
Yannis Tzitzikas
Lecture : 18
Date : 15-12-2005

HY 351: Ανάλυση και Σχεδίαση Πληροφοριακών Συστηµάτων
CS 351: Information Systems Analysis and Design

Physical Architecture Design

University of Crete, Fall 2005

.+ Software + communication

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 2

Outline

• What is Physical (or System) Architecture Design ?

• The 4 basic functions of an IS

• Layered Software Architectures

• Software Architectures

– Client-server, N-tier architectures,Virtual machine

– Service-oriented computing, P2P

• Communication Protocols

• UI Pattern: MVC

Next:

• UML Component and Deployment Diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 3

From Analysis Models to Design Models

Physical Architecture Layer Design

High level

business requirements

described in the system request

Detailed list of more

precise requirements

Functional/Structural/Behavioral

modeling of the system

Requirements

determination

modeling
Analysis

Design

Design Models

• Class and Method Design

• Data Management Layer Design

• Human Computer Interaction Design

• Physical Architecture Layer Design

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 4

What is System (or Physical) Architecture Design ?

System Architecture Design comprises plans for

(a) the hardware,

(b) the software,

(c) the communications

for the new application.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 5

The 4 primary software components of a system

All software systems could be divided into 4 basic functions

– Data storage

– Data access logic

– Application logic

– Presentation logic

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 6

Layered Systems

• The functionality of the application is
partitioned to a set of layers

• Each layer uses the services of the lower
layers and offers services to the upper layers

• Advantages

– Abstraction during design

– Allow reuse

– Can define standard layer interfaces

• Disadvantages

– Sometimes it is difficult to identify with clarity

the layers.

– Sometimes this architecture is not very

efficient (redundant)

Layer N

Layer N-1

Layer 3

Layer 2

Layer 1

Layering: ∆ιαστρωµάτωση

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 7

Examples of Layered Systems

The Unix Operating System

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 8

Examples of Layered Systems

OSI Network Protocol

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 9

Layered Architectures: Closed vs Open

Closed

– each layer can use services of
the immediately lower layer

– minimizes dependencies

Layer N

Layer N-1

Layer 3

Layer 2

Layer 1

Open

– each layer can use services of
any lower layer

– increased dependencies however
the code can be more compact

Layer N

Layer N-1

Layer 3

Layer 2

Layer 1

Recall the trade-off between understandability and efficiency: increasing the

understandability of a design usually results in inefficiencies, while focusing only on

efficiency usually results in design that is difficult to understand by someone else

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 10

The form of sequence diagrams in a closed layered
architecture

layer5 layer4 layer3 layer2 layer1

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 11

Example of implementing a Closed Layered
Architecture

public abstract class L1Provider {

public abstract void L1Service();

}

public abstract class L2Provider {

protected L1Provider level1;

public abstract void L2Service();

public void setLowerLayer(L1Provider l1)

{

level1 = l1;

}

}

public abstract class L3Provider {

protected L2Provider level2;

public abstract void L3Service();

public void setLowerLayer(L2Provider l2)
{

level2 = l2;

}

}

public class DataLink extends L1Provider {

public void L1Service() {

println("L1Service doing its job");

}

}

public class Transport extends L2Provider

{

public void L2Service() {

println("L2Service starting its job");

level1.L1Service();

println("L2Service finishing its job");

}

}

public class Session extends L3Provider{

public void L3Service() {

println("L3Service starting its job");

level2.L2Service();

println("L3Service finishing its job");

}

}

public class Network {

public static void main(String args[]) {

DataLink dataLink = new DataLink();

Transport transport = new

Transport();

Session session = new Session();

transport.setLowerLayer(dataLink);

session.setLowerLayer(transport);

session.L3Service();

}

}

EXECUTION RESULT:

L3Service starting its job

L2Service starting its job

L1Service doing its job

L2Service finishing its job

L3Service finishing its job

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 12

Number of Layers

Layer 2
Layer 1

Layer 3
Layer 2
Layer 1

Layer 3

Layer 2
Layer 1

Layer 4
Layer 3.a

Layer 2
Layer 1

Layer 4.a
Layer 3.a
Layer 4.a

Layer 3.c
Layer 4.c

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 13

Considering the 4 primary software components of
an IS as Layers

• Presentation logic

• Application logic

• Data access logic

• Data storage

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Layer 3

Layer 2

Layer 1

Layer 4

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 14

problem domain

classes

DAM classes

Object persistence

classes

RDBMS ORDBMS

• Notice that in this way the problem domain classes remain

unchanged

• We have kept them independent from the underlying database

management system.

• Changing DBMS requires changing only the DAM classes

Refresher: Data Mgmt Layer Design

Data Storage

Data Access Logic

Application Logic

Presentation LogicUser Interface

classes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 15

The 3 primary hardware components of a system

• Client computers

• Servers

• Network

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 16

Kinds of Architectures

• Client computers

• Servers

• Network

x
Data Storage

Data Access Logic

Application Logic

Presentation Logic

Primary Hardware components Primary Software components

= architectures

According to the distribution of the 4 basic layers to hardware
nodes we can distinguish the following architectures:

(a) Server-based computing

(b) Client-based computing

(c) Client-server-based computing

(d) 3/4/N tiers computing

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 17

(a) Server-based Computing

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server Clients/Terminals

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 18

(b) Client-based Computing

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server Clients/Terminals

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 19

(c) Client-Server-based Computing (2 Tiers)

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server Clients/Terminals

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 20

(d) 3 tiers based computing

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server Clients/Terminals

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 21

(d’) 4 tiers based computing

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server Clients/Terminals

Application Logic

Web server
Some more details about the previous architectures

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 23

(a) Server-based Computing

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server Clients/Terminals

Characteristics

• The server does almost everything. The client
is actually a very thin client

[-]: The Server has very high load

•the clients do not contribute to the
computation

[+]: Not so difficult to implement

[+] If platform changes (e.g. OS) we have to

rewrite only the thin client

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 24

(b) Client-based Computing

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server
Clients/Terminals

Characteristics

[+] The server has less load

[-] The clients are very heavy (they should be

computationally powerful machines)

[-] sometimes a lot of data have to be

communicated through the network

[-] If we the OS changes then we have to rewrite

the 3 layers of the client

•(in server-based computing we could keep
the server running in the old OS) and we
would need to change only the thin client so
that to run in the new OS

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 25

(c) Client-Server-based Computing (2 Tiers)

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server
Clients/Terminals

Characteristics

This is like having a thick client (thin client: if
responsible only for the UI)

[+] The client has less load (comparing to

client-based computing)

[+] The server has less load comparing to

server-based computing

[-] We have to rewrite the application logic if

platform changes

[-] Sometimes a lot of data have to be

communicated through the network

[+] Good overall performance

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 26

Client Server:
Class and Interaction Diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 27

(d) 3 tiers based computing

Data Storage

Data Access L.

Application L.

Presentation L.

Server Clients/Terminals

Characteristics

[+] Good load balancing

the server and the client have less
load

[+] the UI component is independent of

the rest system

•server-based computing has also
this property but in that case the
server has excessive load

• This architecture is suited for
heterogeneous environments

[-] more complex implementation - more
data are transferred through the network

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 28

(d) 3 tiers: Example

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server
Clients/Terminals

Java

AWT

Appl

Views

Control

Objects

Busine
ss

Logic
Query

Mgr

File

Mgmt

DBMS

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 29

3-tier

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 30

(d) N-Tiered Client-Server architectures

General Remarks

• Advantages

– Separates processing to better balance load

– The system is more scalable

• Disadvantages

– Higher load on the network

– More difficult to implement and test

Data Storage

Data Access Logic

Application Logic

Presentation Logic

Server Clients/Terminals

Application Logic

Web server

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 31

Selecting a Computing Architecture

Server-Based Client-based Client-server

Cost of infrastructure Very high Medium Low

Cost of development Medium Low High

Ease of development Low High Low-medium

Interface capabilities Low High High

Control and security High Low Medium

Scalability Low Medium High

Virtual Machine

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 33

Virtual Machine

• It is a form of layered architecture

• It allows using the same API independently of the underlying OS/hardware

• The compiler produces intermediate code (bytecodes in Java) which can be
handled by the virtual machine

Data Storage

Data Access L.

Application L.

Presentation L.

Server Clients/Terminals

Virtual Machine Virtual Machine Virtual Machine

Service-Oriented Computing

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 35

Service-oriented Computing

Software is considered as a set of services

We can have

• service providers

• consumers

• registries (catalogs of available services)

Consumer Provider

Registry

publish servicefind service

request service provide service

SOA: Service Oriented Architecture

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 36

Service-oriented Computing (2)

• Based on open standards (SOAP, REST, WSDL, UDDI)

• Data is exchanged using XML

Characteristics

[+] complete separation between
providers & consumers

[+] the same service can be provided
with different characteristics (quality,
price, speed, etc) from different providers
=> competitiveness

[+] open standards

[-] not mature technology, no registries
for business services

Consumer Provider

Registry

publish service
find service

request service provide service

• Web Services

– Data are exchanged in XML (SOAP, REST)

– Data are transferred using HTTP

– The “interface” provider-consumer is described in XML (WSDL)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 37

Service-oriented computing (3)

Registry
Service

.

.

Peer-to-Peer (P2P) architectures

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 39

Peer to Peer

• Pure

– all are equal. No layering. Each peer depends on the others

Peer Peer

System System System

Peer

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 40

Peer-to-Peer Architectures

Napster server

peer 1 peer 2

1: register
(user, files) 2: lookup (x)

3: peer 1 has x

4: download docx.mp3

1

1

2

2
2

2

2

3

3

3

3
3

q

Napster-style

Gnutella-style

Napster-style

Napster-style

CAN (Content Addressable Network)

Chord (DHT)

Hybrid (Napster) Decentralized (Gnutella)

Hierarchical (Kazaa)

Communication Protocols

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 42

Communication Protocols

How objects of different layers at different machines can communicate ?

• RPC (Remote Procedure Call):

– can invoke a remote procedure, send results, (RPC is widely supported in
languages such as C, C++)

• RMI (Remote Method Invocation)

– in java (recall www.csd.uoc.gr/~hy252)

• DCOM

– Microsoft’s Distributed Component Object Model

• CORBA (Common Object Request Broker Architecture)

– The object-oriented industry standard by OMG (1995)

• SOAP (Simple Object Access Protocol)

– uses XML to encapsulate messages and data that can be sent from one
process to another

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 43

Communication Protocols

Platform dependent vs Open Standards

• RMI or DCOM are language/operating system specific protocols

– they restrict the design to implementation on certain platforms

• CORBA or SOAP are open standards

– they allow building component-based systems that are not tied to particular
platforms

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 44

Case: CORBA

• CORBA separates the interface of a class (the operations it can carry out) from
the implementation of that class.

• The interface can be compiled into a program running on one computer.

• An object instance can be created or accessed by name.

• To the client program it appears to be in memory on the same machine,
however, it may actually be running on another computer.

• When the client program sends it a message to invoke one of its operations, the
message and its parameters are converted into a format that can be sent over
the network (known as marshalling). At the other end the server unmarshals the
data back into a message and parameters and passes it to the implementation
of the target object.

• This object then carries out the operation and, if it returns a value, that value is
marshalled on the server, unmarshalled on the client and finally provided as a
return value to the client program

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 45

CORBA (2)

• CORBA achieves this by means of programs known as ORBs (Object Request
Brokers) that run on each machine.

• The ORBs communicate with each other by means of an Inter-ORB Protocol
(IOP).

• Over the Internet, the protocol used is IIOP (Internet IOP).

ORB ORB

IIOP

internet

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 46

CORBA (3)

• To use this facility, the developer must specify the interface (public attributes
and operations) of each class in an Interface Definition Language (IDL).

• The IDL file is then processed by a program that converts the interface to a
series of files in the target language or languages.

Module CretanTourismApplication

{ interface Location

{attribute string locationCode;

attribute string locationName;

void addHotel(in Hotel hotel);

void removeHotel(in string hotelCode);

int numberOfHotels(); };

};

The IDL file for a class Location

• In Java, this program is called IDL2JAVA and
produces

– a file that defines the interface in Java,

– a stub file that provides the link between
the client program and the ORB,

• it implements the interface on the client

and is compiled into the client program

– a file that provides a skeleton for the
implementation of the server

• it implements the interface on the server;

the developer updates this file (provides

the implementation) and it is compiled on

the host

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 47

CORBA (4)
Supporting different PLs, Wrapping legacy systems

• CORBA is known as middleware, as it
acts as an intermediary between clients
and servers.As such it enables the
implementation of a 3 or 4 tier
architecture that isolates the UI and
client programs from the implementation
of classes on one or more servers. Clients/Terminals

Broker

Server

Server

• CORBA also provides interoperability between different languages: a Java
client program can invoke operations on a C++ object that exist on a separate
machine.

• CORBA also makes it possible to encapsulate pre-existing programs (legacy
systems) written in non-object oriented languages by wrapping them in an
interface. To the client it looks like an object, but internally it may be
implemented in a language like COBOL.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 48

CORBA (5)

More advanced features

Systems developed using CORBA can be set up so that the remote objects are
located on a named machine and accessed by name. This is what we need in
the majority of applications.

CORBA also provides a number of more advanced services:

• Services for locating objects by name when it is not known where they are
running.

• Services for locating objects that implement a certain interface and for
interrogating an object to determine its interface (operations, parameter types
and return types) in order to dynamically invoke its operations.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 49

Web-based applications

Web Server

Web Browser

Server

Clients/Terminals

HTML pages

http & html

Very static architecture

HTTP (HyperText Transfer Protocol): transfers hypertext documents over
the internet

– HTML (HyperText Markup Language): defines hypertext documents

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 50

Web-based applications: Adding .. “dynamism”

Web Server

Web Browser

Server

Clients/Terminals
Applications / files / databases

CGI

CGI (Common Gateway Interface):

CGI scripts are programs (e.g. a

unix shell script or a perl script)

that reside on the web server and

can be invoked by elements of the

web pages

Web Server

Web Browser

Server

Applet

applet

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 51

Web-based applications

Web Server

Web Browser

Server

Clients/Terminals
Applications / files / databases

CGI

Dynamic

• ASP (Active Server Pages)

– limited to Microsoft Platform

• JSP (Java Server Pages)
– JSP is designed to be platform and

server independent, created from a
broader community of tool, server, and
database vendors

alternatives

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 52

Web-based applications

• So Web Servers and the Web Browsers become parts of our information
system.

• Here we have to design our layers assuming the Web platform

Web Server

Web Browser

Server

Clients/Terminals
Applications / files / databases

DYNAMIC

Data Storage

Data Access Logic

Application Logic

Presentation Logic

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 53

Servlets

• Servlets are to servers what applets are to browsers.

• Servlets are modules that extend request/response-oriented servers, such as
Java-enabled web servers.

– A servlet might be responsible for taking data in an HTML order-entry form and

applying the business logic used to update a company's order database.

• Servlets can be embedded in many different servers because the servlet API,
which you use to write servlets, assumes nothing about the server's
environment or protocol. Servlets have become most widely used within HTTP
servers; many web servers support Java Servlet technology.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 54

Servlets (II)

Servlets are an effective replacement for CGI scripts.

• They are easier to write and run faster

So we can use servlets to handle HTTP client requests.

• We can have servlets to process data POSTed over HTTPS using an HTML form,

including purchase order or credit card data. A servlet like this could be part of an order-

entry and processing system, working with product and inventory databases, and

perhaps an on-line payment system.

Other Uses for Servlets

• A servlet can handle multiple requests concurrently, and can synchronize requests. This

allows servlets to support systems such as on-line conferencing.

• Servlets can forward requests to other servers and servlets. Thus servlets can be used to

balance load among several servers that mirror the same content, and to partition a

single logical service over several servers, according to task type or organizational

boundaries.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 55

A Simple Servlet (Hello World)

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse
response)

throws IOException, ServletException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<body>");

out.println("<head>");

out.println("<title>Hello World!</title>");

out.println("</head>");

out.println("<body>");

out.println("<h1>Hello World!</h1>");

out.println("</body>");

out.println("</html>");

}

}

Pattern
Model-View-Controller (MVC)

Application Logic

Presentation Logic

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 57

Model-View-Controller (MVC)

• This pattern is used in applications where the UI is very important

• Motivation

– same data may be displayed differently

– display and application must reflect data changes immediately

– UI changes should be easy and even possible at runtime

– Porting the UI to another platform should not affect core application code

• Solution

– Divide application into 3 parts

• Model

• View

• Controller

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 58

Model-View-Controller

Model

Responsibilities

-- core application

View

Responsibilities

-- render the model on the screen

-- manage movement and resizing

of the view

-- intercept user events
Controller

Responsibilities

-- synchronize changes

in the model and its views

Model: provides the essential functionality of the application (application logic)

View: supports a particular style of interaction with the user (display output)

Controller: accepts user input in the form of events and synchronizes changes
between the model and its views (user input)

Decoupling achieved: We can:

• have multiple views/controllers for the

same model

• reuse views/controllers for other

models

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 59

MVC: connection with the previous discussion

Data Storage

Data Access L.

Application L.

Presentation L.

Server Clients/Terminals

Model

Controller View

Keypoints

• One central model, many views

(viewers)

• Each view has an associated

controller

• The controller handles updates

from the user of the view

• Changes to the model are

propagated to all the views

Model

Data Storage

View 1

Controller 1

View 2

Controller 2

View 3

Controller 3

Model

Data Storage

View 1 Controller 1 View 2 Controller 2 View 3 Controller 3

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 60

Example: The Views of Powerpoint

Slide Sorter View Slide Editing View

Outline View

Yannis Tzitzikas
Lecture : 18
Date : 15-12-2005

HY 351: Ανάλυση και Σχεδίαση Πληροφοριακών Συστηµάτων
CS 351: Information Systems Analysis and Design

Physical Architecture Design

University of Crete, Fall 2005

.+ Software + communication

The structure of the model of Powerpoint

Application Presentation Slides Shape* * *

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 61

MVC

• Model

– Core application code

• maintains application state

– Contains a list of observers (view or controller)

– Has a broadcast mechanism to inform views of a change

• View

– displays information to user

– obtains data from model

– each view has a controller

• Controller

– handles input from user as events (keystrokes, mouse clicks and
movements)

– maps each event to proper action on model and/or view

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 62

MVC

Controller

User input

device

interaction

View

Display

layout and

interaction

views

Model

Application

state and

behaviour

User input sessions Display OutputView messages

State change notification

Model access

and editing

messages

State change notification

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 63

MVC Example: Text Field

Keystroke

handler
Text

display

Mutable
String

Keyboard Screen

change events

edit text

C V

M

get text

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 64

MVC Example: Web Browser

Hyperlink

handler
Rendered
page view

Document
Object

Model

(DOM)

Mouse Screen

change events

load new page

C V

M

get nodes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 65

MVC Example: Database-backed web server

Request
handler

(e.g. servlet)

Web page
generator

(e.g. jsp)

Database

Network Network

update

C V

M

get data

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 66

MVC and MV

In many cases, view and controller are
very tightly coupled.

• so instead of MVC we have MV
(Model-View)

• a reusable view manages both
output and input

– also called widgets, components, …

• e.g. scrollbars, buttons, ...

View

User Input

device

Ineraction &

Display

layout and

interaction

views

Model

Application

state and

behaviour

User input

sessions
Display Output

Change

messages

Model access

and editing

messages

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 67

Observer pattern is used to decouple model from
views

Model

View A

View B

E.g. graph

E.g. table

observers

model

model

interface Model {

void register(Observer)

void unregister(Observer)

Object get()

void modify()

}

interface Observer {

void update(Event)

}

:Model :Listener

register

modify

get

update

:Model :Listener

register

modify

unregister

update

:Model :Listener

register

modify

modify

update

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 68

• How we can depict the Physical Architecture of a

System?

• Is there any standard diagrammatic notation?

=> UML Components and Deployment diagrams

– (next lecture)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 69

Reading and References

• Systems Analysis and Design with UML Version 2.0 (2nd edition) by A. Dennis, B. Haley Wixom,

D. Tegarden, Wiley, 2005. Chapter 13

• Object-Oriented Systems Analysis and Design Using UML (2nd edition) by S. Bennett,

S. McRobb, R. Farmer, McGraw Hil, 2002, Chapter 18

• The Unified Modeling Language User Guide (2nd edition) by G. Booch, J. Rumbaugh, I.

Jacobson, Addison Wesley, 2004

• Slides of “ UI Software Architecture, 6.831” (UI Design and Implementation)

