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Physical (or Implementation) Diagrams

•UML component diagrams

•UML deployment diagrams
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U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 2

Outline

• Component Diagrams

• Deployment Diagrams

• Combining Component & Deployment Diagrams
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Key questions

• Which platform is best suited for this information system?

• How to select hardware ?

• How to select software ?

• How to select networking?

• How to express the physical architecture (see Lecture 18) of 
the system using a standard diagrammatic notation?

Computing platform comprises hardware, software (PLs, DBMSs) and networking.

Component Diagrams
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Component Diagrams (διαγράµµατα εξαρτηµάτων) 

Component Diagrams show various components and their dependencies

• Component:

– physical module of code (like package, class, or even file)

• dependence:

– change dependency (e.g. communication dependencies, compilation dependencies)

Notations :

UI

UML 1

Database

dependency

UI

UML 2

Database

ProductList ProductDisplay

Configuration

Purchase

OrderTracking
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The Characteristics of a Component

• a unit of independent deployment (never deployed partially)

• sufficiently documented and self-contained to be “plugged into”

other components by a third-party

• it cannot be distinguished from copies of its own; in any given 
application, there will be at most one copy of a particular 

component

• it is a replaceable part of a system (can be replaced by another 

component that conforms to the same interface)

• it fulfils a clear function and is logically and physically cohesive

• it may be nested in other components

[Szyperski 98, Rumbaugh et al. 99, Maciaszek 2005)]
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Components

• Components are like classes and packages

– can be connected through interfaces

• Components are about how customers want to relate to 

software
• they want to be able to upgrade it like they can upgrade their stereo (in 

pieces)

• they want to mix and match pieces from various manufacturers

– reasonable but difficult to satisfy

• So we could define a component as: 

– a logical and replaceable part of a system that conforms to and 
provides the realization of a set of interfaces

– an independently purchasable and upgradeable piece of 
software
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Components and related  Notions

• Component

– a replaceable part of a system that conforms  to and provides the realization of a set of 

interfaces 

• Interface:

– a collection of operations that specify a service that is provided by or requested from a class 

or component

• Port

– a specific window into an encapsulated component accepting messages to and from the 

component conforming to specified interfaces

• Part

– (an internal component) the specification of a role that composes part of the implementation 

of a component.

• Internal structure

– the implementation of a component by means of a set of parts that are connected together in 

a specific way

• Connector: 

– a communication relationship between two parts or ports within the context of component
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Components and interfaces

Motion Imaging

required 

interface

Provided

interface

Motion Imaging

usage realization
<<interface>>

imageObserver

imageUpdate():Boolean

Motion Imaging
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Components and interfaces (II)

Client Server

required 

interface

Provided

interface

Web page 

(client)

Google

web service
*

Client Server*

Multiplicity:

We can have several clients
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Fine-grained Components: Example

We could use component diagrams for 
modeling more fine-grained 
components (e.g. files).

<<Header>>

Products.h

<<Body>>

Products.cpp

<<Object Code>>

SalesOrder.o

<<Executable>>

Application.exe

<<includes>>
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Coarse-grained components: e.g. Layers

Layer 3

Layer 2

Layer 1

Layer 3

Layer 2

Layer 1

Internal structure of component

Layer 3

a b

c d]
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Internal Structure of Components

compile

Compiler

lex:Lexical Analyzer parse:Parser

gen: Code Generator opt:Optimizer[1..3]

part name part type part multiplicity
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Ports

Ticket Seller

normal 
sales

priority 
sales

Ticket Sales

Ticket Sales

port name Interface name

Load Attractions

attractions

charging

Credit Cards

Booking

port

• Ports permit the interfaces of a component to be divided into discrete packets 
and used independently

• The externally visible behaviour of the component is the sum of its ports.



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 15

Connecting Components

• Components can be connected by wiring together their ports

– connector:  a wire between two ports

delegation connector

(connect an external port with the port of a part 

component)

direct connector 

(more tight coupling)

connector by interfaces

ports

In practice,  components diagrams are sometimes depicted
in a less formal and more liberal graphical notation
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compile

Compiler

lex:Lexical Analyzer parse:Parser

gen: Code Generator opt:Optimizer[1..3]

Compiler

Lexical Analyzer Parser

Code Generator Optimizer
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FASTAXON (functional) architecture

Expression

Builder

Storage Manager

Validity Checker

Nav. Tree

Generator

RDBMS

Designer
Object Indexer/

End User

Taxonomy

Editor

Designer

Store taxonomies and algebraic 

expressions using a relational 

DBMS

Define and update

taxonomies

through a GUI

Check the validity of a 

compound term

Derive navigational trees

dynamically

Formulate expressions

using a GUI

MySQL

Apache 

Tomcat

Java

JSP

IExlorer
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Knowledge Manager

Ontology

Metadata

Query and Update

Languages
Knowledge 

Repository

Access 

Services

• Navigation

• Querying

Evolution 

Services

• Updates

• Revision

Knowledge Manager

RDF, RDF/S

RQL/RUL

APIs 
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RDF Suite Architecture

Parser

VRP Internal

RDF Model

Validator

R
D
F
 L
o
a
d
e
r

L
o
a
d
in
g
 R
D
F
 J
a
v
a
 A
P
Is

ICS-VRP

JDBC

Class Property

ORDBMS

D
B
M
S
 R
D
F
 q
u
e
ry
 A
P
I

S
Q

L
3

+
 S

P
I 

fu
n

ct
io

n
s

LIB

C++

p_namedomain range

Artist creates Artifact

c_name

Artist

URI

creates

subcl

Painter

supcl

Artist

subpr

paints

suppr

creates

SubClass SubProperty

source

paints

target

creates

Artist creates

SQL3
SQL3

ICS-RQL Interpreter

Typing

Evaluation

Graph

Constructor

Parser
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DOMENICUS Architecture

Unstructured

data

Structured

data
Logical

pointers

Information model

Semantic network-based Information Repository OS/tool storage

Hypermedia 

Applications
Hypermedia 

data models/

exchange formats

Presentation

Engine
run-time

Presentation model

API

Conversion

module

UML Deployment Diagrams
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Deployment Diagrams 
(διαγράµµατα ανάπτυξης/σύνταξης/παράθεσης)

Shows the physical relationship among software & hardware 

components in the delivered system

Node: 

• computational unit (hardware)

– e.g. PC, sensor, mainframe, 

mobile device

Connection (among nodes)

• communication paths over which 
the system will interact

notation

notation
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A deployment diagram

Clients/TerminalsDB Server Web Server

DB Server Web Server

Client

Client
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Deployment Diagrams> Nodes

• Physical element (with memory and 
processor)

• With nodes we can model the 
topology of the hardware of a system

laptop

Sales PC

Sales.exe

Backup Server

Sofoklis:CompaqPresar
io1800}

RAM=256MB
speed=X mHz

possible representations
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Deployment Diagrams> Connections

kiosk   *

console

server RAID farm

10-T Ethernet

RS-232

Connections

– Ethernet, serial line, satellite link

– we can use stereotypes to distinguish them to types

• <<serial line>>

• <<satellite link>>

• ...
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Deployment Diagrams> Connections

Browser Client
Rich Client

{OS=Windows}

Web server

{OS=Solaris}

{web server=apache}

{number deployed =3}

Application Server

LAN/Java RMI

LAN/httpInternet/http

Networking type + protocol
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Modeling the Distribution of Artifacts

kiosk   *

console

server
RAID farm

10-T Ethernet

RS-232

user.exe

admin.exe

config.exe

sadmin.exe

backup.exe

memory-2GB
speed=mHz



Combining Component and Deployment Diagrams
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Combining Component and Deployment Diagrams:

Example

Application 

Logic

Data Access 

Logic

Data Storage

Presentation

Logic

Server

Client

Internet/httpData Storage

Data Access Logic

Application Logic

Presentation Logic

Server
Clients/Terminals
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Combining Component and Deployment Diagrams:

Notes

• If we try to show all the components of a system in deployment 

diagrams they are will probably become very large and difficult to 
read.

• So we usually depict the key elements

• Alternatively, (in case we want to show everything  ) we can use a 

table to denote artifacts and their locations (e.g. use Excel)
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Hardware and Software Specification

• We have to specify the new hardware or software that must be purchased

• Actual acquisition of hardware and software usually left to a purchasing 
department -- especially in larger firms

Realities in Infrastructure Design

• Most often the infrastructure will be already in place

• Coordination of infrastructure components is very complex

– The application developer will need to coordinate with infrastructure specialists

Steps in Hardware and Software Specification

• Note hardware in low-level network model to create list of needed hardware

• Describe equipment in as much detail as possible

• Consider whether increased processing and traffic will absorb unused hardware capacity

• Note all software running on each hardware component
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Hardware

• Commercial/Business

– Mainframes, Commerial Minicomputers, Microcomputers (Wintel: Windows on Intel), 

Embedded Systems

• Technical/Engineering

– Supercomputers, Workstations and Servers (Sun SPARC), Microcomputers, 

Embedded Systems

• Open vs Proprietary

– Proprietary: available by only one vendor (higher prices, low interoperability)

– Open: available from many vendors (better prices, better interoperability)

• Black-Box vs Glass-Box

– Black- box: only the vendor has access to its internals (e.g. bank ATM)

– Glass Box: internals are accessible by the user, may replaceable by other vendor

• Free UNIX derivatives (Linux, BSD) on Intel x86 with source code are glass-box systems

Some distinctions:
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Networking

• Local Area Network

– short-distance (one building)

• Backbone

– medium distance (campus)

• Wide Area Network

– long-distance

• Remote Access

– via phone / cable TV/satellite
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Networking

• Ethernet

– 10/100 Mb (1Gb fibre)

– Inexpensive, widely used

• Token Ring

– 4/16 Mb

– Not often used

• ATM (copper)

– 155 Mb (622Mb fibre)

– Expensive, complex, 

flexible, high-overhead

LAN

• 100 Mb (fibre) or 
Gb Ethernet

– fast, inexpensive, 

simple

• FDDI

– Old 100 Mbit

(increasingly 

obsolete)

• ATM

– 155 Mb, 622 MB

Backbone Network

• Long-distance line 

leased from telephone 

companies

• Satellite links sometimes 

used

WAN

Remote Access • Accessing a LAN or internet via phone/cable TV service

– work from home, access when travelling, home internet service

– Usually PPP over modem or cable modem

• DSL services

Deployment diagrams are usually depicted
in a less formal and more liberal /vivid graphical notation
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Deployment Diagrams: Examples (Fastaxon)
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Deployment Diagrams: Examples
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Deployment Diagrams: Examples
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Deployment Diagrams: Examples
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Deployment Diagrams: Examples
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Deployment Diagrams: Examples
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Deployment: Reading and References

• UML Distilled: A Brief Guide to the Standard Object Modeling Language (3rd Edition) by Martin 

Fowler, Addison Wesley, 2004. Chapter 8, Chapter 14 (2nd Edition: Chapter 10)

• The Unified Modeling Language User Guide (2nd edition) by G. Booch, J. Rumbaugh, I. 

Jacobson, Addison Wesley, 2004 Chapter 27

• Requirements Analysis and System Design (2nd edition) by Leszek A. Maciaszek,  Addison 

Wesley, 2005, Chapter 6

• Object-Oriented Systems Analysis and Design Using UML (2nd edition) by S. Bennett, S. 

McRobb, R. Farmer, McGraw Hil, 2002 , Chapter 19

• http://www.agilemodeling.com/artifacts/componentDiagram.htm


