HY 351: AvaAuon kai Zxediaon MNMNANPOQopPIoKWY ZUCTAPATWY
CS 351: Information Systems Analysis and Design

HY351:

AvdAuon kai Zxediaon MAnpo@opIakwy ZUCTNHATWYV
Information Systems Analysis and Design

Mavvng TCitCikag

Aidhe€n @15
Huepopnvia : 19-1-2007

U. of Crete, Information Systems Analysis and Design

> tpwpa Aiaxeipiong Acdopévwy (I)
Data Management Layer Design (I)

Yannis Tzitzikas, Fall 2006

Ano Ta MovtéAa AvaAuonc ota MovtéAa Zxediaong

>xediaon

U_ of Crete, Information Systems Analysis and Design

YwnAoU emiméSou Kaéop oy ?/ \
ETTIXEIPNUATIKEC AVAYKEC Amairnosgv AvaAuTiki Kataypaen
KOTOYEYPAMMPEVEG OTNV 2UYKEKPIMEVWY ATTAITAOEWY

MpoéTaon Zuotruarog
MovreAotroinon
AvdAuon
MovTeAotroinon
A&iToupyiki_/AopikR/ZupTtrepipopdg

\(FunctionaIIStructuraIIBehavioraI)/

OUEVWYV I
« 2xediaon Emikoivwviag pe Xpnotn
o >xediaon PUOIKAS APXITEKTOVIKHG

Yannis Tzitzikas. Fall 2006

AvaBewpnon, EkAémruvon
Mn Aeit/kég Aamrairriaeis
o 3
< * Zxediaon Emirédou Aiaxeipions \>

* Introduction
» Object-persistence formats
— Files (Sequential and Random Access)
— Databases (Relational, Object-Relational, Object-Oriented)

* Relational Databases,

* ER Model

* ER Model vs Class Diagrams
* ER Model => Relational Model

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

i T1 cival To oTpwpa diaxeipiong dedopévwy
What is the Data Management Layer ?

To oTpwua diaxeipiong dedopévwy apopd Tov TPOTTO YOvIUNG aTToBAKEUCNG Kal
dlaxeipiong Twv dedopévwy atod Ta TTPOYPANPATA TOU TTANPOY. CUCTAUATOG

> VA AVTIKEINEVOOTPEPEG GUOTNUA UTTOPOUNE VA BIOKPIVOUNE TO QVTIKEINEVA OF
HOVIUA KAl EQAUEPT

«_Persistence objects {poévipa avrikeiyeva):
— autd TToU TTPETTEl va ival aTToBnKeuuéva o€ aTaBepr] UVAN

» Transient objects (epAuepa avTikeiyeva):
— dlaypdgovTal atrd TNV PVAPN PETA TN XPNOIYOTToiNcH Toug

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006

§ 77c va oxedidoouue o aTpda diaxeipione edousvw;

Mrropouue va 1o kdvouue o€ 4 Bruara:
(A) Emidoyn Tou popeoTtutiou (format) armoBrikeuong

(B) AvTiaToixnon Twv avTikeIpEvwy TTpoRAfuaTog (problem domain objects) o€
MOPQOTUTTOUG JOVIUNG aTToBrKeuong avTikeigévwy (object-persistence formats)

(C) BeATioTOTTOINON TWV HOPPOTUTTWV MOVIPNG ATTOBNKEUONG AVTIKEINEVWV
Optimizing the object-persistence formats

(D) Zxediaon Twv KAGoEwV TTPOCRACNG Kal XEIPIOPOU OESOPEVWV
Design data access and manipulation classes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

What is the Data Management Layer ?

The data management layer is about
how data is stored and handled by the programs that run the system

In an object-oriented system we are concerned with both persistent objects and
transi .
— Persistence objects are those that must be stored using some kind of storage
mecnanism

— Transient objects will be erased from memory after they have been used.

How to design the data management layer ?

A design approach of 4 steps:

(A) Select the format of the storage

(B) Map problem domain objects to object-persistence formats
(C) Optimizing the object-persistence formats

(D) Design data access and manipulation classes

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006

IpAyopn €mIoKOTTNON TWV TEOOdPWY PNUATWY

i How to desigh the data management layer
(A) Select the format of the storage

« Apxeia (files)
» Baoeig Asdopévwy (databases)
— relational database (RDB)

There are four basic formats used for object persistence:

— object-relational databases (ORDB)
— object-oriented databases (OODB)

Object persistence

format Ej

«— Files/databases

U_ of Crete, Information Systems Analysis and Design

Yannis Tzitzikas. Fall 2006

'i’r:.. How to design the data management layer

&) (B) Map problem domain objects to object-persistence formats

Ta diaypduuata kAdoewv Tng UML opifouv Tig douég dedopévwy TTou XpeladeTal

n eQappoyn
MepIkEG HOVO aTTd AQUTEG TIG DOPEG ATTAITOUV JOVIKN aTToBrKEUoN

Av TrpdkeiTal va XpnoigoTtroifjooupe éva DBMS TTpéTmel va avTioTOIXiOOUPE auTEG

TIG OONEG 0€ BONEG TTOU PTTOPOUV VO avayvwpPIoTOUV Kal va dIaxEIpIoTouV atrd To

DBMS

To Trponyoupevo Brpa eEaptaTal atrd To HovTEAO dedouévwy (data model) TTou

utroaTtnpilel To DBMS 1o otroio ptropei va gival axeoiako (relational),

QVTIKEINEVO-OXEDIAKO (0object-relational)) avTikeiuevooTpe@ég (object-oriented).

problem domain @ D ;}
classes L—’—‘

N/

Object persistence "
format i] i] i] D

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

W +ow to design the data management layer
¥ (C) Optimizing the object-persistence formats

AlaoTdoeig BeATioTOTTOINONG:
» AmroBnkeuTikoU Xwpou (storage efficiency)

— minimizing storage space

* TaxutnTag TpoéoPacng (speed of access)

— minimizing time to retrieve desired information

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006

10

i How to design the data management layer
¥ (D) Design data access and manipulation classes

O1 kAdoeig TpocBaong Kal XEIPIoOHOU dedopévwyv AIToupyolv 0av « JETAPPOTTEGY
METAEU TWV POVIUWY QVTIKEIJEVWV KAl TWV AVTIKEIMEVWY TTPOBARUATOG

— DAM (Data Access and Manipulation) cl act as “translators” between the persistent
objects and the problem domain objects.

Mpétel va pytropolv va diaBAacouyv Kail va YPAaWouv POVIKA QVTIKEIMEVA KAl AVTIKEIUEVO TOU
TTPORANpATOG
— They should be able to read and write both persistent objects and problem domain objects.

problem domain [] D D D

classes

DAM classes D D D

Object persistence

classes D D :] D

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 11

AVOAUTIKOTEPN TTEPIYPAPT] TWV TTPONYOUUEVWY BNUATWYV

(A) ETiAoyn pop@OTUTIOU aTTOBAKEUGNG
(A) Select the format of the storage

Files

+ Sequential Access
— They allow sequential file operations (read, write, search)
— Typically efficient for reports using all or most of the file’s data
— Types
» Unordered sequential files
» Ordered sequential files

— e.g. in ascending order by customer number
* Random Access
— Data stored in unordered fashion
— Typically efficient for finding individual records

— However they do not support fast sequential accessing (e.g. report writing could be
inefficient)

Most oo PLs support sequential and random access files as part of the language
e.g. FilelnputStream, FileOutputStream, RandomAccessFile (in java.io package)

Moreover they offer mechanisms for converting objects into a form that can be written out to
a file (serializing them) and for reading them back into memory from a file.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 13

Types of Application Files

Master files

» store core information for the application (e.g. information about customers, orders, payments, etc)
» Usually new records are appended to these files

Transaction files

« store information that can be used to update the master file

» it can be destroyed after the update of the master file

Audit

» stores “before” and “after” images of data so that an audit can be performed if the integrity of data is
questioned (e.g. in order to check who and when changed the salary of an employee)

History
» stores old information that is no longer used (old customers, old orders, etc)
Look-up

» contain static values, like the list of all countries, the list of all telephone codes of Greece.
Typically used for validation purposes.

Configuration files and Backup files

* e.g. for localizing the system (so that labels, button captions and menu entries to be displayed in
the language of the country where the system is being used)

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 14

Select the format of the storage
Databases

Databases

Basic functionalities offered by a DBMS

Referential Integrity of data

Query Language

Concurrent access of data by large number of users and applications programs
Transactions

Authorization, Security

* Recovery
Relational Object-Relational Object-Oriented

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 16

Relational, Object-Oriented and Object-Relational Databases

* Relational Databases
— Based on the relational model (tables, 1NF, primary keys, foreign keys,
relational algebra, SLQ, views, normalization)
— Examples of relational DBMSs: Sybase, DB2, Oracle, MySQL, MS Access
(end-user DBMS)

» Object-Relational Databases
— Extend the relational model to include useful features from object-orientation,
e.g. complex types.
— Add constructs to relational query languages, e.g. SQL, to deal with these
extensions
— Example of ORDBMSs: PostgreSQL, UniSQL, Oracle
* Object-Oriented Databases
— Extend OO programming to include features required for database system,
e.g. persistent objects.
— Examples of OODBMSs: ObjectStore, Versant, Objectivity, O2, Gemstone

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 17

I 15 Modeling vs Database Modeling

* Modeling an application program and modeling a database are
sometimes disjoint activities
— The former is done by application developers
— The latter by database designers/administrators

However, we will see how from the application model (that we have
already specified using UML), we can proceed and model the needed

database.

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 18

2 xeolakég Baoeic Acdopévwy
Relational Databases

Relational Databases

* The relational model has been dominant for over 20 years
It dominates in business information systems

It was standardized with SQL’92

Modeling primitives
— Tables consist of columns and rows
— Cells can only contain values of atomic types (1NF)

» object types, structured types, collections and references are not supported
 references between tables are maintained by comparing values in columns

Key notions:

* 1NF, Primary key, Foreign key, Structured Query Language (SQL),
Functional Dependency, Normalization.

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006

20

10

Relational DBMSs

» "Relational Databases Rule the Roost" published in SD Times in July 2004:

MySQL is the #3 database among those polled

8QL Server
Oracle
MyS8QL
DB2 .
Others
Sybase
Postgres
Informix
FileMaker

Pervasive

None 1 1 1 | 1 |
Source: 50 Times 0 10 20 a0 40 50 B0 70 80

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 21

» A relational table is defined by a fixed set of columns

» Columns have built-in or user-defined types (i.e. domains)
» Tables can have any number of rows (tuples)

» There are no duplicate rows in a table

* A column value may be allowed to be NULL

+ Every table has a primary key

— A key is a minimal set of columns such that the values in these columns
uniquely identify a single row in a table

— A table can have many such keys

— One of these selected by the user is the primary key (the rest are called
candidate or alternate keys)

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 22

11

8 Domains and Rules

* A domain defines the legal set of values that a column can take
— It can be anonymous: e.g. gender char(1)
— It can be named, e.g. gender Gender
« create domain Gender char(1);
— A named domain can be used in the definition of many columns in different tables
« Changes to the domain definition are automatically reflected in column definitions

* Columns and domains can have “business rules” that constrain them
Default value (e.g. if no value is provided for city, assume “Heraklio”)
Range of values (e.g. range of ages: 10-90)

List of values (e.g. the allowed color is “green”, “yellow”, “red”)

— Case of value (e.g. the value must be in lowercase)

— Format of value (e.g. the value must start with the letter “F”)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

23

A diagrammatic technique for Tables
and its definition in SQL

-- Domain: “Gender”
create distinct type “Gender” as CHAR(1) with
comparisons;
Employee
emp_id CHAR(7) <pk> not null -- Table “Employee”
family_name VARCHAR(30) <ak> not null
first name VARCHAR(20) not null create tab"?dﬁmp'oy‘éeH A(\ RE) ol
) emp_i not null,
date_of_birth DATE R L L “ family_name* VARCHAR(30) not null,
gender Gender not null “first_name * VARCHAR(20) not null,
phone1 VARCHAR(12) null “date_of birth* DATE not null,
phone2 VARCHAR(12) null “ gender* “Gender” not null
constraint “C_gender” check (“gender” in
salary DEC(8,2) null (F M F,m)),
“ phone1“ VARCHAR(12),
“ phone2“ VARCHAR(12),
“salary “ DEC(8,2),
primary key (“emp_id”),
unique (“date_of_birth”, “family_name”)
);
U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 24

12

: Referential Integrity (AkepaidTnTa Avagopwv)

» A foreign key is defined as a set of columns in one table whose values are either
NULL or are required to match the values of the primary key in the same or
another table.

» This primary-to-foreign key correspondence is called the referential integrity.

Employee Department
emp_id CHAR(7) <pk> not null dep_id SMALLINT ~ <pk> not null
family_name VARCHAR(30) <ak> not null dept_name VARCHAR(50) <ak> not null
first_name VARCHAR(20) not null address VARCHAR(1 20) null
date_of_birth DATE <ak> not null T
gender Gender not null
phone1 VARCHAR(12) null dept_id=dept_id
phone2 VARCHAR(12) null Upd(R);Del(N)
salary DEC(8,2) null
dept_id SMALLINT <fk> null
alter table “Employee”
add foreign key “RefToDepartment” (“dept_id”)
references “Department” (“dept_id”)
on delete set null;
U. of Crete, Information Systems Analysis and Desi Yannis Tzitzikas Fali 2006 25

H Referential Integrity

What should happen if a department row is updated or deleted?
Specifically, if dept_id is updated or when a row of department is deleted ?

Upd() -> concerns updates
Del() -> concerns deletions

Declarative referential integrity constraints associated with delete and update operations
* Upd(R); Del(R)
— Restrict the update or delete information
» Here: do not allow this operation if there are tuples of Employee linked to that department
* Upd(C);Del(C)
— Cascade the operation
* Here: update or delete all linked employees rows
* Upd(N);Del(N)
— Set null
* Here: set dept_id of the linked Employee rows to NULL
* Upd(D); Del(D)
— Set default
» Here: set dept_id of the linked Employee rows to the default value

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 26

13

Triggers

» Declarative referential integrity constraints allow only simple
business rules to be recorded.

* A more expressive solution is triggers (standardized in SQL:1999)
» A trigger is a small program (e.g. written in an extended SQL) that
is executed automatically (triggered) as a result of a modification
operation on a table on which the trigger has been defined.

— A moadification can be any of the SQL modification statements: insert,
update, or delete.
» A trigger can be used to implement business rules
— E.g. updates are not allowed in weekends

— After deleting a department all deptlds of the Employee rows (that have the
deleted deptld) should be set to Null.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 27

Example of Trigger (Sybase)

Internal table

create trigger keepdpt
on Department
for delete
as
if @@rowcount =0
return /* avoid firing trigger if no rows affected */

if exists
(select * from Employee, deleted where Employee.dept_id = deleted.dept_id)
begin
print ‘Test for RESTRICT DELETE failed. No deletion’
rollback transaction
return
end
return
go

This trigger implements the Del(R) declarative constraint

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 28

14

Stored Procedures

A stored procedure is given a name, can have input and output
parameters, and it is compiled and stored in the database.

It is written in an extended SQL that allows variables, loops,
branches, and assignment statements

Stored procedures turn a database into an active programming

system.

— Stored procedures (first introduced by Sybase now part of every major

commercial DBMS)

Triggers are a special kind of stored procedures

— They trigger themselves on insert, update and delete events on a table, and

cannot be otherwise called.

— So for each table we can have at most 3 triggers, while we can have
unlimited number of stored procedures.

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2006

29

Stored Procedures (II)

A client program can call a stored

procedure rather than sending a
complete query to the server.

Sending a query requires parsing it

and checking its syntax (at the server

side)

Stored procedures are more efficient
(less network traffic, parsing and

compilation steps are done only once)

A stored procedure can be exploited by

many clients

SQL query Stored procedure call
(from the client application, (from the client application
\J
Parse

Locate procedure

(perhaps in procedure cache)

Validate syntax
and obj;ct references

Check authorization

Check authorization gepyver
Database i
Optimi .
i Substitute parameters
Compile

U_ of Crete, Information Systems Analysis and Design

Yannis Tzitzikas. Fall 2006

30

15

* See HY360

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 31

H Views

 Is a stored and named SQL query

» This is a very useful feature for
— Providing different perspectives of the data
— For database security (restring users to the contents of certain views)

— For alleviating the query formulation effort (SQL queries that use views
instead of tables)

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 32

16

The traditional way to design a relational database is to start from
the Entity-Relationship model.

Below we will review ER model and we will compare it with UML class
diagrams

The Entity-Relationship Model

* Introduction
* The Entity-Relationship model
. — Entities, Relationships, Attributes,Generalization
* ER diagrams vs UML Class Diagrams
» Conceptual Database Design (ER Design)

— Documentation for ER Diagrams
« business rules, data dictionary

* ER model => Relational model

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 34

17

Bl The Entity Relationship Model

* The Entity Relationship (ER) model is a conceptual model for
describing the data requirements for a new information system in
direct and easy to understand graphical notation.

* It views the real world as entities and relationships.

* A basic component of the model is the Entity-Relationship diagram
which is used to visually represents data objects.

* ER Model History

— The Entity-Relationship (ER) model was originally proposed by Peter in 1976
[Chen76] as a way to unify the network and relational database views.

— Since Chen wrote his paper the model has been extended and today it is
commonly used for database design

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 35

The Utility of the ER model

For the database designer, the utility of the ER model is:

» it maps well to the relational model. The constructs used in the ER model can
easily be transformed into relational tables.

» itis simple and easy to understand with a minimum of training. Therefore, the
model can be used by the database designer to communicate the design to the
end user.

* In addition, the model can be used as a design plan by the database developer

to implement a data model in a specific database management software.

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 36

18

é Basic Constructs of ER Model

* Entities
* Relationships

» Attributes
relationship
/ || attribute

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 37

H Entities

’ Orders ‘ ’ Invoices ‘

» Entities are the principal data object about which information is to be collected.

* They are usually recognizable concepts, either concrete or abstract, such as
person, places, things, or events which have relevance to the database.

» An entity occurrence (also called an instance) is an individual occurrence of an
entity. An occurrence is analogous to a row in the relational table.

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 38

19

{ Relationships

Person Car
[Person |-———<omns >
oo >

[Person |——<phees > order

A Relationship represents an association between two or more entities.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 39

Attributes

address

» Attributes describe the entity of which they are associated.
» A particular instance of an attribute is a value, e.g. «Yannis» is one value of the
attribute Name.
* The domain of an attribute is the collection of all possible values an attribute can
have. The domain of Name is a character string.
» Attributes can be classified as:
— identifiers
» An identifier (more commonly called key), uniquely identifies an instance of an entity. We
underline them in diagrams
— descriptors

» A descriptor describes a non-unique characteristic of an entity instance.

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 40

20

8 Different notations for ER diagrams

address color
ity Relatienship E?“‘Y pan
Person Car \ anre /
Identity platesNum Depattnen | g, " Many Project
nages
name \‘w model Eill «Q—TOG Ervizdl
address color R s
. .
Nelationship \ Ao
Person Car Name
Identity owns platesNum Mandatory é‘];;l::::la
name model
address color
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 41
{ Composite and Multi-valued Attributes
A
’ Composite attribute
’ Multi-valued attribute ‘
U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 42

21

 Relationships can also have Attributes

dateOfBuy

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 43

§ Degree of a relationship

@ Car degree 2: binary relationship

degree 3: ternary relationship

consistsOf Recursive relationships
componentOf
managerOf
Employee manages

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 44

22

H Reminder Multiplicity Constraints of Class Diagrams

Person 0.* employment 0..1 Company
name employee employer| name
age i
1 4 hasPresident - stockPrice()

» Multiplicity constraints
— how many objects may participate in a given relationship?
— multiplicity indicates lower & upper bounds

* = 0..* =0..0 // no constraint

1 = 1.1 /l mandatory and single-valued association
0.1 /I optional single-valued association

1..% /l mandatory and multi-valued association

— other more general multiplicity constraints
1..11 (for soccer teams)
3..4 (wheels of a car)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

45

i Multiplicity (or Cardinality) Constraints

(ER vs UML)
Person 0.* employment 0..1 Company
name employee employer| name
UML age < hasPresident
1 0..1
employee employer
(0,1) (ON)
ER Person Company
name name
hasPresident
age 0,1) .‘ (1,1)
U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 46

23

TV
i J§ Attributes and Cardinalities

Default cardinality for attributes: (1,1)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 47

i Strong and Weak Entities

P (Independent and Dependent Entities)
oa>—{Transacton | ——
1,N
Flight (1.N) @ 0.1 1’1 Passenger
(1,N) (1,1)
travel

» Strong (or Independent) entity

— does not rely on another entity for identification.
* Weak (or dependent) entity

— relies on another entity (which it is related though a relationship) for identification.
U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 48

24

Strong and Weak Entities

1,N
Flight () 0.1 1‘1 Passenger

(1,N)

travel

Weak entities

U. of Crete, Information Systems Analysis and Design

they do not have their own identifiers

(1.1

they can only have partial identifiers, 1.e. attributes that can identify the instances
of the weak entity that are associated with the same instance of the strong entity
(the strong entity is called the «owner» of these instances)

The identifiers of a weak entity are formed by the identifiers of the strong entity
plus the partial identifiers of the weak entity

A weak entity can be the owner of other weak entities
A weak entity can be associated with more than one strong entities (through

different relationships)

Yannis Tzitzikas, Fall 2006

49

U_ of Crete, Information Systems Analysis and Design

Orders either order a part, or
request a service. Not both

For any given order, whenever
there is at least one invoice there
is also at least one shipment and
vice versa.

Yannis Tzitzikas. Fall 2006

50

25

§ Generalization (or specialization) Hierarchies

Colnsom >—{ Vehice | ()

JAN

=] [

» Generalization occurs when two or more entities represent categories of the
same real-world object

» A generalization hierarchy is a form of abstraction that specifies that two or more
entities that share common attributes can be generalized into a higher level
entity type called a supertype or generic entity.

» The lower-level of entities become the subtype to the supertype.
» Subtypes are dependent entities.

(Specialization is the dual counterpart of generalization)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 51

N Generalization Hierarchies

/\

’Savings-Account‘ ’ Checking-Account ‘

’Standard H Gold H Senior ‘

» Generalization hierarchies can be nested. That is, a subtype of one hierarchy
can be a supertype of another. The level of nesting is limited only by the
constraint of simplicity.

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 52

26

= [

* The subtypes inherit
— attributes
— participation in relationship types (with the same cardinality constraints)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 53

% Disjoint and Overlapping Subtypes

Subtypes can be either mutually exclusive (or disjoint), or overlapping (or
inclusive).

+ A mutually exclusive category is when an entity instance can be in only one
category.
— A vehicle cannot be automobile and bicycle.
» An overlapping category is when an entity instance may be in two or more
subtypes.
— A student can also be an employee.

Vehicle .- Disjoint ...~ Overlapping
’AutomobiIeH Bicycle ‘ ’ Student HEmponee‘
U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 54

27

Partial vs Total Subtypes

« Partial
— an entity occurrence may not necessarily belong to one subtype

+ Total
— every entity occurrence should belong to one subtype

/\ Partial and disjoint

Person

/\ Total and disjoint /\ Partial and Overlapping

’AutomobiIeH Bicycle ‘ ’ Student HEmponee‘

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 55

Example

Account

Cou
A Total, overlapping

Savings-Account‘ ’ Checking-Account
Total, disjoint

’Standard H Gold H Senior

Account

Cou
A Total, overlapping

Savings-Account‘ ’ Checking-Account
Partial, disjoint

| Gold || senior

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 56

28

The ER metamodel (as an E-R Diagram)

CONSTRUCT
Minimum
' T Cardinality
‘ Name . /O
k B "
GENERALIZATION ASIC

CONSTRUCT ATTRIBUTE
I Maximum
‘ Cardinality

ENTITY ReLationsHip| | COMPOSITE

ATTRIBUTE

Maximum Minimum
Cardinality Cardinality
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 Y4

ER Diagrams vs UML Class Diagrams

29

i What is the difference between ER diagrams and UML Class
Diagrams?

Class Diagrams are a superset of ER diagrams.
ER diagrams focus only on data, while Class Diagrams go a step
further by allowing modeling the behaviour.

— In the context of database design, these logical operations can be turned
into triggers or stored procedures.

ER diagrams allow N-ary (N>2) relationships
— Class Diagrams mainly comprise binary but n-ary could be used too
ER diagrams allow the specification of identifiers

— class diagrams do not
» we could however use a stereotype or tagged values to indicate them

Class diagrams allow dynamic classification

— ER diagrams do not
Class diagrams can have methods and constraints (e.g. pre/post-conditions
expressed in OCL)

— ER diagrams do not

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 59

ER vs UML: Notations

Eerson @ » Car

id —O-N - | platesNuem

name
Person
- Car
id 1 * | platesNuem
hame owns p

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 60

30

The first ER Diagram

Deparment
Depld
DepName
Address

0-N

01

Em(:jloyee Proj_Work
B!
FirstName | -O-N 9 0-N.

LastName
MiddleName

[0-N.
YearOfBirth
Salary

supporter
0-N

11
Dependent
FirstName
LastName
YearOfBirth

0-1°

Supplier
Supld
Name
Status
Address

0-N

Supp_Part

consistsOf
0-N O-N

Part
Fario
PartDescription [—0-N

QuantityOnHand

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2006 61

The first ER Diagram as UML Class Diagram

* Quantity

Deparment
Depld
DepName
Address

0.1

Dept_Emp

. Proj_Work

timePercentage

Employee " id: Pro_Pro.Project
Empld Pro_Emp Employee [* |
FirstName /1{rC_Emp “hro Project
LastName 0.1 —_IProjid
MiddeName—_______— [Ttk
YearOfBirth
Salary Proj_Manager

1

Emp_Dep

supporter

*
Dependent
FirstName
LastName
YearOfBirth
U_ of Crete, Information Systems Analysis and Design

Supplier
Supld
Name
Status
Address

A
*

Supp_Part_Proj [P

id: Sup_Par.Part Supp_Part
Sup_Sup.Supplier
Sup_Pro.Project

£3

\

1 %
\Sup_Par Component

/l Quantity
Part id: Com_Par.Part

consistsOf.Part

PartNo *
PartDescription —

QuantityOnHand 1 Com_Par

As translated automatically by DB-MAIN

Yannis Tzitzikas. Fall 2006 62

31

Some ER Transformations

{ Ternary to Binary

Customer

‘

M

Account

(O.N)

(0l
" [<@ B <@ oot

(1)

(1N) A (1.1 1 1140ON OK
Customer 0 Account @ Branch
v ! '
ﬂ Customer Branch
CB
U. of Crete,_Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 64

32

8 Resolving Many-to-Many Relationships

(1,N) (O,N) -

1,N 1,1 1.1
Employee ()() Assignment() AP (O.N) Project

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

65

§ Eliminate redundant relationships

* A redundant relationship is a relationship between two entities that is equivalent
in meaning to another relationship between those same two entities that may
pass through an intermediate entity.

1,N 1) (11 ON
LA Account =8>
(1.N) CB (O.N)

1N 1) (1.1 (ON
oA Account |- a8 >

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006

66

33

Conceptual Database Design

§ Conceptual Database Design
P (ER Diagram Design)

Questions
* What are the entities and relationships in the enterprise?

* What information about these entities and relationships should we
store in the database?

» What are the integrity constraints or business rules that hold?

» There is no standard process for doing so.
+ Some methodologies propose a staged development process
— first model entities and relationships
— then key attributes,
— finally non-key attributes
» Other experts argue that in practice, using a phased approach is impractical
because it requires too many meetings with the end-users

The OO Analysis and Design methodology (on which this course focuses)

has given us one (use cases-> reqs gathering and determination, domain class diagrams,...)
U_ of Crete, Information Systems Analysis and Design Yannis Tznmkas Fall 2006

68

34

H Documentation of an ER Diagram

In many cases the diagram is not enough
We complement it with

» documentation that describes the properties of the data that cannot be expressed using
the constructs of the model

* A widely-used documentation concept for conceptual schemas is the business rule.

A business rule can be:

» the description of a concept relevant to the application (also known as a business object)
* an integrity constraint on the data of the application

» aderivation rule, whereby information can be derived from other information

The Data Dictionary

» Comprises two tables: the first describes the entities;

the second the relationships We have already

» Business rules that describe constraints seen OCL
— <concept> must/mustnot <expression on concepts> which is a formal language
* Business rules that describe derivations for expressing all these.

— <concept> is obtained by <operation on concepts>

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 69

From an ER model
to a Relational Database Schema

eR Diagam | [] g@\ [

\

Tables i] *i] i] 5

Entities and Relationships must be converted so they can be stored in tables

35

o
W 2 ER->Relational (1)

« EntityE=>Table T
— single-valued attributes of E => attributes of T
— identifier attributes => candidate keys of T
* A multi-valued attribute of E => Table T
— attributes of T: identifier of E plus the multi-valued attribute

Person(personld, name, city, street,number)
Hobbies(personld, hobby)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 71

ER=>Relational (2)

* M-N Relationship R => Table T
— T contains all identifier attributes of the entities that participate in R
— T also contains the attributes of R

Employee

Employee(personld, name)
Project(projNum, title)
Works(personld, projNum,percent)

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 72

36

l Er->Relational (3)

* N-1 Relationship between E1 and E2 => no new table

— we add to the table of E2 the key of E1 (foreign key)
— if the participation of E2 is (1,1) and not (1,0) then this attribute cannot have

null values
(O,N)

Person(personld, name)
Car(plates, color, personld, dateOfBuy) // personld: foreign key

73

Yannis Tzitzikas, Fall 2006

U. of Crete, Information Systems Analysis and Design

ER=>Relational (4)

1-1 Relationship between E1 and E2 => no new table
— If (0,1) (0,1) we add to one of the tables that correspond to E1 or E2 the key of the

other.

Man(mld, mName,wld) // wid: foreigh key
Woman(wld, wName)

Equivalent alternatives

Man(mld, mName)
Woman(wld, wName, mld) // mld: foreigh key

Yannis Tzitzikas. Fall 2006

74

U_ of Crete, Information Systems Analysis and Design

37

l ER->Relational (5)

0 e

* 1-1 Relationship between E1 and E2 => no new table
— if (1,1)(1,1) then both tables can be combined into one

Student(studld, name, username, password)

Equivalent alternatives

WinAccount(username, password, studld, name)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 75

ER=>Relational (all in one)

* EnttyE=>Table T
— single-valued attributes => attributes of relation
— identifier attributes => candidate keys of the relations
* A multi-valued attribute of E => Table T
— attributes of T: identifier of E plus the multi-valued attribute
» M-N Relationship R =>Table T
— T contains all identifier attributes of the entities that participate in R
— T also contains the attributes of R
» N-1 Relationship between E1 and E2 => no new table
— we add to the table of E2 the key of E1 (foreign key)
— if the participation of E2 is (1,1) and not (1,0) then this attribute cannot have null
values
* 1-1 Relationship between E1 and E2 => no new table

— If (0,1) (0,1) we add to one of the tables that correspond to E1 or E2 the key of the
other. we add to the table of E2 the key of E1 (foreign key)

— if (1,1)(1,1) then both tables can be combined into one

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 76

38

relational model?

i How to map generalization/specialization hierarchies to the

Recall the Lecture about
“Class and Method Design:
How to eliminate inheritance”

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

77

i Class and Method Design>Eliminating Inheritances
Method 1: Flattening

Assuming sA, sB and sC are abstract

sA sB sC o1 s
al a3 a7 i o
a2 a4 a8 a2 a2
\/\/ a3 a3
a4
c1 c2 o a451
a

a5 a5 a6 26

a6 a6

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006

78

i Class and Method Design>Eliminating Inheritance>
Method 1b: Flattening all in one table

+ If the subtypes are disjoint
» Create one table with all attributes
» Define an extra attribute to discriminate the subtype

A
al
a2
7N
B C
a3 ab
a4 a6

B C
al al
a2 a2
method 1 a3 a5
a4 ab
ABC
al
a2
a3
—>
method 1b a4
ab
Assuming B,C are disjoint a6
BorC

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2006

79

i Class and Method Design>Eliminating Inheritance>

Method 1c: Flattening all in one table

+ If the subtypes are not disjoint
» Create one table with all attributes
» Define an extra flag attribute for each subtype

method 1

A

al

a2
B C
a3 a5
a4 a6

U_ of Crete, Information Systems Analysis and Design

B C
al al
a2 a2 ABC
a3 a5 al
a4 ab a2
a3
a4
ethod 1b as
Assuming B,C are disjoint a6
BorC
method 1c

Assuming B,C are not disjoint

Yannis Tzitzikas. Fall 2006

ABC

al
a2
a3
a4
a5
ab
isB

80

i Class and Method Design>Eliminating Inheritance

Method 2: Convert all IsA-links to Associations

Assuming sA, sB and sC are abstract
sA sC
sA sB
sC 1] at a7 |1
a1 a3 a7 a2 a8
a2 a4 a8
\/\/ C1 sB Cc2
c1 c2 11 a5 (0.1 1.1 a3 1.1 o0.1| a5 |1
a5 a5 a6 a4 a6
a6 a6
{XOR}
Assuming sA, sB and sC are concrete
sA sC
sA sB sC 1
af a3 a7 a; ar |1
a2 a4 a8 a a8
T~ T~ — C1 sB c2
c1 c2 0..1 a5 0.1 1.1 a3 1.1 0.1 ab 0}.1
ad ad a6 a4)
ab ab TXOR]
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 81

From a Class Diagram
to a Relational Database Schema

class diagram @ D

|

@\ e
Tables Ty

Objects must be converted so they can be stored in tables

41

§ Class Diagram => Relational Model

» The structural part of the class diagram can be mapped to a relational schema
by employing the techniques that we described earlier for mapping an ER
diagram to a Relational Schema.

» The behavioral part of the class diagram (e.g. operation) could be turned into
triggers or stored procedures.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

83

Class Diagram => Relational Model

* However UML class diagrams define the data structures required by the entire
application. Not every class of the class diagram needs persistent storage.
+ So
— we have to identify the classes that need persistence
— we can mark those classes (e.g. using a stereotype)
— we can create a class diagram that contains only these
— we can mark the identifiers (keys) of those classes (e.g. using a stereotype)

<<db>>

— /Nr permanent Person Person
‘ J storage idNum <<pk>>
L firstName idNum

lastName — firstName

dateOfBirth lastName

N\ Jage dateOfBirth
sex sex

[
\

Class diagram

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006

84

i Class Diagram => Relational Model
Related UML Profiles (or Sterotypes)

— we can mark the identifiers (keys) of those classes (e.g. using a stereotype)

E.g. see

OMG (Object
Management Group)
issued an RFP for an
official UML Data
Modeling Profile in
December 2005

http://www.omg.org/cgi-
bin/doc?ab/05-12-
02

A UML profile can be used to support the modelling of relational databases in UML. It can
include extensions for tables, data base schema, table keys, triggers and constraints.

— http://www.sparxsystems.com.au/resources/uml_datamodel.html
— http://www.agiledata.org/essays/umlDataModelingProfile.htmI#RFP

Employee

X Given_Hame: VARCHAR(30)
) Middle_Name: VARCHAR(30]
Surname: VAR CHAR(40]
Preferred_Hame: VARCHAR(40)
Start_Date: DATE

_frEmployes_POID: CHAR(1E) <<PHs> <=Surragates=s 1 carns 1
=" Emploves_Humber: INT24 <=aK=> {key = AK-1}

Social_Security_Number: CHAR(10) s<AK=> {key = AK-2}

Salary
{access rights = HR}

Salary_POID: CHAR{18) =<Pk=>

Employee_POID: GHAR[E) <<FK=>
Amount: FLOAT
Start_Date: DATE
End_Date: DATE

IEmployes1
<< Inde ==

IEESERELLL

|Employesz

IEmployeed e
<2index== "
S -7

Fhone

s,

Phone_POID: CHAR[16) <<PK=s
Employes_POID: CHAR[E) <<Fl=>
Usage_Type_FOID: CHAR[1E) =<Fks>
Format_Type_POID: CHAR[16] <=FK==
Phare_Number: INT2d

v =
a -

==Index=s

Emplayee_Number: INT24

WEmployes
<<Views> {read only}

Employee_Number: INT24 {ordered by}
Full_Name: YARCHAR{100]
Middle_Name: YARCHAR(Z0]
Social_Security_Number: CHAR[10]
wiork_Phone: INTZ4

Cell_Phone: INT24

and [pppyright 20022006 Scott W. Ambler

HR Database -
Employes Info

Last Updated: 14/08/2003

<<Physical Data Model>»

U. of Crete, Information Systems Analysis

Another Example
source: http://www.sparxsystems.com.au/resources/uml_datamodel.html

Parent

- QD GUID
Mam e String
Sex Gender

Y

getlame) : Sting
setSexSting
getSex] : Sting

+ + + o+

m_Address | O.n

1
Address
QD GUID
City Sting
Phone: String
State: String
Street String

EEE

getlity): Sting

setC it String)
setStrest(String)

+ + + +

zet ame(Sting) <]_

getStrest(): String <]

U_ of Crete, Information Systems Analysis and Design

thl_Parent

A Parent das s with unigue 1D (2100
and Mam e and Sexattributes maps to
a relational tahle.

==realizes==

PH QD WARCHAR

Ardress0lD: VARCH AR
Mame: VARCHAR

Sex WARCHAR

The Addres s assodaton fom the logical model becomes

a foreign keyrelafionship inthe data model

The &ddress class in the logical

thi_Adkiress

madel becomes atablein the
data model

==realizes==

City, WARCHAR
P OID: MARCHAR
Phone: WARCH AR
State: VoR CHAR
Street VARCHAR

Yannis Tzitzikas. Fall 2006

86

43

(C) Optimizing the object-persistence formats
(assuming the Relational Model)

I (C) Optimizing the object-persistence formats

Dimensions of optimization:
» Storage efficiency (minimizing storage space, reduce redundant data)
» Speed of access (minimizing time to retrieve desired information)

A well-formed logical data model does not contain redundancy or many null values
— muplitple possible interpretation of null values may lead to mistakes

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006

88

44

§ Normal forms

* There are six: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF

+ A table that is in a higher NF is also in all lower NFs

+ A table must be at least in 1NF (i.e. with no structured or multi-
valued columns).

* Atable in a low NF can exhibit so-called update anomalies:
undesirable side effects as a result of a modification operation.

— E.g. if the same information is repeated many times (which may drive to
inconsistencies and storage space redundancies)

* We can normalize a table to a higher NF by splitting it vertically
— (the original table can be reconstructed using join operations)

* A db with very frequent updates should be in a high NF
* A rather static db can be in a low NF (more efficient, less joins)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006

89

d Functional Dependencies (in brief)

X=Y: t1[X] = 2[X] = t1[Y] = t2[Y]
* some trivial fds: A - A, X—=Y and Yc X

» if Kis the primary key of a relation R
then K»>R

Armstrong’s axioms
— YcX= XY
- XY = WX->WY
— XY, YoZ = X2

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006

90

45

e,
2§ Normal Forms (in brief)

A table is in:
* 1INF: If the domain of each attribute consists of atomic values only
— i.e. structured or multi-valued attributes are not allowed.

« 2NF:ifitis in INF and every non-key attribute is functionally dependent on the
whole primary key

— If the primary key consists of more than one attribute and there is a column that
depends on only a part of the primary key, then the table is not in 2NF.

« 3NF:ifitis in 2NF and no nokey attribute is transitively dependent on the
primary key
— If there is an attribute that depends on a non-primary key column then the
table in not in 3NF
+ BCNF:
* 4NF: based on multivalued dependencies

} More at HY360

For practical purposes it is usually adequate to normalize data into 3NF

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 91

§ Normal Forms: Examples

Not in 2NF:

Room(buildingNum, roomNum, street, streetNum, citypostalcode, city, numOfSeats)
is not in 2NF because buildingNum — street,...

In 2NF:
Room(buildingNum, roomNum, numOfSeats)
Building(buldingNum, street, streetNum, citypostalcode, city)

Not in 3NF:

Building(buldingNum, street, streetNum, citypostalcode, city)
is not in 3NF because citypostalcode — city

In 3NF:
Building(buldld, street, streetNum,citypostalcode)

CPostCode(citypostalcode, city)
we moved the attribute that depend on non-key attributes to another relation

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 92

H View Integration

» As part of the logical database
design, normalized tables likely have
been created from a number of

‘ separate ER diagrams.

* We should merge these tables and
remove any redundancy. This task

i] h is usually called view integration.

» Common view integration problems:

~ — synonyms
» 2 or more attributes have different
D D :] D E] :] :] name but the same meaning
— homonyms

« 2 or more attributes have the same
name but different meaning
* We have to identify such cases and
fix them

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 93

» CASE tools targeting system design and implementation normally
provide a data-modeling technique that targets a vast variety of
specific DBMSs.

» They provide a capability for constructing a combined
logical/physical model and immediately generating the relevant
SQL code.

» They also support a number of functions that are useful for view
integration.

» Using them we can save a lot of time
— [The CASE tool DB-MAIN will be presented in the tutorial of Dec 12]

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 94

47

ER=>Relational
Example: First ER Diagram

Deparment
Depld
DepName
Address

0-N

0-1

Employee
Empld

LastName

YearOfBirth
Salary

supporter
0-N

1-1
Dependent
FirstName
LastName
YearOfBirth

FirstName [

MiddleName [

Proj_Work

timePercentage
onP\imepercentage /

0-N. 017 Title
Proj_Manager

Supplier
Supld
Name
Status
Address

0-N 0-N
/

0-N_| Project

Projld

Supp_Part_Proj
Quantity

consistsOf
0-N

Part

PartNo
PartDescription
QuantityOnHand

oSy

U_ of Crete. Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 95
ER=>Relational
Example: Its translation to the relational model
] Supplier
- Supp_Part_Proj PP Supp_Part
Proj_Work ID Par ID_Sup 1D_Par
Pependent Employee ID_Emp ID Pro ZL;’;_E 1D_Sup
FirstName ID_Emp I!D Pro ID_Sup Status id: ID_Par
LastName Empld timePercentage Quantity ID_Sup
YearOfBirth . id- 1D P = Address —
FirstName id: ID_Pro - id: ID_Par id: 1D Su acc
Supporter LastName ID_Emp Project ID_Sup 'acE P I<i~__|ref: ID_Sup
ref: Supporter MiddleName acc ID_Pro ID_Pro ace
acc YearOfBirth ref: ID_Pro Projld acc ref: ID_Par
Salary ref: ID_Emp Title ref: ID_Sup
Deparment ID_Dep[0-1] acc ID_Emp[0-1] acc
1D_Dep id: ID_Emp id: ID_Pro ref: ID_Pro
Depld acc acc acc Part Component
DepName ref: ID_Dep ref: ID_Emp ref: ID_Par ID_Par C P_ID_Par
_Address acc acc PartNo ID_Par
id: 1D_Dep PartDescription Quantity
acc QuantityOnHand id: C_P_ID_Par
id: ID_Par ID_Par
acc acc
ref: ID_Par
acc
ref: C_P_ID_Par
Generated by DB-MAIN
U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 96

48

i ER => SQL DDL
Tables and Constraint Section

Header section Tables section
--* Standard SQL generation * -- Tables Section
--* Generator date: Nov 8 2004 * -
- Gé%r&eration date: Mon Nov 21 15:12:39 create table Component (
5 *

C_P_ID_Par char(10) not null,
ID_Par char(10) not null,
Quantity char(1) not null,

constraint ID_Component primary key
(C_P_ID_Par, ID_Par));

-- Database Section

create database SCHEMA compact;
i create table Deparment (

-- DBSpace Section ID_Dep char(10) not null,
S — Depld char(1) not null,

DepName char(1) not null,

Address char(1) not null,

constraint ID primary key (ID_Dep));

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 97

i ER -> SQL DDL
Index Section
Constraint section Index section
-- Constraints Section -- Index Section

alter table Component add constraint FKconsistsOf .
foreign key (ID_Par) create index ID_Component

references Part; on Component (C_P_ID_Par,

alter table Component add constraint FKCom_Par ID_Par);

foreign key (C_P_ID_Par)

references Part; create index FKconsistsOf
alter table Dependent add constraint FKEmp_Dep on Component (ID_Par);

foreign key (Supporter)
references Employee;
alter table Employee add constraint FKDept_Emp
foreign key (ID_Dep)
references Deparment;

create index ID
on Deparment (ID_Dep);

alter table Project add constraint FKProj_Manager create index FKEmp_Dep Instructions for the physical
foreign key (ID_Emp) on Dependent (Supporter); Py
references Employee; Data layer of the db

alter table Proj_Work add constraint FKPro_Pro
foreign key (ID_Pro)
references Project;

alter table Proj_Work add constraint FKPro_Emp
foreign key (ID_Emp) create index FKDept_Emp
references Employee; on Employee (ID_Dep);

alter table Supp_Part add constraint FKSup_Sup_1
foreign key (ID_Sup)
references Supplier;

create index ID
on Employee (ID_Emp);

create index ID
on Part (ID_Par);

U_ of Crete, Information Systems Analysis and Design Yannis Tzitzikas. Fall 2006 98

T
Qi JH ER: Reading and References

» Systems Analysis and Design with UML Version 2.0 (2nd edition) by A. Dennis, B. Haley Wixom,
D. Tegarden, Wiley, 2005. Chapter 11

* Requirements Analysis and System Design (2nd edition) by Leszek A. Maciaszek, Addison
Wesley, 2005, Chapter 8

» Slides from
— CS360 University of Crete: HY360 (www.csd.uoc.gr/~hy360)
— University of Texas at Austin (Data Modeling)

* More about the transition “Natural Language Specifications => ER Diagram” can be
found at:

— A. Min Tjoa, Linda Berger: Transformation of Requirement Specifications Expressed
in Natural Language into an EER Model. ER 1993: 206-217

— H. M. Harmain and Robert J. Gaizauskas, CM-Builder: An Automated NL-Based
CASE Tool, Automated Software Engineering", 45-54, 2000

» Database modeling in UML
— http://www.sparxsystems.com.au/resources/uml_datamodel.html

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2006 99

