changes

between the model and its views (user input)

Decoupling achieved: We can:
• have multiple views/controllers for the

same model
• reuse views/controllers for other

models

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 62

MVC: connection with the previous discussion

Data Storage

Data Access L.

Application L.

Presentation L.

Server Clients/Terminals

Model

Controller View

Keypoints
• One central model, many views

(viewers)
• Each view has an associated

controller
• The controller handles updates

from the user of the view
• Changes to the model are

propagated to all the views

Model

Data Storage

View 1

Controller 1

View 2

Controller 2

View 3

Controller 3
Model

Data Storage

View 1 Controller 1 View 2 Controller 2 View 3 Controller 3

32

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 63

Example: The Views of Powerpoint

Slide Sorter View Slide Editing View

Outline View

Yannis TzitzikasLecture : 18
Date : 15-12-2005

HY 351: Ανάλυση και Σχεδίαση Πληροφοριακών Συστημάτων
CS 351: Information Systems Analysis and Design

Physical Architecture Design

University of Crete, Fall 2005

.+ Software + communication

The structure of the model of Powerpoint

Application Presentation Slides Shape* * *

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 64

MVC

• Model
– Core application code

• maintains application state
– Contains a list of observers (view or controller)
– Has a broadcast mechanism to inform views of a change

• View
– displays information to user
– obtains data from model
– each view has a controller

• Controller
– handles input from user as events (keystrokes, mouse clicks and

movements)
– maps each event to proper action on model and/or view

33

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 65

MVC

Controller
User input

device
interaction

View
Display

layout and
interaction

views

Model
Application
state and
behaviour

User input sessions Display OutputView messages

State change notification

Model access
and editing
messages

State change notification

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 66

MVC Example: Text Field

Keystroke
handler

Text
display

Mutable
String

Keyboard Screen

change events

edit text

C V

M

get text

34

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 67

MVC Example: Web Browser

Hyperlink
handler

Rendered
page view

Document
Object
Model
(DOM)

Mouse Screen

change events

load new page

C V

M

get nodes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 68

MVC Example: Database-backed web server

Request
handler

(e.g. servlet)

Web page
generator
(e.g. jsp)

Database

Network Network

update

C V

M

get data

35

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 69

MVC and MV

In many cases, view and controller are
very tightly coupled.

• so instead of MVC we have MV
(Model-View)

• a reusable view manages both
output and input
– also called widgets, components, …

• e.g. scrollbars, buttons, ...

View
User Input

device
Ineraction &

Display
layout and
interaction

views

Model
Application
state and
behaviour

User input
sessions

Display Output

Change
messages

Model access
and editing
messages

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 70

Observer pattern is used to decouple model from views

Model

View A

View B

E.g. graph

E.g. table

observers

model

model

interface Model {
void register(Observer)
void unregister(Observer)
Object get()
void modify()

}
interface Observer {

void update(Event)
}

:Model :Listener

register

modify

get

update

:Model :Listener

register

modify

unregister

update

:Model :Listener

register

modify

modify

update

36

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 71

• How we can depict the Physical Architecture of a
System?

• Is there any standard diagrammatic notation?

=> UML Components and Deployment diagrams
– (next lecture)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 72

Reading and References

• Systems Analysis and Design with UML Version 2.0 (2nd edition) by A. Dennis, B. Haley Wixom,
D. Tegarden, Wiley, 2005. Chapter 13

• Object-Oriented Systems Analysis and Design Using UML (2nd edition) by S. Bennett,
S. McRobb, R. Farmer, McGraw Hil, 2002, Chapter 18

• The Unified Modeling Language User Guide (2nd edition) by G. Booch, J. Rumbaugh, I.
Jacobson, Addison Wesley, 2004

• Slides of: UI Software Architecture, 6.831 (UI Design and Implementation)

37

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 73

ΗΥ351:
Ανάλυση και Σχεδίαση Πληροφοριακών Συστημάτων
Information Systems Analysis and Design

Γιάννης Τζίτζικας

∆ιάλεξη : 18
Ημερομηνία : 24-2-2007
Θέμα :

HY 351: Ανάλυση και Σχεδίαση Πληροφοριακών Συστημάτων
CS 351: Information Systems Analysis and Design

Physical (or Implementation) Diagrams
•UML component diagrams
•UML deployment diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 74

Βασικές ερωτήσεις
Key questions

Ποια πλατφόρμα είναι πιο κατάλληλη για αυτό το πληροφοριακό
σύστημα;

• Πώς να επιλέξουμε το υλικό (hardware);

• Πώς να επιλέξουμε το λογισμικό (software);

• Πώς να επιλέξουμε τη δικτύωση (networking);

• Πώς να εκφράσουμε τη φυσική αρχιτεκτονική (μάθημα 18) του
συστήματος με μια στάνταρτ διαγραμματική μορφή;

Η υπολογιστικές πλατφόρμες αποτελούνται από υλικό, λογισμικό (PLs, DBMSs) και
δικτύωση

38

∆ιαγράμματα Εξαρτημάτων
Component Diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 76

Component Diagrams (διαγράμματα εξαρτημάτων)

Component Diagrams show various components and their dependencies
• Component:

– physical module of code (like package, class, or even file)
• dependency:

– change dependency (e.g. communication dependencies, compilation dependencies)

Συμβολισμοί :

UI

UML 1

Database

dependency

UI

UML 2

Database

ProductList ProductDisplay

Configuration

Purchase

OrderTracking

39

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 77

Τα χαρακτηριστικά ενός εξαρτήματος
The Characteristics of a Component

• a unit of independent deployment (never deployed partially)
• sufficiently documented and self-contained to be “plugged into”

other components by a third-party
• it cannot be distinguished from copies of its own; in any given

application, there will be at most one copy of a particular
component

• it is a replaceable part of a system (can be replaced by another
component that conforms to the same interface)

• it fulfils a clear function and is logically and physically cohesive
• it may be nested in other components

[Szyperski 98, Rumbaugh et al. 99, Maciaszek 2005)]

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 78

Εξαρτήματα
Components

• Components are like classes and packages
– can be connected through interfaces

• Components are about how customers want to relate to
software

• they want to be able to upgrade it like they can upgrade their stereo (in
pieces)

• they want to mix and match pieces from various manufacturers
– reasonable but difficult to satisfy

• So we could define a component as:
– a logical and replaceable part of a system that conforms to and

provides the realization of a set of interfaces
– an independently purchasable and upgradeable piece of

software

40

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 79

Εξαρτήματα και σχετικές έννοιες
Components and related Notions

• Component
– a replaceable part of a system that conforms to and provides the realization of a set of

interfaces
• Interface:

– a collection of operations that specify a service that is provided by or requested from a class
or component

• Port
– a specific window into an encapsulated component accepting messages to and from the

component conforming to specified interfaces
• Part

– (an internal component) the specification of a role that composes part of the implementation
of a component.

• Internal structure
– the implementation of a component by means of a set of parts that are connected together in

a specific way
• Connector:

– a communication relationship between two parts or ports within the context of component

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 80

Εξαρτήματα και ∆ιεπαφές
Components and interfaces

Motion Imaging

required
interface

Provided
interface

Motion Imaging
usage realization

<<interface>>
imageObserver

imageUpdate():Boolean

Motion Imaging

41

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 81

Εξαρτήματα και ∆ιεπαφές (ΙΙ)
Components and interfaces (II)

Client Server

required
interface

Provided
interface

Web page
(client)

Google
web service

*

Client Server*

Multiplicity:
We can have several clients

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 82

Παραδείγματα εξαρτημάτων
Fine-grained Components: Example

We could use component diagrams for
modeling more fine-grained
components (e.g. files).

<<Header>>
Products.h

<<Body>>
Products.cpp

<<Object Code>>
SalesOrder.o

<<Executable>>
Application.exe

<<includes>>

42

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 83

Coarse-grained components: e.g. Layers

Layer 3

Layer 2

Layer 1

Layer 3

Layer 2

Layer 1

Internal structure of component

Layer 3

a b

c d]

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 84

Εσωτερική ∆ομή Εξαρτημάτων
Internal Structure of Components

compile

Compiler

lex:Lexical Analyzer parse:Parser

gen: Code Generator opt:Optimizer[1..3]

part name part type part multiplicity

43

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 85

Παράδειγμα
πηγή:http://odl-skopje.etf.ukim.edu.mk/uml-help/

• Suppose that we need to build up a software for playing a music
from a CD-ROM Drive. A visual programming language might be
used (VisualBasic or Delphi for example). If language supports
multimedia controls, than we can use its components an
reprogramm them if necessary, or we can programm new
components. One possible graphical design for our player might
be:

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 86

• As you can see this UML Music Player needs these controls:
• play stop eject pause fast forward rewind power
• These controls will be realized by buttons, thus we'll have a button performing

these controls. If we look at buttons as separete components, we can draw out a
component UML diagram. This is shown on the following picture:

• All the components shown on the previous diagram belongs to one global
component - Button, but actions they perform are diferent. We must obtain these
actions by programming them.

44

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 87

Ports

Ticket Seller

normal
sales

priority
sales

Ticket Sales

Ticket Sales

port name Interface name

Load Attractions

attractions

charging

Credit Cards

Booking

port

• Ports permit the interfaces of a component to be divided into discrete packets
and used independently

• The externally visible behaviour of the component is the sum of its ports.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 88

Συνδέοντας Εξαρτήματα
Connecting Components

• Components can be connected by wiring together their ports
– connector: a wire between two ports

delegation connector
(connect an external port with the port of a part
component)

direct connector
(more tight coupling)

connector by interfaces

ports

45

In practice, components diagrams are sometimes depicted
in a less formal and more liberal graphical notation

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 90

compile

Compiler

lex:Lexical Analyzer parse:Parser

gen: Code Generator opt:Optimizer[1..3]

Compiler

Lexical Analyzer Parser

Code Generator Optimizer

46

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 91

FASTAXON (functional) architecture

Expression
Builder

Storage Manager

Validity Checker

Nav. Tree
Generator

RDBMS

Designer Object Indexer/
End User

Taxonomy
Editor

Designer

Store taxonomies and algebraic
expressions using a relational
DBMS

Define and update
taxonomies

through a GUI

Check the validity of a
compound term

Derive navigational trees
dynamically

Formulate expressions
using a GUI

MySQL
Apache
Tomcat
Java
JSP
IExlorer

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 92

Knowledge Manager

Ontology
Metadata

Query and Update
Languages

Knowledge
Repository

Access
Services

• Navigation
• Querying

Evolution
Services

• Updates
• Revision

Knowledge Manager

RDF, RDF/S

RQL/RUL

APIs

47

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 93

RDF Suite Architecture

Parser

VRP Internal
RDF Model

Validator

R
D

F
Lo

ad
er

Lo
ad

in
g

R
D

F
Ja

va
 A

PI
s

ICS-VRP

JDBC

Class Property

ORDBMS

D
BM

S
R
D

F
qu

er
y

AP
I

SQ
L3

+
SP

I f
un

ct
io

ns

LIB
C++

p_namedomain range

Artist creates Artifact

c_name

Artist

URI

creates

subcl

Painter

supcl

Artist

subpr

paints

suppr

creates

SubClass SubProperty

source

paints

target

creates

Artist creates

SQL3 SQL3

ICS-RQL Interpreter

Typing

Evaluation

Graph
Constructor

Parser

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 94

DOMENICUS Architecture

Unstructured
data

Structured
data

Logical
pointers

Information model

Semantic network-based Information Repository OS/tool storage

Hypermedia
Applications

Hypermedia
data models/
exchange formats

Presentation
Engine

run-time

Presentation model

API

Conversion
module

48

∆ιαγράμματα Παράταξης
UML Deployment Diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 96

Deployment Diagrams
(διαγράμματα ανάπτυξης/σύνταξης/παράθεσης)

Shows the physical relationship among software & hardware
components in the delivered system

Node:
• computational unit (hardware)

– e.g. PC, sensor, mainframe,
mobile device

Connection (among nodes)
• communication paths over which

the system will interact

notation

notation

49

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 97

Ένα διάγραμμα παράταξης

Clients/TerminalsDB Server Web Server

DB Server Web Server

Client

Client

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 98

Deployment Diagrams> Nodes

• Physical element (with memory and
processor)

• With nodes we can model the
topology of the hardware of a system

laptop

Sales PC

Sales.exe

Backup Server

Sofoklis:CompaqPresar
io1800}

RAM=256MB
speed=X mHz

possible representations

50

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 99

Deployment Diagrams> Connections

kiosk *

console

server RAID farm

10-T Ethernet

RS-232

Connections
– Ethernet, serial line, satellite link
– we can use stereotypes to distinguish them to types

• <<serial line>>
• <<satellite link>>
• ...

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 100

Deployment Diagrams> Connections

Browser Client
Rich Client

{OS=Windows}

Web server
{OS=Solaris}

{web server=apache}
{number deployed =3}

Application Server

LAN/Java RMI

LAN/httpInternet/http

Networking type + protocol

51

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 101

Παριστάνοντας την κατανομή των τεχνουργημάτων
Modeling the Distribution of Artifacts

kiosk *

console

server RAID farm

10-T Ethernet

RS-232

user.exe

admin.exe
config.exe

sadmin.exe
backup.exe

memory-2GB
speed=mHz

Συνδιάζοντας διαγράμματα Εξαρτημάτων και Παράταξης
Combining Component and Deployment Diagrams

52

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 103

Παράδειγμα
πηγή http://odl-skopje.etf.ukim.edu.mk/uml-help/

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 104

Another example:
http://odl-skopje.etf.ukim.edu.mk/uml-help/

• Deployment diagram for ETHERNET

53

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 105

Combining Component and Deployment Diagrams:
Example

Application
Logic

Data Access
Logic

Data Storage

Presentation
Logic

Server

Client

Internet/httpData Storage

Data Access Logic

Application Logic

Presentation Logic

Server
Clients/Terminals

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 106

Combining Component and Deployment Diagrams:
Notes

• If we try to show all the components of a system in deployment
diagrams they are will probably become very large and difficult to
read.

• So we usually depict the key elements
• Alternatively, (in case we want to show everything) we can use a

table to denote artifacts and their locations (e.g. use Excel)

54

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 107

Hardware and Software Specification

• We have to specify the new hardware or software that must be purchased
• Actual acquisition of hardware and software usually left to a purchasing

department -- especially in larger firms

Realities in Infrastructure Design
• Most often the infrastructure will be already in place
• Coordination of infrastructure components is very complex

– The application developer will need to coordinate with infrastructure specialists

Steps in Hardware and Software Specification
• Note hardware in low-level network model to create list of needed hardware
• Describe equipment in as much detail as possible
• Consider whether increased processing and traffic will absorb unused hardware capacity
• Note all software running on each hardware component

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 108

Hardware

• Commercial/Business
– Mainframes, Commerial Minicomputers, Microcomputers (Wintel: Windows on Intel),

Embedded Systems
• Technical/Engineering

– Supercomputers, Workstations and Servers (Sun SPARC), Microcomputers,
Embedded Systems

• Open vs Proprietary
– Proprietary: available by only one vendor (higher prices, low interoperability)
– Open: available from many vendors (better prices, better interoperability)

• Black-Box vs Glass-Box
– Black- box: only the vendor has access to its internals (e.g. bank ATM)
– Glass Box: internals are accessible by the user, may replaceable by other vendor

• Free UNIX derivatives (Linux, BSD) on Intel x86 with source code are glass-box systems

Some distinctions:

55

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 109

∆ικτύωση
Networking

• Local Area Network
– short-distance (one building)

• Backbone
– medium distance (campus)

• Wide Area Network
– long-distance

• Remote Access
– via phone / cable TV/satellite

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 110

∆ικτύωση
Networking

• Ethernet
– 10/100 Mb (1Gb fibre)
– Inexpensive, widely used

• Token Ring
– 4/16 Mb
– Not often used

• ATM (copper)
– 155 Mb (622Mb fibre)
– Expensive, complex,

flexible, high-overhead

LAN
• 100 Mb (fibre) or

Gb Ethernet
– fast, inexpensive,

simple
• FDDI

– Old 100 Mbit
(increasingly
obsolete)

• ATM
– 155 Mb, 622 MB

Backbone Network

• Long-distance line
leased from telephone
companies

• Satellite links sometimes
used

WAN

Remote Access • Accessing a LAN or internet via phone/cable TV service
– work from home, access when travelling, home internet service
– Usually PPP over modem or cable modem

• DSL services

56

Deployment diagrams are usually depicted
in a less formal and more liberal /vivid graphical notation

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 112

Deployment Diagrams: Examples (Fastaxon)

57

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 113

Deployment Diagrams: Examples

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 114

Deployment Diagrams: Examples

58

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 115

Deployment Diagrams: Examples

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 116

Deployment Diagrams: Examples

59

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 117

Deployment Diagrams: Examples

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 118

Deployment: Reading and References

• UML Distilled: A Brief Guide to the Standard Object Modeling Language (3rd Edition) by Martin
Fowler, Addison Wesley, 2004. Chapter 8, Chapter 14 (2nd Edition: Chapter 10)

• The Unified Modeling Language User Guide (2nd edition) by G. Booch, J. Rumbaugh, I.
Jacobson, Addison Wesley, 2004 Chapter 27

• Requirements Analysis and System Design (2nd edition) by Leszek A. Maciaszek, Addison
Wesley, 2005, Chapter 6

• Object-Oriented Systems Analysis and Design Using UML (2nd edition) by S. Bennett, S.
McRobb, R. Farmer, McGraw Hil, 2002 , Chapter 19

• http://www.agilemodeling.com/artifacts/componentDiagram.htm

