
ΗΥΗΥΗΥΗΥ-351:
Ανάλυση καικαικαικαι ΣχεδίασηΣχεδίασηΣχεδίασηΣχεδίαση ΠληροφοριακώνΠληροφοριακώνΠληροφοριακώνΠληροφοριακών ΣυστημάτωνΣυστημάτωνΣυστημάτωνΣυστημάτων
Information Systems Analysis and Design

Πανεπιστήμιο Κρήτης, Φθινόπωρο 2005

Φροντιστήριο 5

Θέµα : Interaction Diagrams / State Machine Diagrams

Ηµεροµηνία : 21 Νοεµβρίου 2005 



CS-351 University of Crete, Fall 2005-2006 2

Outline

• Interaction Diagrams

– Sequence diagrams

– Communication diagrams

• State Machine Diagrams

•For each Diagram

•Definition

•Elements

•Demonstration

•Tool tricks



CS-351 University of Crete, Fall 2005-2006 3

Sequence Diagrams

• Definition : An interaction diagram that represents objects as 
lifelines running down the page. 

• The interactions between the objects are represented as 
messages drawn as arrows from the source lifeline to the target 

lifeline.

• Good at showing which objects communicate with which other 
objects and what messages trigger those communications. 

• NOT intended for showing complex procedural logic.



CS-351 University of Crete, Fall 2005-2006 4

Sequence Diagrams

• Lifelines

• Messages

– Execution Occurrence

– Self Message

– Lost and Found Messages

• Lifeline Start and End

• Duration and Time Constraints

• Combined Fragments

• Gate

• Part Decomposition

• State Invariant / Continuations



CS-351 University of Crete, Fall 2005-2006 5

Sequence Diagrams - Lifelines

• A lifeline represents an individual participant. If its name is self then that 
indicates that the lifeline represents the owner of the sequence diagram.

• Sometimes a sequence diagram will have a lifeline with an actor element symbol 
at its head. This will usually be the case if the sequence diagram is owned by a 
use case. 

• Boundary, control and entity elements from robustness diagrams can also own 
lifelines.



CS-351 University of Crete, Fall 2005-2006 6

Sequence Diagrams - Messages

• complete

– implicit return message

• lost or found

• synchronous

– denoted by the solid arrowhead

• asynchronous

– denoted by the dashed line

• call or signal

Most messages look alike, pay 

attention to the dashed line, or the 

strong arrow at the end



CS-351 University of Crete, Fall 2005-2006 7

Sequence Diagrams – Self Message

• A self message can represent a 
recursive call of an operation, or one 
method calling another method 
belonging to the same object. 

• It is shown as creating a nested 
focus of control in the lifeline’s 
execution occurrence.



CS-351 University of Crete, Fall 2005-2006 8

Sequence Diagrams – Lost and found Messages

• Lost messages are 

– those that are either sent but do not 

arrive at the intended recipient, or 

which go to a recipient not shown on 

the current diagram. 

• Found messages are 

– those that arrive from an unknown 

sender, or from a sender not shown 

on the current diagram. They are 

denoted going to or coming from an 

endpoint element.



CS-351 University of Crete, Fall 2005-2006 9

Sequence Diagrams – Lifeline start and end

• A lifeline may be created or 
destroyed during the timescale 
represented by a sequence diagram. 

• Creation is denoted by the symbol at 
the head of the lifeline.

• Destruction is marked by an x-mark.



CS-351 University of Crete, Fall 2005-2006 10

Sequence Diagrams - Duration and Time Constraints

• The lifeline represents the passage of time down the screen.

• When modeling a real-time system, or even a time-bound business process, it 
can be important to consider the length of time it takes to perform actions. By 
setting a duration constraint for a message, the message will be shown as a 
sloping line.



CS-351 University of Crete, Fall 2005-2006 11

Sequence Diagrams - Operators

• “Alt” models if…then…else constructs.

• Option fragment (denoted “opt”) models switch constructs.

• Break fragment models an alternative sequence of events that is processed instead of 
the whole of the rest of the diagram.

• Parallel fragment (denoted “par”) models concurrent processing.

• Weak sequencing fragment (denoted “seq”) encloses a number of sequences for which 
all the messages must be processed in a preceding segment before the following 
segment can start, but which does not impose any sequencing within a segment on 
messages that don’t share a lifeline.

• Strict sequencing fragment (denoted “strict”) encloses a series of messages which must 
be processed in the given order.

• Negative fragment (denoted “neg”) encloses an invalid series of messages.

• Critical fragment encloses a critical section.

• Ignore fragment declares a message or message to be of no interest if it appears in the 
current context.

• Consider fragment is in effect the opposite of the ignore fragment: any message not 
included in the consider fragment should be ignored.

• Assertion fragment (denoted “assert”) designates that any sequence not shown as an 
operand of the assertion is invalid.

• Loop fragment encloses a series of messages which are repeated.



CS-351 University of Crete, Fall 2005-2006 12

Sequence Diagrams – Combined Fragments



CS-351 University of Crete, Fall 2005-2006 13

Sequence Diagrams - Gate

• A gate is a connection point for connecting a message inside a fragment with a 
message outside a fragment. EA shows a gate as a small square on a fragment 
frame.



CS-351 University of Crete, Fall 2005-2006 14

Sequence Diagrams – Part decomposition

• An object can have more than one lifeline coming from it. This allows for inter-
and intra-object messages to be displayed on the same diagram.



CS-351 University of Crete, Fall 2005-2006 15

Sequence Diagrams - State Invariant / Continuations

• A state invariant is a constraint 
placed on a lifeline that must be true 
at run-time. It is shown as a 
rectangle with semi-circular ends.

• A continuation has the same notation 
as a state invariant but is used in 
combined fragments and can stretch 
across more than one lifeline.



CS-351 University of Crete, Fall 2005-2006 16

Sequence Diagrams – Tool Example

• Sequence diagrams re-use class diagrams

– Create a class diagrams

• Define the classes

– Create a sequence diagrams

• Right click on the sequence diagram and choose Select Class

• When creating a message you may choose Select Operation

– From the operation list it will show the operations (aka methods) the class supports



CS-351 University of Crete, Fall 2005-2006 17

Outline

• Interaction diagrams

– Sequence diagrams

– Communication diagrams

• State Machine Diagrams



CS-351 University of Crete, Fall 2005-2006 18

Communication Diagrams

• Formerly called a collaboration diagram

• Definition : Interaction diagram that shows similar information to 

sequence diagrams but its primary focus is on object relationships.

• On communication diagrams, objects are shown with association 

connectors between them. Messages are added to the 

associations and show as short arrows pointing in the direction of 
the message flow. The sequence of messages is shown through a 

numbering scheme.



CS-351 University of Crete, Fall 2005-2006 19

Communication Diagrams - Example

• The following two diagrams show a communication diagram and 
the sequence diagram that shows the same information. 

• Although it is possible to derive the sequencing of messages in the 
communication diagram from the numbering scheme, it isn’t 

immediately visible. 

• What the communication diagram does show quite clearly though 
is the full set of messages passed between adjacent objects.



CS-351 University of Crete, Fall 2005-2006 20

Communication Diagrams - Example



CS-351 University of Crete, Fall 2005-2006 21

Communication Diagram – Tool example

• How to derive a communication diagram from a sequence diagram

– Synchronize Communication diagram

• It is also possible to derive a sequence diagram from a 
communication diagram

– Synchronize Sequence diagram



CS-351 University of Crete, Fall 2005-2006 22

Outline

• Interaction diagrams

– Sequence diagrams

– Communication diagrams

• State Machine Diagrams



CS-351 University of Crete, Fall 2005-2006 23

State Machine Diagrams

• Definition : A State Machine Diagram models the behavior of a 
single object, specifying the sequence of events that an object 

goes through during its lifetime in response to events.

• As an example, the following State Machine Diagram shows the 

states that a door goes through during its lifetime.



CS-351 University of Crete, Fall 2005-2006 24

State Machine Diagrams - Example

• The door can be in one of three states:

– Open, Closed, Locked

• It can respond to the events Open, Close, Lock and Unlock.

• Notice ALL events are valid. 

– The door can be locked until it is closed.

– The door can be closed only if the doorway is empty



CS-351 University of Crete, Fall 2005-2006 25

State Machine Diagrams

• States
– Initial and final states

– Transitions

– State Actions

– Self-transitions

• Compound states

• Entry Point

• Exit Point

• Choice Pseudo-State

• Junction Pseudo-State

• Terminate Pseudo-State

• History States

• Concurrent Regions



CS-351 University of Crete, Fall 2005-2006 26

State Machine Diagrams

• A State is denoted by a round-cornered rectangle with the name of 
the state written inside it.

• The Initial State is denoted by a filled black circle and may be 
labeled with a name. 

• The Final State is denoted by a circle with a dot inside and may 

also be labeled with a name.

Initial

State
Final



CS-351 University of Crete, Fall 2005-2006 27

State Machine Diagrams - Transitions

• Transitions from one state to the next are denoted by lines with
arrowheads. 

• A transition may have a trigger, a guard and an effect, as below.

• "Trigger" is the cause of the transition.

• "Guard" is a condition which must be true in order for the trigger to 
cause the transition.

• "Effect" is an action which will be invoked directly on the object 

that owns the state machine as a result of the transition.



CS-351 University of Crete, Fall 2005-2006 28

State Machine Diagrams – Entry and Exit

• In previous example, an Effect was associated with the transition. 

• If the target state had many transitions arriving at it, and each 

transition had the same effect associated with it, it would be better 
to associate the effect with the target state rather than the 

transitions. This can be done by defining an entry action for the 

state. The diagram below shows a state with an entry action and 
an exit action.



CS-351 University of Crete, Fall 2005-2006 29

State Machine Diagrams – Self Transitions

• A state can have a transition that returns to itself, as in the following diagram. 
This is most useful when an effect is associated with the transition.



CS-351 University of Crete, Fall 2005-2006 30

State Machine Diagrams – Compound States

• A state machine diagram may include sub-machine diagrams, as 
in the example below.

• The notation in the above version indicates that the details of the 
Check PIN sub-machine are shown in a separate diagram.



CS-351 University of Crete, Fall 2005-2006 31

State Machine Diagrams – Entry Point

• Sometimes you won’t want to enter a sub-machine at the normal 
Initial State. For example, in the following sub-machine it would be 

normal to begin in the Initializing state, but if for some reason it 

wasn’t necessary to perform the initialization, it would be possible 
to begin in the Ready state by transitioning to the named Entry 

Point.



CS-351 University of Crete, Fall 2005-2006 32

State Machine Diagrams – Exit Points

• In a similar manner to Entry Points, it is possible to have named 
alternative Exit Points. The following diagram gives an example 

where the state executed after the main processing state depends

on which route is used to transition out of the state.



CS-351 University of Crete, Fall 2005-2006 33

State Machine Diagrams – Choice Pseudo State

• A choice pseudo-state is shown as a diamond with one transition arriving and 
two or more transitions leaving. The following diagram shows that whichever 
state is arrived at after the choice pseudo-state is dependent on the message 
format selected during execution of the previous state.



CS-351 University of Crete, Fall 2005-2006 34

State Machine Diagrams – Junction Pseudo State

• Junction pseudo-states are used to chain together multiple transitions. A single
junction can have one or more incoming and one or more outgoing transitions 
and a guard can be applied to each transition. Junctions are semantic-free; a 
junction which splits an incoming transition into multiple outgoing transitions 
realizes a static conditional branch as opposed to a choice pseudo-state which 
realizes a dynamic conditional branch.



CS-351 University of Crete, Fall 2005-2006 35

State Machine Diagrams – Terminate Pseudo State

• Entering a terminate pseudo-state indicates that the lifeline of the 
state machine has ended. A terminate pseudo-state is notated as 

a cross.



CS-351 University of Crete, Fall 2005-2006 36

State Machine Diagrams – History State

• A History State is used to remember the previous state of a state machine when 
it was interrupted. The following diagram illustrates the use of history states. The 
example is a state machine belonging to a washing machine.

• In this state machine, when a washing machine is running it will progress from 
Washing through Rinsing to Spinning. If there is a power cut, the washing 
machine will stop running and will go to the Power Off state. Then when the 
power is restored, the Running state is entered at the History State symbol 
meaning that it should resume where it last left-off.



CS-351 University of Crete, Fall 2005-2006 37

State Machine Diagrams – History State

• Shallow history is denoted by H in a circle, and means that when
you transition into a hierarchical composite state, the history

remembers just the top-level substate

• There is also deep history, denoted by H* is a circle, and this

means that when you transition into a hierarchical composite state, 

the history remembers the lowest level substate and goes to that



CS-351 University of Crete, Fall 2005-2006 38

State Machine Diagrams – Concurrent Regions

• A state may be divided into regions containing sub-states that exist and execute 
concurrently. The example below shows that within the state "Applying Brakes", 
the front and rear brakes will be operating simultaneously and independently. 
Notice the use of fork and join pseudo-states rather than choice and merge 
pseudo-states. These symbols are used to synchronize the concurrent threads.



CS-351 University of Crete, Fall 2005-2006 39

Questions



CS-351 University of Crete, Fall 2005-2006 40

References

• Sequence Diagrams

– http://www.sparxsystems.com/resources/uml2_tutorial/uml2_sequencediagram.html

– http://www.agilemodeling.com/artifacts/sequenceDiagram.htm

– http://www.visual-paradigm.com/VPGallery/diagrams/Sequence.html

• Communication Diagrams

– http://sparxsystems.com.au/resources/uml2_tutorial/uml2_communicationdiagram.ht
ml

– http://www.agilemodeling.com/artifacts/communicationDiagram.htm

– http://www.visual-paradigm.com/VPGallery/diagrams/Collaboration.html

• State Machine Diagrams

– http://sparxsystems.com.au/resources/uml2_tutorial/uml2_statediagram.html

– http://www.agilemodeling.com/artifacts/stateMachineDiagram.htm

– http://www.visual-paradigm.com/VPGallery/diagrams/State.html

• UML 2.0 Tutorial

– http://www.visual-paradigm.com/product/vpuml/tutorials/uml.jsp (Interactive)

– http://isds.bus.lsu.edu/cvoc/learn/bpr/cprojects/spring1998/modeling/interaction.html


