
ΗΥΗΥΗΥΗΥ-351:
Ανάλυση καικαικαικαι ΣχεδίασηΣχεδίασηΣχεδίασηΣχεδίαση ΠληροφοριακώνΠληροφοριακώνΠληροφοριακώνΠληροφοριακών ΣυστημάτωνΣυστημάτωνΣυστημάτωνΣυστημάτων
Information Systems Analysis and Design

Πανεπιστήμιο Κρήτης, Φθινόπωρο 2005

Φροντιστήριο 1

Θέµα : CASE Tools

Ηµεροµηνία : 10 Οκτωβρίου 2005

CS-351 University of Crete, Fall 2005-2006 2

Outline

• Software Development

– Problem

– Need for tools

• CASE Tools

– Definition

– Classification

– Standard functionality

– Components

– Benefits and Difficulties

– CASE Tools & UML

• Tool demonstration

– Rational Modeler

– ArgoUML

CS-351 University of Crete, Fall 2005-2006 3

Software development : Problem

• Software development requires all the support it can get because:

– It is a highly systematic process due to its complexity

– It is carried out by teams that need to cooperate on a subtask level

– Requires reusability of components and services

CS-351 University of Crete, Fall 2005-2006 4

Software development : Activities

Time, Budget

Resource Management
Version Tracking Quality Control

Requirements Analysis

Documentation

Diagram Manipulation

Code Editing

Groupware

Packaging

CS-351 University of Crete, Fall 2005-2006 5

Software development : Methodologies

• Forward Engineering

– Analysis – Design – Implementation

• Reverse Engineering

– Given the implementation create the specifications

• Roundtrip Engineering

– Start anywhere, end anywhere (or nowhere, ever)

• Re-engineering

– Restructure and rebuild (partially) an existing system to fit new requirements

CS-351 University of Crete, Fall 2005-2006 6

Software development : Need for tools

• Development time: CASE tools

– Support software development and project management

– Such tools exist only on the developers machine

• Runtime: “Libraries, toolkits, frameworks, etc”

– Enhance functionality by pre-developed and re-used software

– Such tools (software artifacts) are used at runtime

CS-351 University of Crete, Fall 2005-2006 7

CASE Tools: Definition

• CASE: Computer-Aided Software Engineering

• A suite of tools (toolbox) to support all aspects of the software
development process, e.g.

– Analysis and design diagrams

– Source code creation

– Data management repository

• The tools inside the toolbox must be able to cooperate

CASE Tools are computerized applications

supporting and partially automating software
production activities [Fugetta]

CS-351 University of Crete, Fall 2005-2006 8

CASE Tools : Goal

• Productivity enhancement

• Software quality

• Project management

The tools should do the routine work.

Good developers write good software faster with CASE Tools.

Bad developers write more bad software in the same time.

CS-351 University of Crete, Fall 2005-2006 9

CASE Tools : General requirements

• Support of the software development process and methodology

– Create diagrams

• Supply basic functionality, do routine tasks automatically

– Be able to support editing of code in the particular programming language,
supply refactoring methods

• Features to enhance efficiency

– Automatic code generation

• Features to enhance quality

– Support of design patterns

• Intuitive use

• Integration with other tools

– Code editor works with code repository

CS-351 University of Crete, Fall 2005-2006 10

CASE Tools: Classification

Integrated CASE (I-CASE)

Lower CaseUpper Case

Design ImplementationPlanning Analysis

Upper Case
Support the analysis & design

Lower Case
Support the construction &

maintenance

•Currently there are tools for the entire cycle

CS-351 University of Crete, Fall 2005-2006 11

CASE Tools : Standard functionality

Diagram Support Software Construction

CS-351 University of Crete, Fall 2005-2006 12

CASE Tools : Diagram Support

• Checks for syntactic correctness

– the correct symbols are used

• repository support

– storing diagrams, descriptions of diagrams and specifications

• checks for consistency and completeness

– the same “object” is modelled by different aspects and diagrams

• (the manual consistency and completeness check is time consuming)

• navigation to linked diagrams

• layering

• traceability

– the way from requirements to code, so if a req is changed ...

• report generation

• system simulation

• performance analysis

CS-351 University of Crete, Fall 2005-2006 13

CASE Tools : Software Construction

• Code generators

– they save time

– the code is consistent with the design

– change in reqs = > change in code

– => database schemata

• maintenance tools

– reverse engineering tools: from code to design models

– analyze of program code and identify those parts that are most likely to be
subject to change

CS-351 University of Crete, Fall 2005-2006 14

CASE Tools : Components

TestTest

Project ManagementProject Management

DocumentationDocumentation

RepositoryRepository

Test Tools

• Fault injectors

• Bug Tracker

• Quality Control

Project Management Tools

• Tasks and dependencies

• Resource planning

• Monitoring

Documentation Tools

• Word processors

• Graphics tools

• Report generators

Repository System

• Team development

• Integrity of artifacts

• Management of variants

CS-351 University of Crete, Fall 2005-2006 15

CASE Tools : Benefits and Difficulties

• Benefits

– The standardization of notations aids the communication within the team

– Automatic checks

– Reuse of design/code

– Code generation saves time

– Increase product quality

• Difficulties

– sometimes tools restrict you on how you should work

– the validation of correctness/completeness may create the illusion that the
design indeed meets the requirements

– installation / training costs

CS-351 University of Crete, Fall 2005-2006 16

CASE Tools and UML : What is XMI?

• XMI = XML Metadata Interchange

• An XML schema or document type definition (DTD) for object

modeling.

• Purpose:

– enable easy interchange of metadata between modeling tools – based on
UML

• It is extremely verbose as UML can handle almost any data

modeling requirement.

CS-351 University of Crete, Fall 2005-2006 17

References

• CASE Tools
– A Classification of CASE technology, Fuggeta, IEEE

– Fundamentals of Software Engineering, Ghezzi et al, Prentise Hall International

– Software engineering tools and environments : A roadmap, William Harrison, Harold Ossher &
Peri Tarr

– Environments to Support Collaborative Software Engineering, Cornelia Boldyreff, Mike Smith,
Dawid Weiss, David Nutter, Pauline Wilcox, Stephen Rank, Rick Dewar

• XML Metadata Interchange
– http://www.oasis-open.org/cover/xmi.html

– http://www.omg.org/technology/documents/formal/xmi.htm

• Tutorials
– UML

• http://www.agilemodeling.com/

– Rational Modeler
• Online courses (non-free)
• Build in tutorials
• Build in user-guide

– ArgoUML
• http://argouml.tigris.org/documentation/defaulthtml/manual/pt01.html
• http://www.cee.hw.ac.uk/ophelia/tutorial/argoUser/argo_main.html

CS-351 University of Crete, Fall 2005-2006 18

List of CASE tools (UML 2.0)

• Rational (IDE integration)

– XDE

– Modeler

– Software Architect

• ArgoUML

• MonoUML

• Visual Paradigm

• Microsoft Visio (extra stencils for UML 2.0)

• …. More at OMG Tool List

CS-351 University of Crete, Fall 2005-2006 19

Tool Demonstration

• Rational

Modeler

• ArgoUML

