HY 351: AvaAuon kai Zxediaon MNMANPOQOPIOKWY ZUCTANATWY
CS 351: Information Systems Analysis and Design

HY351:
AvdAuon kai Zxediaon NMAnpo@opiakwyv ZuoTnHATWY
Information Systems Analysis and Design

2. xe0iaon Puaikhg ApXITEKTOVIKAG
(Physical Architecture Design)

Mavvng TCiTCikag

Aidhe€n 17

Huepopnvia : 24-1-2007 =+ Software + communication

Oéua : mm‘mﬂmm[—
\//

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

AidpBpwon

« T eival n Zxediaon PuCIKAG APXITEKTOVIKAG
* O14 Baoikég Asitoupyieg evog MNAnpo@opiakol ZUcTAPATOG
e AlooTwWPATWPEVEG APXITEKTOVIKEG AOYIOUIKOU
— Layered Software Architectures
* ApXITEKTOVIKEG AOYIOUIKOU
— Client-server, N-tier architectures,Virtual machine
— Service-oriented computing, P2P
* [lpwTtdkoAAa Emikoivwviag
* To oxedlaaTikéd potifo MVC

2° Mépog (Etrépevo padnua):
e ZXETIKA Aloypdupata tng UML
— Component and Deployment Diagrams

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

Ao Ta MovtéAa AvaAuong ota MovtéAa Zxediaong

YwnAou emimédou Kaeop, IoH of/
EMTIXEIPNUATIKES AVAYKES Amairjosgv AvaAutikn Kataypagn
KATOYEYPAUUEVEG OTNV ZUYKEKPIUEVWYV OTTAITATEWY

MpdéTaon ZuoTtruarog

~

MovreAortroinon

AvaAuon

MovreAotroinon
A&iToupyikn /AOHIKA/ZUPTTEPIPOPAG

k(FunctionaI/StructuraI/Behavioral)/

AvaBewpnon, EkAémTuvon
Mn Aeir/kég Aamrairnaeig

2xediaon - - -
» 2xediaon KAdoswv kai MeBodwv
» >xediaon Emimédou Aiaxeipiong
Aedouévwy
» 2xediaon ®uoikng ApXITEKTOVIKAS 7
S — —_—
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 3

"::-’i-. Ti givar n Zxediaoh BuaikAg ApXITEKTOVIKAG (A TG APXITEKTOVIKAG TOU GUOTAUATOC);
& System (or Physical) Architecture Design ?

System Architecture Design comprises plans for
(a) the hardware,
(b) the software,
(c) the communications

for the new application.

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 4

H The 4 primary software components of a system

All software systems could be divided into 4 basic functions
— Data storage
— Data access logic
— Application logic
— Presentation logic

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006)

i AiagoTpwpaTtwpéva ZuoThuaTa
Layered Systems

» The functionality of the application is
partitioned to a set of layers

» Each layer uses the services of the lower

layers and offers services to the upper layers Layer N
+ Advantages Layer N-1
— Abstraction during design
— Allow reuse
—. Can define standard layer interfaces Layer 3
» Disadvantages
— Sometimes it is difficult to identify with clarity Layer 2
the layers.
— Sometimes this architecture is not very Layer 1

efficient (redundant)

Layering: AlooTpwuaTWON

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 6

Aiaotpwpatwpéva Zuothpara: TTapadeiypata
Examples of Layered Systems

The Unix Operating System

Programming
Environment

Electranic

Cormrmuni Text

cation Processing
Infarmation

Additional Management
Utility Program

Yannis Tzitzikas, Fall 2006

U. of Crete, Information Systems Analysis and Design

i/ AlaoTpwpatwpéva ZuoThparta: TTapadeiypara
Examples of Layered Systems

OSI Network Protocol

Application

Presentation

Session

Transport

Routers Network

ICLEWS

Datalink

Data Link

Switches

Hubs Physical

£ 2000 How Stuf! Works

Yannis Tzitzikas. Fall 2006

The Network
layer provides
the essential
internetwork
routing services
needed to send
packets from
sources to
remote
destinations.

U_ of Crete, Information Systems Analysis and Design

| AiaoTpwpatwpévn ApxiTekovikh: KAEIOTA vs AVOIKTH
Layered Architectures: Closed vs Open

] Layer N | | [LayerN \
] Layer N-1 ¥, | [¥ | Layer N-1 l
; ! ;
! L r |
] Layer 3] ; t ayer 3 — }
: H
’ Layer2 0 ‘ Layer 2 1
| v
] Layer1 * | | L |
Closed Open
— each layer can use services of — each layer can use services of
the immediately lower layer any lower layer
— minimizes dependencies — increased dependencies however
the code can be more compact
Recall the trade-off between understandability and efficiency: increasing the
understandability of a design usually results in inefficiencies, while focusing only on
efficiency usually results in design that is difficult to understand by someone else
U_ of Crete. Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 9

% EvdeikTiké Aidypappa AkoAouBiac piag KAEIOTAC SIAoTWHATWHEVNG
IR apxITEKTOVIKAC
The form of sequence diagrams in a closed layered architecture

‘ Iay§r5 ‘ ‘ Iay§r4 ‘ ‘ Iay§r3 ‘ ‘ Iay§r2 ‘ ‘ Iayer1 ‘

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 10

% TMapddeiypa vuhomoinong pacg KAsiothc AiaoTpwpaTwpévng ApXITEKTOVIKAC
Example of implementing a Closed Layered Architecture

public abstract class L1Provider {
public abstract void L1Service();

}

public abstract class L2Provider {
protected L1Provider level1;

public abstract void L2Service();
public void setLowerLayer(L1Provider I1)
{
levell =11;
}
}

public abstract class L3Provider {
protected L2Provider level2;

public abstract void L3Service();
public void setLowerLayer(L2Provider 12)

level2 = 12;
}
}

public class DataLink extends L1Provider {
public void L1Service() {
printin("L1Service doing its job");
}
}
public class Transport extends L2Provider
{
public void L2Service() {
printin("L2Service starting its job");
level1.L1Service();
printin("L2Service finishing its job");
}
}
public class Session extends L3Provider{
public void L3Service() {
printin("L3Service starting its job");
level2.L2Service();
printin("L3Service finishing its job");

public class Network {
public static void main(String args[]) {
DataLink dataLink = new DataLink();
Transport transport = new
Transport();
Session session = new Session();

transport.setLowerLayer(dataLink);
session.setLowerLayer(transport);

session.L3Service();
}
}

EXECUTION RESULT:

L3Service starting its job
L2Service starting its job
L1Service doing its job

L2Service finishing its job
L3Service finishing its job

U_ of Crete. Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 11
i TTAnB0C oTpwpdTwy
Number of Layers
Layer 3
Layer 4 Layer4.a|Layer4.a|Layer4.c
Layer 3 Layer 3.a|Layer 3.a| Layer 3.c
Layer 2 Layer 2
Layer 1 Layer 1
U of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 12

OcwpwvTtac Ta 4 Pacikd ocuoTaTiKA AoyiopikoU evog TTZ we aTpwpuara
Considering the 4 primary software components of an IS as Layers

» Presentation logic | Presentation Logic | | Layer 4 |
* Application logic ‘ Application Logic ‘ | Layer 3 |
+ Data access logic -
} Data Access Logic { | Layer 2 |
« Data storage
’ Data Storage ‘ | Layer 1 |
U_ of Crete. Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 13

8 VrevBuioriko: Zxediaon Ztpwong Aiaxeipiong Asdopévwy
P Refresher: Data Mgmt Layer Design

User nteriace O 00 ‘ Presentation Logic ‘

classes

problem domain | [T ™) [[T] ‘ Application Logic ‘

DAM classes |:| D D D D D D D } Data Access Logic {
Object persist ‘ ; ; : ‘ : ‘ ‘
e persélii: i] i] i] i] i] i] i] i] ’ Data Storage ‘

RDBMS ORDBMS

Notice that in this way the problem domain classes remain
unchanged

We have kept them independent from the underlying database
management system.

Changing DBMS requires changing only the DAM classes

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 14

29 Ta 3 kupioTepa e€apTAHATa UAMKOU VGG OUOTANATOG
¥ The 3 primary hardware components of a system

» Client computers

* Servers

* Network

N =

15

Yannis Tzitzikas, Fall 2006

U. of Crete, Information Systems Analysis and Design

=9 TUTTOI ApXITEKTOVIKWY
¥ Kinds of Architectures

Primary Hardware components Primary Software components

: = ion Logi
. Client computers Presentation Logic

Application Logic

= architectures

» Servers
Data Access Logic

Data Storage

g =
X

¢ Network

According to the distribution of the 4 basic layers to hardware
nodes we can distinguish the following architectures:

(a) Server-based computing
(b) Client-based computing
(
(

c) Client-server-based computing
d) 3/4/N tiers computing

16

Yannis Tzitzikas. Fall 2006

U_ of Crete, Information Systems Analysis and Design

(a) Server-based Computing

‘ Presentation Logic ‘

‘ Application Logic ‘

} Data Access Logic {

’ Data Storage ‘ D

200 uf

m]

Clients/Terminals

Server

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

(b) Client-based Computing

‘ Presentation Logic ‘

‘ Application Logic ‘

} Data Access Logic {

’ Data Storage D

L ==

i, L]

Clients/Terminals

Server

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006

(c) Client-Server-based Computing (2 Tiers)

} Data Access Logic {

’ Data Storage ‘

200 &

‘ Presentation Logic ‘

‘ Application Logic ‘

Clients/Terminals

Server
U. of Crete_Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 19
§ (d) 3 tiers based computing
Presentation Logic
‘ Application Logic
} Data Access Logic {
’ Data Storage ‘ [:]
00 g 200 4]
Server Clients/Terminals
U. of Crete,_Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 20

10

§ (d') 4 tiers based computing

‘ Presentation Logic

‘ Application Logic ‘ ‘ Application Logic ‘

} Data Access Logic {

Web server

|

Data Storage ‘ [:

000 00 uf 00 g
e [N ‘mﬂmﬂm‘ — ‘mﬂﬂm\‘
\/mm e =
Server Clients/Terminals

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 21

Some more details about the previous architectures

11

(a) Server-based Computing

Characteristics

’ Presentation Logic ‘

» The server does almost everything. The client

| Aplication Logic | is actually a very thin client
} Data Access Logic { [-]: The Server has very high load
] Data Storage \ +the clients do not contribute to the
sa computation
% < [+]: Not so difficult to implement
mﬂﬂmﬂmmm/ [+] If platform changes (e.g. OS) we have to
rewrite only the thin client
Server Clients/Terminals

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 23

(b) Client-based Computing

Characteristics

[+] The server has less load
e [-] The clients are very heavy (they should be
. |
computationally powerful machines)

Data Access Logic .
[-] sometimes a lot of data have to be
communicated through the network

[-] If we the OS changes then we have to rewrite

§ < the 3 layers of the client
Hﬂmﬂmnﬂﬂm «(in server-based computing we could keep
Ly the server running in the old OS) and we

Server Clients/Terminals would need to change only the thin client so
that to run in the new OS

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 24

12

5 (c) Client-Server-based Computing (2 Tiers)

Presentation Logic
Application Logic

Data Access Logic
Data Storage

L=

Clients/Terminals

U. of Crete, Information Systems Analysis and Design

Characteristics

This is like having a thick client (thin client: if
responsible only for the Ul)

[+] The client has less load (comparing to
client-based computing)

[+] The server has less load comparing to
server-based computing

[-] We have to rewrite the application logic if
platform changes

[-] Sometimes a lot of data have to be
communicated through the network

[+] Good overall performance

Yannis Tzitzikas, Fall 2006

25

| Client Server:

P Class and Interaction Diagrams

returns Server

result [+runService()

doTask__ |

Client requests
+doTask () sendce
+zendRequest (]

|

|
|
|
sendRequest |
|
|
|

+receiveRequest(]

receiveReguest
- runService

U_ of Crete, Information Systems Analysis and Design

Yannis Tzitzikas. Fall 2006

26

13

S A2

(d) 3 tiers based computing

Characteristics
[+] Good load balancing

Presentation L.
Application L.

Data Access L.
Data Storage
| [P &
Server Clients/Terminals

the server and the client have less
load

[+] the Ul component is independent of
the rest system

*server-based computing has also
this property but in that case the
server has excessive load

* This architecture is suited for
heterogeneous environments

[-] more complex implementation - more

U. of Crete, Information Systems Analysis and Design

data are transferred through the network

Yannis Tzitzikas, Fall 2006

27

(d) 3 tiers: Example

AWT

:}/v[Objects

Views
Ol

]

Mgr

DBMS

File j\[j/ Busssine Egl Control H O Appl j\jé Java
Mgmt . j i
gmt — / Logic]

’ Presentation Logic

|

‘ Application Logic ‘

’ Data Access Logic {

’ Data Storage ‘

200 un

Server

U. of Crete, Information Systems Analysis and Design

%W

[]

|
|m

|e
o
|o

o
Clients/Terminals

Yannis Tzitzikas. Fall 2006

28

14

3-tier

User Interface I

| HTMLGenerator

|
Fresentation Layer

|
Business Logic Layer

ControllerServlet | ReservationHandler DatafccessObject
T T T
web E!Jr_nwser L | |
- |
Business Logic makeRedenatinnidata) !
updateReserationsidatz) g
il R S

Database : Confirmatio !
]
| |

e e et e B == =—
*-1--- | l
o T |

|
Database Layer

Presentatibn Layer

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 29
(d) N-Tiered Client-Server architectures
General Remarks
* Advantages
— Separates processing to better balance load
— The system is more scalable
Disadvantages
— Higher load on the network
— More difficult to implement and test
’ Presentation Logic
| Application Logic | | Application Logic |
Web server
’ Data Access Logic ‘
’ Data Storage ‘
= = =
My~ 1] 19 L]
= —
Server Clients/Terminals
U. of Crete,_Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 30

15

EmAéyovrac ApxiTekTovikin AoyiapikoU
Selecting a Computing Architecture

Server-Based Client-based Client-server
Cost of infrastructure Medium Low
Cost of development Medium Low
Ease of development Low High Low-medium
Interface capabilities High High
Control and security Low Medium
Scalability Low Medium

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2006

31

Virtual Machine

16

8 Eikovikh Mnxavi
¥ Virtual Machine

It is a form of layered architecture

It allows using the same API independently of the underlying OS/hardware
The compiler produces intermediate code (bytecodes in Java) which can be
handled by the virtual machine

Virtual Machine Virtual Machine Virtual Machine

= =]
| A L]
: ==
Server Clients/Terminals
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 33

Service-Oriented Computing
YnrnpeoiooTpepnNc YmoAoyIioHog

17

i YTtnpeoiooTpephc YmoAoyiopdg
Service-oriented Computing

SOA: Service Oriented Architecture

Software is considered as a set of services
We can have

* service providers

e consumers

* registries (catalogs of available services)

fi Registry Provider

Registry e i

5

T
I
I
g | aqserdcelacation — :
|

% % requestSenice T
== e _-_________I _______
request service provide service !
L~ MY~ ! | |
A — | 1 1
Consumer Provider ! ! !
1
U_ of Crete. Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

i YinpeaiooTpephic YmoAoyiopog (2)
P Service-oriented Computing (2)

+ Based on open standards (SOAP, REST, WSDL, UDDI)
» Data is exchanged using XML
- Characteristics
Reﬂ[s"y [+] complete separation between
E publish service providers & consumers
fwe/ﬂﬂm]mﬂ[\ [+] the same service can be provided

= — with different characteristics (quality,

= = price, speed, etc) from different providers

m]m]mm[re:quest service provide service W}mﬂ[| => competitiveness

== — [+] open standards

Consumer Provider o
[-] not mature technology, no registries
for business services

* Web Services
— Data are exchanged in XML (SOAP, REST)
— Data are transferred using HTTP
— The “interface” provider-consumer is described in XML (WSDL)

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006

[l YrtnpeaiooTpephc YmoAoyiopdg (3)
Service-oriented computing (3)

Extra Reading
* [1] “Model-driven Web Services
Development®
— http://ffolk.uio.no/roygr/EEE-2004.pdf
* [2] “From UML to BPEL (Model Driven
Architecture in a Web services world)”
— http://www-
128.ibm.com/developerworks/webservi
ces/library/ws-umli2bpel/

Registry
Service

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 37

i Service-oriented computing and UML
(Based on [1])

+ With UML we can express the contents and behavior of web
services in a more understandable way than WSDL

Model Composite Web Senece

—_— > Workflow |
\ modefing
compositeWeb
Sendce-WSDOL

Discover Web ™
Semnices

|,/ mplement Compesite ™,
i Web Senice |

sy Pubsh Composite ™, -
1 Web Senice 1_3"!,

Figure 1: Steps of model-driven web services development

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 38

19

i Service-oriented computing and UML
(Based on [1])

<typas> <schemaz
=complexType mme— "CreditCard"=

o <element nan
- me=" _ -
<<interface=:> s/-'/.) =element name="expires" t; ate"/= .
BasicWFS s o]

‘// validateRequest™=)
getCapahilitiss() e CreditCard”/==/message>_.
describeFeatureType() - :
getFeature() 5] numEer - sing <operation o

- expires : date { =input m lidateF.equest"/
. o <o ralidateResponse”
T Opy- g/ =/operation
RRESL L I, 7 B
~=-%tan. & =portType na
R =/ <pperation
Ig'l <operation

Y By <operation

= & 14 <pperation
WES =<interface=> = 5

TransactionWFS = n::: A] <pperation name="transactio

— V“ e Py binding PaymeniSOAPBind:

lockFeaturs() i i kS “spap:
transaction() walidate(zard - CreditCard) : boolean L

ou‘.\ FSSO Bmdmg rl,e— "Payment"=

™ 1 “\=binding T
M“‘“‘f?!‘)- . { N [=operati etCapabilit

Y Sz / 4| = ribeFeaturaType"=_..

N, Ay = 3
\ Toee .
\\ / T~ ng=
AN / Bu:’ffrrﬂi{s irilc_e_ ——» =service B
=<BusinessSenice>> | g—" — .

binding: Pa meutSO-\PBmdmg
“soap-ad 7 www . my WebService com"/=
=port name="Tra o WFS_Port”

binding="Transactien WFSS0APBinding"=. ..

MyWehbSenice

Figure 2: Conversion between a UML model and a WSDL document

39

i From UML to BPEL
P (Based on [2])

* The Business Process Execution Language for Web Services

(BPEL4WS or BPEL for short) is an XML-based standard for
defining how you can combine Web services to implement
business processes. It builds upon the Web Services Definition
Language (WSDL) and XML Schema Definition (XSD).

[2] describes a tool which takes processes defined in the Unified

Modeling Language (UML) and generates the corresponding BPEL

and WSDL files to implement that process.

A UML Profile is used for defining stereotypes relating to Business

Process Execution Language for Web Services. A Mapping is
provided for automatically generating Web services artifacts
(BPEL, WSDL, XSD) from a UML model meeting the profile.

40

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006

20

AiopoTIHEC APXITEKTOVIKEC
Peer-to-Peer (P2P) architectures

H{ Peer to Peer

Pure
— all are equal. No layering. Each peer depends on the others

mm]m o
M|~ yZ
Peer Peer Peer
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 42

21

Peer-to-Peer Architectures

Hybrid (Napster) Decentralized (Gnutella)

. .jpster server

=2 L&

3: peer 1 has x
pedl Peer 2

4: download docx.mp3

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, F

TTpwToKoAAa ETikoIvwyviag
Communication Protocols

22

i/ TTowTtokoAAa Emikoivwyviag
¥ Communication Protocols

‘ How objects of different layers at different machines can communicate ?

+ RPC (Remote Procedure Call):

— can invoke a remote procedure, send results, (RPC is widely supported in
languages such as C, C++)

* RMI (Remote Method Invocation)
— injava (recall www.csd.uoc.gr/~hy252)

« DCOM
— Microsoft’s Distributed Component Object Model

+ CORBA (Common Object Request Broker Architecture)
— The object-oriented industry standard by OMG (1995)

+ SOAP (Simple Object Access Protocol)

— uses XML to encapsulate messages and data that can be sent from one
process to another

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 45

@ Communication Protocols
¥ Platform dependent vs Open Standards

* RMI or DCOM are language/operating system specific protocols
— they restrict the design to implementation on certain platforms

+ CORBA or SOAP are open standards
— they allow building component-based systems that are not tied to particular

platforms
U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 46

23

Il Case: CORBA

CORBA separates the interface of a class (the operations it can carry out) from
the implementation of that class.

The interface can be compiled into a program running on one computer.
An object instance can be created or accessed by name.

To the client program it appears to be in memory on the same machine,
however, it may actually be running on another computer.

When the client program sends it a message to invoke one of its operations, the
message and its parameters are converted into a format that can be sent over
the network (known as marshalling). At the other end the server unmarshals the
data back into a message and parameters and passes it to the implementation
of the target object.

This object then carries out the operation and, if it returns a value, that value is
marshalled on the server, unmarshalled on the client and finally provided as a
return value to the client program

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 47

8 corRBA (2)

CORBA achieves this by means of programs known as ORBs (Object Request
Brokers) that run on each machine.

The ORBs communicate with each other by means of an Inter-ORB Protocol
(IOP).
Over the Internet, the protocol used is IIOP (Internet IOP).

IIOP
ORB ORB
[:] internet D
_of Crete,_Information Systems Analysis and Desian Yannis Tzitzikas. Fall 2006 48

24

» To use this facility, the developer must specify the interface (public attributes
and operations) of each class in an Interface Definition Language (IDL).

» The IDL file is then processed by a program that converts the interface to a
series of files in the target language or languages.

* In Java, this program is called IDL2JAVA and
produces

— afile that defines the interface in Java,
— a stub file that provides the link between

The IDL file for a class Location

the client program and the ORB, Module CretanTourismApplication
« it implements the interface on the client { interface Location
and is compiled into the client program {attribute string locationCode;
— afile that provides a skeleton for the il 2l TS
implementation of the server void addHotel(in Hotel hotel);
* it implements the interface on the server; void removeHotel(in string hotelCode);
the developer updates this file (provides] int numberOfHotels(); %
the implementation) and it is compiled on b

the host
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 49

P Supporting different PLs, Wrapping legacy systems

* CORBA is known as middleware, as it = Broker -
acts as an intermediary between clients Im.
and servers.As such it enables the Server -
implementation of a 3 or 4 tier
architecture that isolates the Ul and =]
client programs from the implementation m.
of classes on one or more servers. Server Clients/Terminals

+ CORBA also provides interoperability between different languages: a Java
client program can invoke operations on a C++ object that exist on a separate
machine.

+ CORBA also makes it possible to encapsulate pre-existing programs (legacy
systems) written in non-object oriented languages by wrapping them in an
interface. To the client it looks like an object, but internally it may be
implemented in a language like COBOL.

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 50

A CORBA (5)
¥ More advanced features

Systems developed using CORBA can be set up so that the remote objects are
located on a named machine and accessed by name. This is what we need in
the majority of applications.

CORBA also provides a number of more advanced services:

» Services for locating objects by name when it is not known where they are
running.

+ Services for locating objects that implement a certain interface and for
interrogating an object to determine its interface (operations, parameter types
and return types) in order to dynamically invoke its operations.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

51

91 LoTo-Paciopéveg epappoyEC
P Web-based applications

HTTP (HyperText Transfer Protocol): transfers hypertext documents over
the internet

— HTML (HyperText Markup Language): defines hypertext documents

Web Server D
s

Server m l

[] D00 U0 Clients/Terminals

HTML pages
Very static architecture
U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 52

26

S Web-based applications: Adding .. "dynamism”

CGI (Common Gateway Interface):
CGil scripts are programs (e.g. a
unix shell script or a perl script)
that reside on the web server and
can be invoked by elements of the

Cal

Server

web pages

CIlents/TermmaIs

DDDD

Applications / files / databases

Applet
e o |

<§

Server

applet

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2006 53

§ Web-based applications

alternativV

» ASP (Active Server Pages)

— limited to Microsoft Platform

+ JSP (Java Server Pages)

— JSP is designed to be platform and
server independent, created from a
broader community of tool, server, and
database vendors

Dynamic

Applications / files / databases Clients/Terminals

Yannis Tzitzikas. Fall 2006 54

U_ of Crete, Information Systems Analysis and Design

27

| Web-based applications

S A2

* Here we have to design our layers assuming the Web platform

DYNAMIC

’ Presentation Logic F”/
| Application Logic / s <
erver
} Data Access Logic / %

’ Data Storage

Applications / files / databases Clients/Terminals

* So Web Servers and the Web Browsers become parts of our information

system.
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 55

Servlets

« Servlets are to servers what applets are to browsers.

» Servlets are modules that extend request/response-oriented servers, such as
Java-enabled web servers.

— A servlet might be responsible for taking data in an HTML order-entry form and
applying the business logic used to update a company's order database.

» Servlets can be embedded in many different servers because the serviet API,
which you use to write servlets, assumes nothing about the server's
environment or protocol. Servlets have become most widely used within HTTP
servers; many web servers support Java Servlet technology.

.
Inventory
Database

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 56

28

Servlets (II)

» They are easier to write and run faster

perhaps an on-line payment system.

Other Uses for Servlets

boundaries.

Servlets are an effective replacement for CGI scripts.

So we can use servlets to handle HTTP client requests.

* We can have servlets to process data POSTed over HTTPS using an HTML form,
including purchase order or credit card data. A servlet like this could be part of an order-
entry and processing system, working with product and inventory databases, and

* A servlet can handle multiple requests concurrently, and can synchronize requests. This
allows servlets to support systems such as on-line conferencing.

» Servlets can forward requests to other servers and servlets. Thus servlets can be used to
balance load among several servers that mirror the same content, and to partition a
single logical service over several servers, according to task type or organizational

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2006

Y4

A Simple Servlet (Hello World)

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

response)

{

out.printin("<htm|>");
out.printin("<body>");
out.printin("<head>");

out.printin("</head>");
out.printin("<body>");

out.printin("</body>");
out.printin("</htmI>");

}

public class HelloWorld extends HttpServiet {

public void doGet(HttpServIetRet, HttpServIetRe

throws IOException, ServletException

response.setContentType("text/html");
PrintWriter out = response.getWriter();

out.printin("<title>Hello World!</title>");

out.printin("<h1>Hello World!</h1>");

U_ of Crete, Information Systems Analysis and besiun

Yannis Tzitzikas. Fall 2006

58

29

2 xed1aoTikd MorTipo
Model-View-Controller (MVC)

Pattern
Model-View-Controller (MVC)

Pregentation Ldgi

C

Application Logic

Model-View-Controller (MVC)

* This pattern is used in applications where the Ul is very important

* Motivation
— same data may be displayed differently
— display and application must reflect data changes immediately
— Ul changes should be easy and even possible at runtime
— Porting the Ul to another platform should not affect core application code
Solution
— Divide application into 3 parts
* Model
* View
 Controller

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006

60

30

Model-View-Controller

between the model and its views (user input)

Model: provides the essential functionality of the application (application logic)
View: supports a particular style of interaction with the user (display output)
Controller: accepts user input in the form of events and synchronizes changes

Model

View

Responsibilities
-- core application

Controller

Responsibilities
-- render the model on the screen
-- manage movement and resizing

-- intercept user events

of the view

Responsibilities

-- synchronize changes
in the model and its views

U. of Crete, Information Systems Analysis and Design

Decoupling achieved: We can:
» have multiple views/controllers for the

same model

* reuse views/controllers for other
models

Yannis Tzitzikas, Fall 2006 61

B MVC: connection with the previous discussion

Controller| | View

| Presentation L.

Model Application L.
Data Access L.

Data Storage

non .

Keypoints

* One central model, many views
(viewers)

» Each view has an associated
controller

* The controller handles updates
from the user of the view

+ Changes to the model are

Server Clients/Terminals propagated to all the views
View 1 View 2 View 3
Controller 1 Controller 2| |Controller 3 View 1 [Controller 1| | View 2 |Contro|ler 2| | View 3 |Contro||er 3
Model Model
Data Storage Data Storage
U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 62

31

5 Example: The Views of Powerpoint

Slide Sorter View Slide Editing View

s HY 351: AvaAuon kai Zxediaon MANPoQopIakwy ZUCTNUATWY
CS 351: Information Systems Analysis and Design

Physical Architecture Design

Outline View

g

. + Software + communication [

Lecture : 18 Yannis Tzitzikas
Date :15-12-2005 University of Crete, Fall 2005

The structure of the model of Powerpoint

Application . . Slides }—*{ Shape ‘

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

63

* Model

— Core application code

* maintains application state

— Contains a list of observers (view or controller)

— Has a broadcast mechanism to inform views of a change
* View

— displays information to user

— obtains data from model

— each view has a controller
» Controller

— handles input from user as events (keystrokes, mouse clicks and
movements)

— maps each event to proper action on model and/or view

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006

64

32

View

Controller

User input sessions View messages

User input Display
device !ayout a_nd

. . interaction

interaction views

Model access
and editing

State change notification

Application
state and
behaviour

Display Output

State change notification

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 65
| MVC Example: Text Field
C |4
Keyboard
4 Keystroke
handler
edit text
change events
Mutable
String
M

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 66

33

MVC Example: Web Browser

Mouse

Rendered Screen

page view

Hyperlink
handler

load new page

change events
Document

Object
Model
(DOM)

M

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 67
c "4
Network Request Web page Network
handler generator
(e.g. servlet) (e.g. jsp)
get data
Database

M

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 68

34

/] MvC and Mv

In many cases, view and controller are

very tightly coupled.
» soinstead of MVC we have MV

(Model-View) User input View .

.) User Input Display Output

* areusable view manages both sessions devicz

output and input Ineraction &

— also called widgets, components, ... Display

* e.g. scrollbars, buttons, ... layout and
interaction
views

Model access Change
and editing messages
messages
Model
Application
state and
behaviour
U_ of Crete. Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 69

H Observer pattern is used to decouple model from views

interface Model {

. void register(Observer
iew A |E.g. graph . J) ()
void unregister(Observer)
Object get()

void modify()

}
E.g. table interface Observer {

void update(Event)

}
register register register
M modify modify
update update - update
get unregister modify

U_ of Crete, Information Systems Analysis and Design

Yannis Tzitzikas. Fall 2006 70

» How we can depict the Physical Architecture of a
System?

* Is there any standard diagrammatic notation?

=> UML Components and Deployment diagrams
— (next lecture)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 71

Reading and References

+ Systems Analysis and Design with UML Version 2.0 (2nd edition) by A. Dennis, B. Haley Wixom,
D. Tegarden, Wiley, 2005. Chapter 13

* Object-Oriented Systems Analysis and Design Using UML (2nd edition) by S. Bennett,
S. McRobb, R. Farmer, McGraw Hil, 2002, Chapter 18

* The Unified Modeling Language User Guide (2nd edition) by G. Booch, J. Rumbaugh, I.
Jacobson, Addison Wesley, 2004

» Slides of: Ul Software Architecture, 6.831 (Ul Design and Implementation)

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 72

36

HY 351: AvaAuon kai Zxediaon MNMNANPOQopPIoKWY ZUCTAPATWY
CS 351: Information Systems Analysis and Design

HY351:
AvdAuon kai Zxediaon MAnpo@opIakwy ZUCTNHATWYV
Information Systems Analysis and Design

Physical (or Implementation) Diagrams
‘UML component diagrams
‘UML deployment diagrams | &]

Mavvng TCitCikag

Aidhe€n @18
Huepopnvia : 24-2-2007
Oéua :

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 73

B Baoikéc epwThoeIg
Key questions

H utroAoyioTIKEG TTAAT@OPUEG atroTeAoUvTal atmd UAIKO, Aoyiopiko (PLs, DBMSs) kai
OIKTUWON

loia mAarpdpua eivar mo KardAAnAn yia autd 1o TTANPOQPoOPIAKG
ouoTtnua;

* Tw¢ va emAééoupe 10 UAIKG (hardware);

* [wc¢ va emAééoupe 10 Aoyiouikd (software);

* [w¢ va emAééoupue Tn dikTowon (networking);

* [w¢ va ekppdoouue TN QUAOIKN apXITEKTOVIKN (uaBnua 18) Tou
OUOTAUATOC LIE UId OTAVTAPT IAYPQUUATIK HOPPH;

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 74

Aiaypdppara EEapThudTwy
Component Diagrams

2]

Component Diagrams (Siaypdppara e§apTnpdTwy)

Component Diagrams show various components and their dependencies
+ Component:
— physical module of code (like package, class, or even file)
+ dependency:
— change dependency (e.g. communication dependencies, compilation dependencies)

ZUHBO)\IGUOII : ProductList ProductDisplay
= —
UML 1 UML 2
E Configuration
ul ul

!« dependency —

v

Purchase

= ==

Database Database
% OrderTracking
U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 76

38

4 Ta XxapakTnp1oTIKA VoG €€apTANATOC
P The Characteristics of a Component

» a unit of independent deployment (never deployed partially)

+ sufficiently documented and self-contained to be “plugged into”
other components by a third-party

+ it cannot be distinguished from copies of its own; in any given
application, there will be at most one copy of a particular
component

» itis areplaceable part of a system (can be replaced by another
component that conforms to the same interface)

« it fulfils a clear function and is logically and physically cohesive
» it may be nested in other components

[Szyperski 98, Rumbaugh et al. 99, Maciaszek 2005)]

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 77

Components are like classes and packages
— can be connected through interfaces

Components are about how customers want to relate to
software

+ they want to be able to upgrade it like they can upgrade their stereo (in
pieces)
+ they want to mix and match pieces from various manufacturers
— reasonable but difficult to satisfy

So we could define a component as:

— alogical and replaceable part of a system that conforms to and
provides the realization of a set of interfaces

— an independently purchasable and upgradeable piece of

software
U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 78

39

E€apTApaTa kai oxeTIkEC évvoleg
Components and related Notions

Component

— areplaceable part of a system that conforms to and provides the realization of a set of
interfaces

Interface:

— a collection of operations that specify a service that is provided by or requested from a class
or component

Port

— a specific window into an encapsulated component accepting messages to and from the
component conforming to specified interfaces

Part

— (an internal component) the specification of a role that composes part of the implementation
of a component.

Internal structure
— the implementation of a component by means of a set of parts that are connected together in
a specific way
Connector:
— acommunication relationship between two parts or ports within the context of component

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

79

E€apThpata kar Aietagéc
Components and interfaces

Motion = F---------- - Imaging

required Provided
interface interface

MotioﬁE] 4(O'—— Imagiri;E]

usage realization
<<interface>> E

e 5| <<interface>> | 4 " ___ | .
etey imageObserver T

imageUpdate():Boolean

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006

80

40

i ECapthpara kai Aiettagéc (IT)
P Components and interfaces (II)

required Provided
interface

=] interface =]
Client 4< ()J—— Server

Clien?E] *4< Q_— Serve%i]

Web pag__ || * O Googie__|

(client) web service

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 81

i TTapadciypata e€apTnhudrwy
y Fine-grained Components: Example

We could use component diagrams for
modeling more fine-grained
components (e.g. files).

<<j >> E
<<Header>> " includes <<Body>>
Products.h Products.cpp
Dl Prad

<<Object Code>>
SalesOrder.o

t
1
1

5]

<<Executable>>
Application.exe

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 82

41

Coarse-grained components: e.g. Layers

" T

Layer3 = |
— 9L
Layer 3 l#]
;l . g2] a g]
e

Internal structure of component
‘

Layer 1

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 83

i EowTtepikh Aopn EEapThpdTtwy
P Internal Structure of Components

Compiler 2]
lex:Lexical Analyzer parse:Parser
40 compile
gen: Code Generator| opt:Optimizer{1..3]
A A ?
H 1
i | :
1 I !
: : i
part name part type part multiplicity
U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 84

42

i TTapadeiypa
& inyri:http://odl-skopje.etf.ukim.edu.mk/uml-help/

» Suppose that we need to build up a software for playing a music
from a CD-ROM Drive. A visual programming language might be
used (VisualBasic or Delphi for example). If language supports
multimedia controls, than we can use its components an
reprogramm them if necessary, or we can programm new

components. One possible graphical design for our player might
be:

A Music Flayer M= =
UML MUSIC PLAYER

[E] gect [u]7w ey [v] 7r [a]stop [u] Pause

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 85

» As you can see this UML Music Player needs these controls:

» play stop eject pause fast forward rewind power

These controls will be realized by buttons, thus we'll have a button performing
these controls. If we look at buttons as separete components, we can draw out a
component UML diagram. This is shown on the following picture:

All the components shown on the previous diagram belongs to one global

component - Button, but actions they perform are diferent. We must obtain these
actions by programming them.

Music —
Player -
L pause

L1 power -]
(-]

1 Fast

1 Forward
% Eject % Play

(-]

g S

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas. Fall 2006 86

43

» Ports permit the interfaces of a component to be divided into discrete packets

and used independently
» The externally visible behaviour of the component is the sum of its ports.

port port name Interface name
7/
/

/

Booking /
attractiorﬁs)z ng;rlgzl
|/ 2] C Ticket Sales

Ticket Seller

Load Attractions
Credit Cardsji —O Ticket Sales
priority

charging ’ sales

Yannis Tzitzikas, Fall 2006 87

U. of Crete, Information Systems Analysis and Design

i >uvdéovrac E€apThuaTa
P Connecting Components

» Components can be connected by wiring together their ports
— connector: a wire between two ports

connector by interfaces

delegation connector
(connect an external port with the port of a part
component)

direct connector
(more tight coupling)

Yannis Tzitzikas. Fall 2006

88

U_ of Crete, Information Systems Analysis and Design

44

In practice, components diagrams are sometimes depicted
in a less formal and more liberal graphical notation

Compiler =]

lex:Lexical Analyzer parse:Parser

_<) compile

gen: Code Generator| | opt:Optimizer[1..3]

Compiler
Lexical Analyzer Parser
Code Generator Optimizer
U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 90

45

| FASTAXON (functional) architecture

Formulate expressions

Derive navigational trees
dynamically

Define and update
taxonomies
through a GUI

using a GUI
. . Object Indexer/
Designer Designer End User
A 4
v /|
Expression Nav. Tree
Builder Generator
Taxonomy | l
| Editor | Validity Checker
1

Ll

Check the validity of a

compound term

U_ of Crete, Information Systems Analysis and Design

Yannis Tzitzikas. Fall 2006

| Storage Manager | MySQL
Apache
S —
Tomcat
Java
/ JSP
/ IExlorer
Store taxonomies and algebraic
expressions using a relational
DBMS
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 91
Knowledge Manager
Knowledge Manager
Access Evolution
Services Services D A APIs
« Navigation Updates
* Querying * Revision
Knowledge |Queryand Update | _ _ __ __ - - - ROL/RUL
Repository Languages
Ontology | <= === - -1 ~ RDF, RDF/S
Metadata

92

46

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2006

- RDF . A h, irsic= | | ICS
Suite Architecture Q5
A
ICS-VRP CRBEME ICS-RQL Interpreter
Ay — [
o
Parser Cl P t <
- ass roperty - > [Typing
() c_name | [domain]p_name| range 5 <]
~ g 2| LB |3
= g IDBC Artist_| [Artist [creates[Artifact |l 5 (SN Graph
c LL
VRP Internal : < B 5| E Constructor
RDE Model | [op 5o 3| SubClass SubProperty i ‘_’SQL3 5
ol [subcl | supct | [subpr [suppr] ¢ S
[Painter] Artist | [paints [creates] (“'f-) g
or = n
3
Artist creates
[urL | [source [target | |

93

H DOMENICUS Architecture

Hypermedia
Applications

/

Presentation model

Information model |

/ \

Structured

Logical

Hypermedia
data models/
exchange formats

7

data pointers

Semantic network-based Information Repository

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

%

OS/tool storage
94

Aiaypappara TTapara€ne
UML Deployment Diagrams

i} Deployment Diagrams

(draypdupara avdnrugng/olvraine/mapdBeonc)

Shows the physical relationship among software & hardware

components in the delivered system

Node:

« computational unit (hardware)

— e.g. PC, sensor, mainframe,
mobile device

Connection (among nodes)

e communication paths over which
the system will interact

U_ of Crete, Information Systems Analysis and Design

![,[/ D notation
[y —

4 g

% <—> notation
T S —_—

Yannis Tzitzikas. Fall 2006

96

48

[]

U. of Crete, Information Systems Analysis and Design

oo o |
DB Server Web Server Clients/Terminals
Client
DB Server Web Server
Client

Yannis Tzitzikas, Fall 2006

97
| Deployment Diagrams> Nodes
» Physical element (with memory and
processor)
Backup Server Sales PC .
P + With nodes we can model the
S topology of the hardware of a system
laptop
possible representations
Sofoklis:CompagPresar
i01800
RAM=256MB
speed=X mHz
U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 98

49

Deployment Diagrams> Connections

kiosk * 10-T Ethernet

server. RAID farm

RS-232

console

Connections
— Ethernet, serial line, satellite link
— we can use stereotypes to distinguish them to types
e <<serial line>>
o <<satellite link>>

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 99

§ Deployment Diagrams> Connections

Rich Client

B Client
rowser Liien {OS=Windows}

Application Server

Internet/http LAN/http

Web server
{OS=Solaris}
{web server=apache}
{number deployed =3}

LAN/Java RMI

Networking type + protocol

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 100

50

TTapiordvovTag TNV KATAVOUR TWV TEXVOUPYNUATWY
Modeling the Distribution of Artifacts

kiosk * 10-T Ethernet

I

user.exe)

server

memory-2GB —— RAID farm
speed=mHz

Ssadmin.exe
< backup.exe
T —

RS-232
console

[admin.exe
|_config.exe,

U. of Crete, Information Systems Analysis and Desig

Yannis Tzitzikas, Fall 2006

2 uvdidovrac diaypdupara E€apTnudTwy kai TTapdaragng
Combining Component and Deployment Diagrams

i TTapddeiyua
ninyA http://odl-skopje.etf.ukim.edu.mk/uml-help/

==Device==
Manitor

==Processor==
CPU o

- _L Froarit -
ncdorves85 - Page ==Device==
e Printer

Fa
Iriternet
tfice9s Explorer

-

==Device==
Mouze

DS

e

I Morton
Cotmmander ==Devices»
[— 1 Pascal Keyhoard

103

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

i} Another example:
http://odl-skopje.etf.ukim.edu.mk/uml-help/

<=Devices=s
Terminator

* Deployment diagram for ETHERNET

==Device==
T-Connector

<=Devices=s
T-Connector

==Devicer»
Repeater

—

==Devices=
T-Connector

——

==Device==
Terminator

==Device=>
Terminatar

— T

<=Devices=s
T-Connector

——

==Device=s
1~--—{ T-Connector

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006

=

<=Devices=s
Terminatar

104

52

Example

i Combining Component and Deployment Diagrams:

; m
=

Server
Clients/Terminals

Server

Application E

Logic

'| Internet/http

Client

L2

Data Acces{]

Logic

T
1

v

Data Storage

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2006

Presentatiorg]

Logic

105

P Notes

i Combining Component and Deployment Diagrams:

read.

» So we usually depict the key elements

+ Alternatively, (in case we want to show everything) we can use a
table to denote artifacts and their locations (e.g. use Excel)

+ |If we try to show all the components of a system in deployment
diagrams they are will probably become very large and difficult to

U_ of Crete, Information Systems Analysis and Design

Yannis Tzitzikas. Fall 2006

106

53

H Hardware and Software Specification

* We have to specify the new hardware or software that must be purchased

» Actual acquisition of hardware and software usually left to a purchasing
department -- especially in larger firms

Realities in Infrastructure Design
» Most often the infrastructure will be already in place
» Coordination of infrastructure components is very complex
— The application developer will need to coordinate with infrastructure specialists

Steps in Hardware and Software Specification

* Note hardware in low-level network model to create list of needed hardware

* Describe equipment in as much detail as possible

» Consider whether increased processing and traffic will absorb unused hardware capacity
* Note all software running on each hardware component

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 107

H Hardware

+ Commercial/Business
— Mainframes, Commerial Minicomputers, Microcomputers (Wintel: Windows on Intel),

Embedded Systems

» Technical/Engineering

— Supercomputers, Workstations and Servers (Sun SPARC), Microcomputers,
Embedded Systems

Some distinctions:

* Open vs Proprietary
— Proprietary: available by only one vendor (higher prices, low interoperability)
— Open: available from many vendors (better prices, better interoperability)

+ Black-Box vs Glass-Box
— Black- box: only the vendor has access to its internals (e.g. bank ATM)

— Glass Box: internals are accessible by the user, may replaceable by other vendor
» Free UNIX derivatives (Linux, BSD) on Intel x86 with source code are glass-box systems

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 108

54

| A\ikTUwon
Networking

» Local Area Network

— short-distance (one building)
« Backbone
— medium distance (campus)
Wide Area Network
— long-distance
* Remote Access

— via phone / cable TV/satellite

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 109

i AikTOwon
P Networking
LAN Backbone Network WAN
» Ethernet » 100 Mb (fibre) or + Long-distance line
— 10/100 Mb (1Gb fibre) Gb Ethernet leased from telephone
— Inexpensive, widely used — fast, inexpensive, companies
.« Token Ri simple « Satellite links sometimes
oken Ring R e
— 4/16 Mb .
— Not often used - (O_|d 100.Mtilt
. increasingly
ATM (copper)] obsolete)
— 155 Mb (622Mb fibre) . ATM

— Expensive, complex,

flexible, high-overhead — 155Mb, 622 MB

Remote Access |* Accessing a LAN or internet via phone/cable TV service
— work from home, access when travelling, home internet service
— Usually PPP over modem or cable modem

» DSL services

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 110

Deployment diagrams are usually depicted
in a less formal and more liberal /vivid graphical notation

Deployment Diagrams: Examples (Fastaxon)

Web clients
(IE browsers)

—

Designer

=

End user

HTTR/JDBC

Web server and
application server,

oB
(MySQL)
Oibgect indewer clent
s
U. of Crete, Information Systems Analysis and Design Yannis Tzitziees e e 20

56

& Deployment Diagrams: Examples

3G MMS
£

Bluetooth

Village Town Waorld
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 113
Co
Satellite Comumcauon
Y Wu'oless LAN
L
Q=|.J
B
. Multimedia
Computer Seience. Network
U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 114

57

Deployment Diagrams: Examples

T

Kyushn Unkv.

Kyushu Univ.
ﬂhknll‘l Campus)

s.unhl-mm

(Chikushl Campus}

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 115
Deployment Diagrams: Examples
Wireless
Access
Poinm
ERP or
s Accaunting C ‘ﬂ
Control Sys
Systems Managament
Wireless Mobile . y
Computer
e t
m Local Area Network
Rnl Tum.
Supervisors, Managars
5,.-.," and Customer Service
Wﬂ'gh'"ﬂ'ﬂ RFID Tag &
BC Bacad Scale Barcode Label RED
anning 1 et Portal
Stations s""a“:nﬁ Control
Corded —
Scanner |
4 —u
Local Area Network:
Employee Ba.\;;=
U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 116

58

Deployment Diagrams: Examples

ERP or
@ Wireless Vendor Accounting Customer
| Access Systems Systems
Point i System
)/ Scanning % j
= Station
/ Corded p—
Wireless Mobile |~ Sl:arl‘ne! =g
Computer J./ , Q%
- 1A
o= ¢ r
= g
Local Area Network m Material Tracking e + /
N Batch Trayeler and Control .
| Database Server Supervisor, Management
L[0T andsgustu_li_nerflewice
& Packing & i T Shipping atus Tracking
& RFID ng Labal Printing i, Station
Printar Station Employee Badge Advanced
| * Shipment
Notice
= Cordless
« ‘mA Barcode
Scanner
Corded
Barcode
Scanner sl Local Area Network

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2006

117

 Deployment: Reading and References

Jacobson, Addison Wesley, 2004 Chapter 27

Wesley, 2005, Chapter 6

» UML Distilled: A Brief Guide to the Standard Object Modeling Language (3rd Edition) by Martin

Fowler, Addison Wesley, 2004. Chapter 8, Chapter 14 (2nd Edition: Chapter 10)
* The Unified Modeling Language User Guide (2nd edition) by G. Booch, J. Rumbaugh, I.

* Requirements Analysis and System Design (2nd edition) by Leszek A. Maciaszek, Addison

* Object-Oriented Systems Analysis and Design Using UML (2nd edition) by S. Bennett, S.
McRobb, R. Farmer, McGraw Hil, 2002 , Chapter 19

* http://www.agilemodeling.com/artifacts/componentDiagram.htm

U_ of Crete, Information Systems Analysis and Design

Yannis Tzitzikas. Fall 2006

118

59

