
ΗΥΗΥΗΥΗΥ-351:
Ανάλυση καικαικαικαι ΣχεδίασηΣχεδίασηΣχεδίασηΣχεδίαση ΠληροφοριακώνΠληροφοριακώνΠληροφοριακώνΠληροφοριακών ΣυστημάτωνΣυστημάτωνΣυστημάτωνΣυστημάτων
Information Systems Analysis and Design

Πανεπιστήμιο Κρήτης, Φθινόπωρο 2005

Φροντιστήριο 6

Θέµα : Object Constraint Language

Ηµεροµηνία : 5 ∆εκεµβρίου 2005

CS-351 University of Crete, Fall 2005-2006 2

Outline

• What is OCL?

• OCL Basics

• OCL Tools

• Useful Links

CS-351 University of Crete, Fall 2005-2006 3

What is OCL?

• OCL is a language that can express additional and necessary
information about the models used in object-oriented modeling

• Much more information can be included in the model using the
combination of OCL and UML than through the use of UML alone

• Many essential aspects of the system cannot be expressed in a

UML diagram.

• OCL is a precise language that is easy for people and doesn't use

any mathematical symbols

• It is a typed language, so that each OCL expression has a type

• OCL is a declarative language. It specifies what should be
calculated, but not how to calculate the value of an expression.

CS-351 University of Crete, Fall 2005-2006 4

Why Combine UML and OCL?

• For instance, we have the following UML model :

• There is an association between class Flight and class Person, which indicates
that the number of passengers on a flight is unlimited

• In reality, the number of passengers will be restricted to the number of seats on
the airplane that is associated with the flight

• The correct way to specify the multiplicity is to add to the diagram the following
OCL constraint
context Flight inv: passengers->size() <= plane.numberOfSeats

CS-351 University of Crete, Fall 2005-2006 5

Where can OCL Expressions be used?

• OCL expressions can be used in a number of places in UML
models.

• The class diagram may benefit from OCL expressions invariants,
derivation rules, preconditions and postconditions.

• The interaction diagram and activity diagram can be improved by

specifying instances and actual parameter values, and by stating
conditions.

• The statechart may be augmented with guards

• In a use case, the pre- and postconditions can be written using

OCL.

CS-351 University of Crete, Fall 2005-2006 6

Class Diagram Example

CS-351 University of Crete, Fall 2005-2006 7

Invariants

• An invariant is a constraint that states a condition that must always
be met by all instances of the class, type, or interface (context).

• An invariant is described using an expression that evaluates to
true if the invariant is met.

• The context definition of an OCL expression specifies the model
entity for which the OCL expression is defined.

• The following OCL expression would specify an invariant that the
number of employees must always exceed 50:

context Company

inv: self.numberOfEmployees > 50

• self is an instance of type Company (optional here)

• The label inv: declares that the constraint is an «invariant»
constraint.

CS-351 University of Crete, Fall 2005-2006 8

AssociationEnds and Navigation

• Starting from a specific object, we can navigate an association on the class
diagram to refer to other objects

• To do so, we navigate the association by using the opposite association-end:

context Company

inv: self.manager.isUnemployed = false

context Company

inv: self.employee->notEmpty()

• If the multiplicity of the association-end has a maximum of one (“0..1” or “1”),
then the value of this expression is an object

• In the first invariant self.manager is a Person, because the multiplicity of the
association is one.

• In the second invariant self.employee will evaluate in a Set of Persons.

• A Set is a subtype of a Collection.

CS-351 University of Crete, Fall 2005-2006 9

Collections

• Collection is a predifined abstract type in OCL that plays important
role in OCL expressions.

• OCL distinguishes three different collection types: Set, Sequence,
and Bag

• A Set is like a mathematical set that it does not contain duplicate

elements.

• A Bag is like a set, which may contain duplicates

• A Sequence is like a Bag in which the elements are ordered.

• They have a large number of predefined operations on them.

• An operation of the collection itself is accessed by using an arrow
‘->’ followed by the name of the operation.

CS-351 University of Crete, Fall 2005-2006 10

Collection Operations(1/3)

• The following example is in the context of a person:

context Person

inv: self.employer->size() < 3

This applies the size operation on the Set self.employer, which results in the

number of employers of the Person self.

• context Person

inv: self.employer->isEmpty()

• This applies the isEmpty operation and evaluates to true if the set of employers
is empty and false otherwise.

• The parameter of select operation has a special syntax that enables one to
specify which elements of the collection we want to select.

• As an example, the following OCL expression specifies the collection of all the
employees older than 50 years :

context Company inv: self.employee->select(age > 50)

CS-351 University of Crete, Fall 2005-2006 11

Collection Operations(2/3)

• The reject operation is identical to the select operation, but with reject we get the
subset of all the elements of the collection for which the expression evaluates to
False.

• As an example, specify that the collection of all the employees who are not
married

context Company

inv: self.employee->reject(isMarried)

• The forAll operation in OCL allows specifying a Boolean expression, which must
hold for all objects in a collection

• This forAll expression results in a Boolean. For example, in the context of a
company:

context Company

inv: self.employee->forAll(age <= 65) or

inv: self.employee->forAll(p | p.age <= 65)

These invariants evaluate to true if the age property of each employee is less or
equal to 65.

CS-351 University of Crete, Fall 2005-2006 12

Collection Operations(3/3)

• When we want to specify a collection which is derived from some other
collection, but which contains different objects from the original collection (i.e., it
is not a sub-collection), we can use a collect operation.

• An example: specify the collection of birthDates for all employees in the context
of a company:

self.employee->collect(birthDate)

or

self.employee.birthdate

• The exists operation in OCL allows you to specify a Boolean expression which
must hold for at least one object in a collection:

• For example, in the context of a company:

context Company inv: self.employee->exists(forename = 'Jack')

• These expressions evaluate to true if the forename attribute of at least one
employee is equal to ‘Jack.’

CS-351 University of Crete, Fall 2005-2006 13

Navigation to Association Classes (1/2)

• To specify navigation to association classes (Job and Marriage in the example),
OCL uses a dot and the name of the association class starting with a lowercase
character:

context Person inv:self.job

• The sub-expression self.job evaluates to a Set of all the jobs a person has with
the companies that are his/her employer.

• In case of a recursive association, that is an association of a class with itself, the
name of the association class alone is not enough.

• Take the following model as an example:

• When navigating to an association class such as employeeRanking there are
two possibilities depending on the direction (towards the employees or the
bosses end.

CS-351 University of Crete, Fall 2005-2006 14

Navigation to Association Classes (2/2)

• To make the distinction, the rolename of the direction in which we
want to navigate is added to the association class name, enclosed

in square brackets

• In the expression

context Person

inv: self.employeeRanking[bosses]->sum() > 0

the self.employeeRanking[bosses] evaluates to the set of

EmployeeRankings belonging to the collection of bosses.

• the following example is invalid:

context Person

inv:self.employeeRanking->sum() > 0 -- INVALID

CS-351 University of Crete, Fall 2005-2006 15

Enumerations and Let Expressions

• Enumerations are Datatypes in UML.

• An enumeration defines a number of enumeration literals, that are the possible
values of the enumeration.

• Within OCL one can refer to the value of an enumeration.

• When we have Datatype named Gender in the example model with values
'female' or 'male' they can be used as follows:

context Person inv: gender = Gender::male

• The let expression allows one to define a variable which can be used in the
constraint.

• The following example defines the variable income

context Person inv:

let income : Integer = self.job.salary->sum() in

if isUnemployed then income < 100 else income >= 100 endif

• If Expressions are defined in the following manner:

if <boolean OCL expression> then <OCL expression> else <OCL expression>
endif

CS-351 University of Crete, Fall 2005-2006 16

Defining New Attributes and Operations

• The Let expression allows a variable to be used in one OCL expression.

• To enable reuse of variables/operations over multiple OCL expressions one can
use a constraint through definition expressions, in which helper
variables/operations are defined.

• This definition constraint must be attached to a context and may only contain
variable and/or operation definitions, nothing else.

• The syntax of the attribute or operation definitions is similar to the Let
expression, but each attribute and operation definition is prefixed with the
keyword ’def’ as shown below.

• context Person

def: income : Integer = self.job.salary->sum()

def: nickname : String = ’Little Red Rooster’

def: hasTitle(t : String) : Boolean = self.job->exists(title = t)

CS-351 University of Crete, Fall 2005-2006 17

Preconditions and Postconditions

• A precondition to an operation is a restriction that must be true at the moment
that the operation is going to be executed.

• A postcondition to an operation is a restriction that must be true at the moment
that the operation has just ended its execution.

• The context declaration in OCL uses the context keyword, followed by the type
and operation declaration.

• Context Person::hire(c:Company)

pre: not employment->includes(c)

• The reserved word result denotes the result of the operation, if there is one. It
can be used in the postcondition only.

• The following OCL expression specify a postcondition that the execution of the
income operation returns 5000

context Person::income(d : Date) : Integer

post: result = 5000

CS-351 University of Crete, Fall 2005-2006 18

Previous Values in Postconditions

• In a postcondition, the expression can refer to values at two moments in time:
i) The value at the start of the operation
ii) The value upon completion of the operation

• To refer to the value of a property at the start of the operation, one has to postfix
the property name with the keyword ‘@pre’:
context Person::birthdayHappens()
post: age = age@pre + 1

• The term age refers to the value of the attribute after the execution of the
operation.

• The term age@pre refers to the value of the attribute age at the start of the
operation.

• If the property has parameters, the ‘@pre’ is postfixed to the propertyname,
before the parameters.
context Company::hireEmployee(p : Person)
post: stockprice() = stockprice@pre() + 10

• The ‘@pre’ postfix is allowed only in OCL expressions that are part of a
Postcondition.

CS-351 University of Crete, Fall 2005-2006 19

Tuples

• It is possible to compose several values into a tuple.

• A tuple consists of named parts, each of which can have a distinct
type.

• Some examples of tuples are:

Tuple {name: String = ‘John’, age: Integer = 10}

• When an operation has out or in/out parameters, the return type is
a Tuple.

• The postcondition for the income operation with an out parameter
bonus could be:

Context Person::getIncome(d:Date, bonus:Integer): Integer

post: result = Tuple{bonus=300, result=1000}

• The return type of operation calls is Tuple(bonus: Integer, result:
Integer).

CS-351 University of Crete, Fall 2005-2006 20

Messaging in Postconditions (1/2)

• Another thing allowed only in postconditions is specifying that communication
has taken place.

• This can be done using the hasSent ('^') operator:

context Subject::hasChanged()

post: observer^update(12, 14)

• The observer^update(12, 14) results in true if an update message with
arguments 12 and 14 was sent to the observer object during the execution of the
operation hasChanged().

• update() is either an operation defined in the class of observer, or a signal
specified elsewhere in the UML model.

• The argument(s) of the message expression (12 and 14 in this example) must
conform to the parameters of the operation/signal definition.

• During execution of an operation many messages may have been sent that
represent calls to the same operation, or send signals according to the same
signal definition.

CS-351 University of Crete, Fall 2005-2006 21

Messaging in Postconditions (2/2)

• Any operation call or signal being sent is virtually wrapped in an instance of
OclMessage, a special type defined by OCL

• One can obtain access to all OclMessages that wrap a matching call or signal,
through the message operator (denoted as ^^).

• A call or signal matches when the operation name and the argument types given
after the message operator correspond to the formal definition of the operation
or signal, as shown in the following example:

observer^^update(12, 14)

• This expression results in the sequence of messages sent that match
update(12, 14) being sent by the contextual instance to the object called
observer during the execution of the operation.

• Each element of the sequence is an instance of OclMessage.

• The following postcondition is semantically equal to the postcondition in the
previous slide

context Subject::hasChanged()

post: observer^^update(12, 14)->notEmpty()

CS-351 University of Crete, Fall 2005-2006 22

OCL Tools (1/2)

• Support tools aimed at making this language easier to use are
becoming available.

• These tools, both commercial and freely available ones, are
capable of supporting and handling OCL expressions.

• The OCL Compiler (OCLCUD), by the University of Dresden, has

been created in Java. There are two ways of working with the
parser. OCLCUD can be used independently as the ocl compiler

demo applet or as part of Argo/UML. The main characteristics of
this analyser are the syntactical and semantic checking of OCL

expressions and the possibility of generating Java code and SQL
from the constraints written in OCL.

CS-351 University of Crete, Fall 2005-2006 23

OCL Tools (2/2)

• Octopus is an Eclipse plugin, which is able to check the syntax of
OCL expressions, as well as the types and correct use of model

elements like association roles and attributes.

• OCLE version 2.0 is a UML CASE Tool offering full OCL support

both at the UML metamodel and model level. You can use UML

models saved in XMI 1.0 or 1.1 versions, regardless of the tools
and parsers used in producing and transferring models.

• EmPowerTec offers an OCL-AddIn for Rational Rose that offers
comprehensive support for OCL 2.0 including full syntactic

and semantic checking. It provides everything for using OCL
efficiently and productive in Rational Rose models.

CS-351 University of Crete, Fall 2005-2006 24

Useful Links

• OCL 2.0 Specification:

www.omg.org/docs/ptc/03-10-14.pdf

• Klasse Objecten OCL Center :

www.klasse.nl/ocl/

• Dresden OCL Toolkit :

dresden-ocl.sourceforge.net/

• ArgoUML

argouml.tigris.org/

• OCLE 2.0 - Object Constraint Language Environment :

lci.cs.ubbcluj.ro/ocle/

• Octopus OCL Tool

www.klasse.nl/english/research/octopus-intro.html

• OCL-AddIn for Rational Rose

www.empowertec.de/products/rational-rose-ocl.htm

