
Yannis Tzitzikas
Lecture : (18b) or 19
Date : 20-12-2005

HY 351: Ανάλυση και Σχεδίαση Πληροφοριακών Συστηµάτων
CS 351: Information Systems Analysis and Design

Physical (or Implementation) Diagrams

•UML component diagrams

•UML deployment diagrams

University of Crete, Fall 2005

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 2

Outline

• Component Diagrams

• Deployment Diagrams

• Combining Component & Deployment Diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 3

Key questions

• Which platform is best suited for this information system?

• How to select hardware ?

• How to select software ?

• How to select networking?

• How to express the physical architecture (see Lecture 18) of
the system using a standard diagrammatic notation?

Computing platform comprises hardware, software (PLs, DBMSs) and networking.

Component Diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 5

Component Diagrams (διαγράµµατα εξαρτηµάτων)

Component Diagrams show various components and their dependencies

• Component:

– physical module of code (like package, class, or even file)

• dependence:

– change dependency (e.g. communication dependencies, compilation dependencies)

Notations :

UI

UML 1

Database

dependency

UI

UML 2

Database

ProductList ProductDisplay

Configuration

Purchase

OrderTracking

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 6

The Characteristics of a Component

• a unit of independent deployment (never deployed partially)

• sufficiently documented and self-contained to be “plugged into”

other components by a third-party

• it cannot be distinguished from copies of its own; in any given
application, there will be at most one copy of a particular

component

• it is a replaceable part of a system (can be replaced by another

component that conforms to the same interface)

• it fulfils a clear function and is logically and physically cohesive

• it may be nested in other components

[Szyperski 98, Rumbaugh et al. 99, Maciaszek 2005)]

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 7

Components

• Components are like classes and packages

– can be connected through interfaces

• Components are about how customers want to relate to

software
• they want to be able to upgrade it like they can upgrade their stereo (in

pieces)

• they want to mix and match pieces from various manufacturers

– reasonable but difficult to satisfy

• So we could define a component as:

– a logical and replaceable part of a system that conforms to and
provides the realization of a set of interfaces

– an independently purchasable and upgradeable piece of
software

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 8

Components and related Notions

• Component

– a replaceable part of a system that conforms to and provides the realization of a set of

interfaces

• Interface:

– a collection of operations that specify a service that is provided by or requested from a class

or component

• Port

– a specific window into an encapsulated component accepting messages to and from the

component conforming to specified interfaces

• Part

– (an internal component) the specification of a role that composes part of the implementation

of a component.

• Internal structure

– the implementation of a component by means of a set of parts that are connected together in

a specific way

• Connector:

– a communication relationship between two parts or ports within the context of component

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 9

Components and interfaces

Motion Imaging

required

interface

Provided

interface

Motion Imaging

usage realization
<<interface>>

imageObserver

imageUpdate():Boolean

Motion Imaging

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 10

Components and interfaces (II)

Client Server

required

interface

Provided

interface

Web page

(client)

Google

web service
*

Client Server*

Multiplicity:

We can have several clients

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 11

Fine-grained Components: Example

We could use component diagrams for
modeling more fine-grained
components (e.g. files).

<<Header>>

Products.h

<<Body>>

Products.cpp

<<Object Code>>

SalesOrder.o

<<Executable>>

Application.exe

<<includes>>

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 12

Coarse-grained components: e.g. Layers

Layer 3

Layer 2

Layer 1

Layer 3

Layer 2

Layer 1

Internal structure of component

Layer 3

a b

c d]

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 13

Internal Structure of Components

compile

Compiler

lex:Lexical Analyzer parse:Parser

gen: Code Generator opt:Optimizer[1..3]

part name part type part multiplicity

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 14

Ports

Ticket Seller

normal
sales

priority
sales

Ticket Sales

Ticket Sales

port name Interface name

Load Attractions

attractions

charging

Credit Cards

Booking

port

• Ports permit the interfaces of a component to be divided into discrete packets
and used independently

• The externally visible behaviour of the component is the sum of its ports.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 15

Connecting Components

• Components can be connected by wiring together their ports

– connector: a wire between two ports

delegation connector

(connect an external port with the port of a part

component)

direct connector

(more tight coupling)

connector by interfaces

ports

In practice, components diagrams are sometimes depicted
in a less formal and more liberal graphical notation

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 17

compile

Compiler

lex:Lexical Analyzer parse:Parser

gen: Code Generator opt:Optimizer[1..3]

Compiler

Lexical Analyzer Parser

Code Generator Optimizer

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 18

FASTAXON (functional) architecture

Expression

Builder

Storage Manager

Validity Checker

Nav. Tree

Generator

RDBMS

Designer
Object Indexer/

End User

Taxonomy

Editor

Designer

Store taxonomies and algebraic

expressions using a relational

DBMS

Define and update

taxonomies

through a GUI

Check the validity of a

compound term

Derive navigational trees

dynamically

Formulate expressions

using a GUI

MySQL

Apache

Tomcat

Java

JSP

IExlorer

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 19

Knowledge Manager

Ontology

Metadata

Query and Update

Languages
Knowledge

Repository

Access

Services

• Navigation

• Querying

Evolution

Services

• Updates

• Revision

Knowledge Manager

RDF, RDF/S

RQL/RUL

APIs

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 20

RDF Suite Architecture

Parser

VRP Internal

RDF Model

Validator

R
D
F
 L
o
a
d
e
r

L
o
a
d
in
g
 R
D
F
 J
a
v
a
 A
P
Is

ICS-VRP

JDBC

Class Property

ORDBMS

D
B
M
S
 R
D
F
 q
u
e
ry
 A
P
I

S
Q

L
3

+
 S

P
I

fu
n

ct
io

n
s

LIB

C++

p_namedomain range

Artist creates Artifact

c_name

Artist

URI

creates

subcl

Painter

supcl

Artist

subpr

paints

suppr

creates

SubClass SubProperty

source

paints

target

creates

Artist creates

SQL3
SQL3

ICS-RQL Interpreter

Typing

Evaluation

Graph

Constructor

Parser

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 21

DOMENICUS Architecture

Unstructured

data

Structured

data
Logical

pointers

Information model

Semantic network-based Information Repository OS/tool storage

Hypermedia

Applications
Hypermedia

data models/

exchange formats

Presentation

Engine
run-time

Presentation model

API

Conversion

module

UML Deployment Diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 23

Deployment Diagrams
(διαγράµµατα ανάπτυξης/σύνταξης/παράθεσης)

Shows the physical relationship among software & hardware

components in the delivered system

Node:

• computational unit (hardware)

– e.g. PC, sensor, mainframe,

mobile device

Connection (among nodes)

• communication paths over which
the system will interact

notation

notation

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 24

A deployment diagram

Clients/TerminalsDB Server Web Server

DB Server Web Server

Client

Client

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 25

Deployment Diagrams> Nodes

• Physical element (with memory and
processor)

• With nodes we can model the
topology of the hardware of a system

laptop

Sales PC

Sales.exe

Backup Server

Sofoklis:CompaqPresar
io1800}

RAM=256MB
speed=X mHz

possible representations

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 26

Deployment Diagrams> Connections

kiosk *

console

server RAID farm

10-T Ethernet

RS-232

Connections

– Ethernet, serial line, satellite link

– we can use stereotypes to distinguish them to types

• <<serial line>>

• <<satellite link>>

• ...

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 27

Deployment Diagrams> Connections

Browser Client
Rich Client

{OS=Windows}

Web server

{OS=Solaris}

{web server=apache}

{number deployed =3}

Application Server

LAN/Java RMI

LAN/httpInternet/http

Networking type + protocol

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 28

Modeling the Distribution of Artifacts

kiosk *

console

server
RAID farm

10-T Ethernet

RS-232

user.exe

admin.exe

config.exe

sadmin.exe

backup.exe

memory-2GB
speed=mHz

Combining Component and Deployment Diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 30

Combining Component and Deployment Diagrams:

Example

Application

Logic

Data Access

Logic

Data Storage

Presentation

Logic

Server

Client

Internet/httpData Storage

Data Access Logic

Application Logic

Presentation Logic

Server
Clients/Terminals

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 31

Combining Component and Deployment Diagrams:

Notes

• If we try to show all the components of a system in deployment

diagrams they are will probably become very large and difficult to
read.

• So we usually depict the key elements

• Alternatively, (in case we want to show everything) we can use a

table to denote artifacts and their locations (e.g. use Excel)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 32

Hardware and Software Specification

• We have to specify the new hardware or software that must be purchased

• Actual acquisition of hardware and software usually left to a purchasing
department -- especially in larger firms

Realities in Infrastructure Design

• Most often the infrastructure will be already in place

• Coordination of infrastructure components is very complex

– The application developer will need to coordinate with infrastructure specialists

Steps in Hardware and Software Specification

• Note hardware in low-level network model to create list of needed hardware

• Describe equipment in as much detail as possible

• Consider whether increased processing and traffic will absorb unused hardware capacity

• Note all software running on each hardware component

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 33

Hardware

• Commercial/Business

– Mainframes, Commerial Minicomputers, Microcomputers (Wintel: Windows on Intel),

Embedded Systems

• Technical/Engineering

– Supercomputers, Workstations and Servers (Sun SPARC), Microcomputers,

Embedded Systems

• Open vs Proprietary

– Proprietary: available by only one vendor (higher prices, low interoperability)

– Open: available from many vendors (better prices, better interoperability)

• Black-Box vs Glass-Box

– Black- box: only the vendor has access to its internals (e.g. bank ATM)

– Glass Box: internals are accessible by the user, may replaceable by other vendor

• Free UNIX derivatives (Linux, BSD) on Intel x86 with source code are glass-box systems

Some distinctions:

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 34

Networking

• Local Area Network

– short-distance (one building)

• Backbone

– medium distance (campus)

• Wide Area Network

– long-distance

• Remote Access

– via phone / cable TV/satellite

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 35

Networking

• Ethernet

– 10/100 Mb (1Gb fibre)

– Inexpensive, widely used

• Token Ring

– 4/16 Mb

– Not often used

• ATM (copper)

– 155 Mb (622Mb fibre)

– Expensive, complex,

flexible, high-overhead

LAN

• 100 Mb (fibre) or
Gb Ethernet

– fast, inexpensive,

simple

• FDDI

– Old 100 Mbit

(increasingly

obsolete)

• ATM

– 155 Mb, 622 MB

Backbone Network

• Long-distance line

leased from telephone

companies

• Satellite links sometimes

used

WAN

Remote Access • Accessing a LAN or internet via phone/cable TV service

– work from home, access when travelling, home internet service

– Usually PPP over modem or cable modem

• DSL services

Deployment diagrams are usually depicted
in a less formal and more liberal /vivid graphical notation

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 37

Deployment Diagrams: Examples (Fastaxon)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 38

Deployment Diagrams: Examples

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 39

Deployment Diagrams: Examples

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 40

Deployment Diagrams: Examples

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 41

Deployment Diagrams: Examples

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 42

Deployment Diagrams: Examples

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 43

Deployment: Reading and References

• UML Distilled: A Brief Guide to the Standard Object Modeling Language (3rd Edition) by Martin

Fowler, Addison Wesley, 2004. Chapter 8, Chapter 14 (2nd Edition: Chapter 10)

• The Unified Modeling Language User Guide (2nd edition) by G. Booch, J. Rumbaugh, I.

Jacobson, Addison Wesley, 2004 Chapter 27

• Requirements Analysis and System Design (2nd edition) by Leszek A. Maciaszek, Addison

Wesley, 2005, Chapter 6

• Object-Oriented Systems Analysis and Design Using UML (2nd edition) by S. Bennett, S.

McRobb, R. Farmer, McGraw Hil, 2002 , Chapter 19

• http://www.agilemodeling.com/artifacts/componentDiagram.htm

