{‘ HY 351: AvdAuon kai Zxediaon MNMANpo@opIakwy ZuoTnuaTwy
7&”° CS 351: Information Systems Analysis and Design

05 ne”

Physical Architecture Design

+ Software + communication

%

Outline

» What is Physical (or System) Architecture Design ?
+ The 4 basic functions of an IS
+ Layered Software Architectures
» Software Architectures
— Client-server, N-tier architectures, Virtual machine
— Service-oriented computing, P2P
» Communication Protocols
» Ul Pattern: MVC

Next:
* UML Component and Deployment Diagrams

4
Lecture : 18 Yannis Tzitzikas
Date :15-12-2005 University of Crete, Fall 2005
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005
Mog From Analysis Models to Design Model -
\ . From Analysis Models to Design Models \ < 5
Y&): Physical Architecture Layer Design Vo What is System (or Physical) Architecture Design -
X High ’e‘{e’ de‘t’ermination ‘ Detailed list of more
" +§z5|g§sshre uirements precise requirements
eserbediihelsyslomiiequest System Architecture Design comprises plans for
Analysis (a) the hardware,
modeling
(b) the software,
Functional/Structural/Behavioral (C) the communications
\ modeling of the system for the new application.
Design
Class and Method Design
Data Management Layer Design
« Human Computer Interaction Design
Q'i Physical Architecture Layer Design
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 3 U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 4
oy . oy
\@ The 4 primary software components of a system VED: Layered Systems
All software systems could be divided into 4 basic functions * The functionality of the application is
partitioned to a set of layers
— Data sz‘orage » Each layer uses the services of the lower
— Data access /ogic layers and offers services to the upper layers ‘ Layer N ‘
— Application logic . Advantages | Layer N-1 |
— Presentation Iogic — Abstraction during design
— Allow reuse
— Can define standard layer interfaces ‘ Layer 3 ‘
» Disadvantages
— Sometimes it is difficult to identify with clarity ‘ Layer 2 ‘
the layers.
— Sometimes this architecture is not very ‘ Layer 1 ‘
efficient (redundant)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 5

U. of Crete,

Layering: AlaoTpwpudTwon

. Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 6

\J

Y8): Examples of Layered Systems
‘The Unix Operating System‘
) //O/;er application progn:n\qs\
AN N W T
N Environment 7 PN W ™
E S L N Kemel N

Electranic
Communi
cation

Additional l

Utility Program

[

- N \\ aout | \

E el

Text
Processing

Information
Management

.. Other application programs -

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

GE
\‘@ Examples of Layered Systems

‘OSI Network Protocol ‘

Application

Presentation

Session
The Network
layer provides
Transport the essential
internetwork
routing services
Routers Network needed to send
packets from
sources to
Switches Data Link remote
i destinations.

Hubs Physical

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

Boa'
N): Layered Architectures: Closed vs Open

2 o
rygrs'

[LlayerN | |
‘

[Layer2 7]

|
1
¥
|
i

Open
— each layer can use services of
any lower layer

— increased dependencies however
the code can be more compact

Closed

— each layer can use services of
the immediately lower layer
— minimizes dependencies

Recall the trade-off between understandability and efficiency: increasing the
understandability of a design usually results in inefficiencies, while focusing only on
efficiency usually results in design that is difficult to understand by someone else

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

\\‘@ The form of sequence diagrams in a closed layered
®&%" architecture

‘ Iay§r5 ‘ ‘ layer4 ‘ ‘ Iaygrs ‘ ‘ layer2 ‘ ‘ layer1 ‘

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

Wag: Example of implementing a Closed Layered
& Architecture

public abstract class L1Provider { public class DatalLink extends L1Provider { .
public abstract void L1Service(); public void L1Service() { public class Network {
) printin("L1Service doing its job"); public static void main(String args(]) {
) DataLink dataLink = new DataLink();
) Transport transport = new
Transport();
Session session = new Session();

public abstract class L2Provider {
protected L1Provider level1; public class Transport extends L2Provider
public void L2Service() {
printin("L2Service starting its job");
level1.L1Service();
printin("L2Service finishing its job");

public abstract void L2Service();

public void setLowerLayer(L1Provider I1) ransport.setLowerL ayer(dataLink);

session.setLowerLayer(transport);
levell =11;
} }
) } !
public class Session extends L3Provider{ }
public void L3Service() {
printin("L3Service starting its job");
level2.L2Service();
printin("L3Service finishing its job");

session.L3Service();

public abstract class L3Provider {

protected L2Provider level2; EXECUTION RESULT:

L3Service starting its job
L2Service starting its job
} L1Service doing its job
L2Service finishing its job
} } L3Service finishing its job

public abstract void L3Service();
public void setLowerLayer(L2Provider 2)

level2 = 12; }

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

oy
Vo

Number of Layers

C 4
Hiygrs

Layer 3
lavor2
Layer 1

Layer 4 Layer 4.a[Layer 4.a] Layer 4.c
Layer 3 Layer 3.a| Layer 3.a| Layer 3.c
Layer 2 Layer 2
Layer 1 Layer 1

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

\J

05 ne”

* an IS as Layers

5
rygrs'

Considering the 4 primary software components of

‘ Presentation Logic

» Presentation logic

« Application logic

Application Logic

Layer 3

‘ Layer 4
|
|
|

&y
\‘@ Refresher: Data Mgmt Layer Design

&

vsermeroce |][] [[‘ Presentation Logic ‘
problem m:;ns CI 10 Application Logic
DAM classes l:l] l:l |:| H |:| C1C] |:|‘ ‘ Data Access Logic ‘

» Data access logic Data Access Logic Caverd Object persistence Iil - Iil Iil ‘ . —
« Data storage classes] Iil I__'_l Iil Iil ‘ Data Storage ‘
Data Storage Layer 1 RDBMS ORDBMS

Notice that in this way the problem domain classes remain
unchanged
We have kept them independent from the underlying database
management system.
« Changing DBMS requires changing only the DAM classes
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 13 U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 14
g . WDog . .
VED: The 3 primary hardware components of a system YED: Kinds of Architectures
Q= et

 Client computers

» Servers

* Network

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2005

Primary Hardware components Primary Software components

+ Client computers =
= architectures

Data Storage

» Servers

+ Network E

According to the distribution of the 4 basic layers to hardware
nodes we can distinguish the following architectures:

(a) Server-based computing

(b) Client-based computing

(c) Client-server-based computing

(d) 3/4/N tiers computing

=
x

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 16

\J

B

2 o
Wiygrs'

(a) Server-based Computing

gQ/mEIIII

U. of Crete, Information Systems Analysis and Design

Clients/Terminals

Yannis Tzitzikas, Fall 2005

S
\‘@ (b) Client-based Computing

C 4
Hiygrs

L]

Clients/Terminals

¢ |

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 18

(c) Client-Server-based Computing (2 Tiers)

Data Access Logic
Data Storage

%00 g

Presentation Logic
Application Logic

L]

Clients/Terminals

Yannis Tzitzikas, Fall 2005 19

\
\\ A

C 4
Hiygrs

95 gne”

(d) 3 tiers based computing

o

— —)
r— PP —
\/ LY~ —
Server Clients/Terminals
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 20

Presentation Logic

‘ Application Logic ‘ ‘ Application Logic ‘
Data Access Logic Web server
Data Storage
o0 g j00e 1 00 g m._- I

: g5 _ =
. i m -

é’
e

5 ¢
Hiygrs

Some more details about the previous architectures

Server Clients/Terminals
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 21
Vo) - P (b ci .
Yo): (a) Server-based Computing Ve): (b) Client-based Computing
Characteristics
Characteristics

O

=
=

L [p L]
Server

Clients/Terminals

U. of Crete, Information Systems Analysis and Design

* The server does almost everything. The client
is actually a very thin client

[-]: The Server has very high load

«the clients do not contribute to the
computation

[+]: Not so difficult to implement
[+] If platform changes (e.g. OS) we have to
rewrite only the thin client

Yannis Tzitzikas, Fall 2005 23

[+] The server has less load

[-] The clients are very heavy (they should be
computationally powerful machines)

[-] sometimes a lot of data have to be
communicated through the network

[-] If we the OS changes then we have to rewrite

< the 3 layers of the client

«(in server-based computing we could keep
[T the server running in the old OS) and we
Clients/Terminals would need to change only the thin client so
that to run in the new OS

a

ol

(Tl

Server

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 24

Y
%

g 4
rygrs'

(c) Client-Server-based Computing (2 Tiers)

Characteristics

Data Access Logic

Presentation Logic
Application Logic

L]

<

This is like having a thick client (thin client: if
responsible only for the Ul)

[+] The client has less load (comparing to
client-based computing)

[+] The server has less load comparing to
server-based computing

[-] We have to rewrite the application logic if
platform changes

[-] Sometimes a lot of data have to be
communicated through the network

EEEe
Server
Clients/Terminals
U. of Crete, Information Systems Analysis and Design

[+] Good overall performance

Yannis Tzitzikas, Fall 2005 25

\\‘ . Client Server:
&%= Class and Interaction Diagrams
Client requests returns Server
+doTask ()} senice result [runService ()

+sendRequest (] +receiveRequest()

doTask |

sendRequest

receiveRequest

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 26
\@ (d) 3 tiers based computing \@ (d) 3 tiers: Example
Characteristics

[+] Good load balancing

Data Access L.
Data Storage

Server

joad
Application L.

Clients/Terminals

server has excessive load
N « This architecture is suited for
all -

the server and the client have less

[+] the Ul component is independent of
the rest system

sserver-based computing has also
this property but in that case the

heterogeneous environments
[-] more complex implementation - more

U. of Crete, Information Systems

Analysis and Design

data are transferred through the network

Yannis Tzitzikas, Fall 2005 27

; —
File :\E j‘/E Busssme et Control Appl o Java
Vi AWT
Mgmt 0 - Logic j/'[Objects 0 iews 0 Ol
y
Mgr

O
DBMS Presentation Logic

Application Logic
Data Access Logic
Data Storage

00 g s00 g

1

i
-
]

Server
Clients/Terminals
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 28

Controllerservet | ReservationHander Dat blect | HTMLGenerator
T T - T
‘ieb Br
b Browser M T T T
1 I I
Business Logic i ! !
I
I
I
I
I
-t --- I
I
e - - {--F---
Database T Confirmati !
T T
I I
Ao - q--F---- [Y [Ep—— . ——
I I
- T I | T
| | |
! Presentation Layer Business Logic Layer Database Layer Presentatibn Layer
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 2

oy
VY&8): (d) N-Tiered Client-Server architectures

“ 4
Hiygrs

General Remarks
» Advantages
— Separates processing to better balance load
— The system is more scalable
» Disadvantages
— Higher load on the network
— More difficult to implement and test

[ApplicationLogic | [Application Logic |
Web server
-

(=15
Server Clients/Terminals
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 30

i
\‘@ Selecting a Computing Architecture

2 o
rygrs'

Cost of development Medium Low

Ease of development High Low-medium
High High

Scalability Low

Interface capabilities

Control and security Medium

Medium

Server-Based Client-based Client-server ‘
Cost of infrastructure Very high Medium

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

95 gne”

e

5
Hiygrs

Virtual Machine

Vog . .
Y@): Virtual Machine

« ltis a form of layered architecture
+ It allows using the same API independently of the underlying OS/hardware
« The compiler produces intermediate code (bytecodes in Java) which can be
handled by the virtual machine
Service-Oriented Computing
[Virtual Machine | [Vinual Machine | [Virtual Machine
il iy]
= = <
-
Server Clients/Terminals
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 33
\@ Service-oriented Computing YED: Service-oriented Computing (2)

SOA: Service Oriented Architecture

Software is considered as a set of services
We can have

« service providers

« consumers

« registries (catalogs of available services)

Registry

Ly

onsumer '
I

| g-serucelacation _

Provider

g % request: TN\rF j:|
m request service provide service II | - oot ': """" ‘

— =l ! | |
Consumer Provider ! ' !

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

» Based on open standards (SOAP, REST, WSDL, UDDI)
+ Data is exchanged using XML

Characteristics

[+] complete separation between
providers & consumers

[+] the same service can be provided
with different characteristics (quality,
price, speed, etc) from different providers
=> competitiveness

[+] open standards

[-] not mature technology, no registries
for business services

Registry

Consumer

publish service

request service
p

provide service l[

Provider

V.

+ Web Services
— Data are exchanged in XML (SOAP, REST)
— Data are transferred using HTTP
— The “interface” provider-consumer is described in XML (WSDL)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

36

Vo B
Peer-to-Peer (P2P) architectures

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 37
g N i
Ve): Peer to Peer NJED: Peer-to-Peer Architectures

P Hybrid (Napster) R Decentralized (Gnutella)
. ure 1: st ”"% M"’M)

— all are equal. No layering. Each peer depends on the others }a I —

] | 1]
4 -
Peer Peer Peer

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

3: peer 1 has x

pet

4: download docx.mp3

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, F

g
VOB
Q=

Communication Protocols

Vg’ o
\‘@ Communication Protocols

C 4
Hiygrs

‘ How objects of different layers at different machines can communicate ?

+ RPC (Remote Procedure Call):

— can invoke a remote procedure, send results, (RPC is widely supported in
languages such as C, C++)

» RMI (Remote Method Invocation)
— injava (recall www.csd.uoc.gr/~hy252)

- DCOM
— Microsoft’s Distributed Component Object Model

» CORBA (Common Object Request Broker Architecture)
— The object-oriented industry standard by OMG (1995)

» SOAP (Simple Object Access Protocol)

— uses XML to encapsulate messages and data that can be sent from one
process to another

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

\{'@ Communication Protocols
“&?° Platform dependent vs Open Standards

* RMI or DCOM are language/operating system specific protocols
— they restrict the design to implementation on certain platforms
» CORBA or SOAP are open standards

— they allow building component-based systems that are not tied to particular
platforms

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 43

C 4
Hiygrs

\)
NS

%

2 Case: CORBA

&

CORBA separates the interface of a class (the operations it can carry out) from
the implementation of that class.

The interface can be compiled into a program running on one computer.

An object instance can be created or accessed by name.

To the client program it appears to be in memory on the same machine,
however, it may actually be running on another computer.

When the client program sends it a message to invoke one of its operations, the
message and its parameters are converted into a format that can be sent over
the network (known as marshalling). At the other end the server unmarshals the
data back into a message and parameters and passes it to the implementation
of the target object.

This object then carries out the operation and, if it returns a value, that value is

marshalled on the server, unmarshalled on the client and finally provided as a
return value to the client program

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 44

Vg
YE): CORBA (2)

2 o
rygrs'

+ CORBA achieves this by means of programs known as ORBs (Object Request
Brokers) that run on each machine.

+ The ORBs communicate with each other by means of an Inter-ORB Protocol
(IOP).

+ Over the Internet, the protocol used is IIOP (Internet IOP).

IIoP

ORB ORB
internet

.. .-

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 45

N
D

5 ¢
Hiygrs

e

CORBA (3)

.

To use this facility, the developer must specify the interface (public attributes
and operations) of each class in an Interface Definition Language (IDL).
The IDL file is then processed by a program that converts the interface to a
series of files in the target language or languages.

In Java, this program is called IDL2JAVA and
produces

— afile that defines the interface in Java,
— a stub file that provides the link between

The IDL file for a class Location

the client program and the ORB, Module CretanTourismApplication
« it implements the interface on the client {interface Location
and is compiled into the client program {attribute string locationCode;
— afile that provides a skeleton for the R ST (SIS
implementation of the server void addHotel(in Hotel hotel);
« it implements the interfa?)n the server; e e Gy e
the developer updates this file (provides ot [UELEIOILICEE 1)
the implementation) and it is compiled on k

the host

U. of

Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

Was: CORBA (4)
/&° Supporting different PLs, Wrapping legacy systems

+ CORBA is known as middleware, as it = Broker L
acts as an intermediary between clients L
and servers.As such it enables the Server ™
implementation of a 3 or 4 tier
architecture that isolates the Ul and E]
client programs from the implementation I
of classes on one or more servers. Server Clients/Terminals

+ CORBA also provides interoperability between different languages: a Java
client program can invoke operations on a C++ object that exist on a separate
machine.

+ CORBA also makes it possible to encapsulate pre-existing programs (legacy
systems) written in non-object oriented languages by wrapping them in an
interface. To the client it looks like an object, but internally it may be
implemented in a language like COBOL.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 47

s = CORBA (5)
=" More advanced features

Systems developed using CORBA can be set up so that the remote objects are

CORBA also provides a number of more advanced services:

located on a named machine and accessed by name. This is what we need in
the majority of applications.

Services for locating objects by name when it is not known where they are
running.

Services for locating objects that implement a certain interface and for
interrogating an object to determine its interface (operations, parameter types
and return types) in order to dynamically invoke its operations.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 48

Web-based applications

%

N
@c Web-based applications: Adding ..

Dynamic

;
pooo o p—
Applications / files / databases

alternativAes/

« ASP (Active Server Pages)
— limited to Microsoft Platform

Server

Web Browser

Clients/Terminals

» JSP (Java Server Pages)

— JSP is designed to be platform and
server independent, created from a
broader community of tool, server, and
database vendors

. n
"“dynamism
HTTP (HyperText Transfer Protocol): transfers hypertext documents over Web Browser
the internet calC Gat Interface) Web Server
e ommon Gateway Interface):
— HTML (HyperText Markup L. : def h ;
(HyperText Markup Language): defines hypertext documents CGI scripts are programs (e.g. a
unix shell script or a perl script) e
that reside on the web server and
can be invoked by elements of the Server P
web pages
Web Server D D D D D D
o L d Cllems/TermlnaIs
. Applications / files / databases
g p & html
e =
. ot Tomi ..._
D D D D D D Clients/Terminals
HTML pages
Server
Very static architecture
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 49 U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 50
g o \
VE): Web-based applications

\

“
(s

e

Web-based applications

» Here we have to design our layers assuming the Web platform

DYNAMIC
Presentation Logic] g
=
[poptoston toge =
T J Server l |]
Data Access Logic

Data Storage

Applications / files / databases Clients/Terminals

So Web Servers and the Web Browsers become parts of our information

system.
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 52
Pt Jes:
yed: Servlets VED: Servlets (IT)
p”lvzw & 5

Servlets are to servers what applets are to browsers.

Servlets are modules that extend request/response-oriented servers, such as
Java-enabled web servers.

— A servlet might be responsible for taking data in an HTML order-entry form and

applying the business logic used to update a company's order database.

Servlets can be embedded in many different servers because the servlet API,
which you use to write servlets, assumes nothing about the server's
environment or protocol. Servlets have become most widely used within HTTP
servers; many web servers support Java Servlet technology.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

C 4
Hiygrs

Servlets are an effective replacement for CGl scripts.
« They are easier to write and run faster

So we can use servlets to handle HTTP client requests.

« We can have servlets to process data POSTed over HTTPS using an HTML form,
including purchase order or credit card data. A servlet like this could be part of an order-

entry and processing system, working with product and inventory databases, and
perhaps an on-line payment system.

Other Uses for Servlets
« A servlet can handle multiple requests concurrently, and can synchronize requests. This
allows servlets to support systems such as on-line conferencing.

Servlets can forward requests to other servers and servlets. Thus servlets can be used to
balance load among several servers that mirror the same content, and to partition a

single logical service over several servers, according to task type or organizational
boundaries.

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2005

\
D

5
rygrs'

) A Simple Servlet (Hello World)

A

import java.io.*;
import javax.servlet.;
import javax.serviet.http.*;

public class HelloWorld extends HttpServiet {

public void doGet(HltpServletHei, HttpServIetRes
response)

throws IOException, ServietException

{
response.setContentType("text/ntml");
PrintWriter out = response.getWriter();
out.printin("<html>");
out.printin("<body=>");
out.printin("<head>");
out.printin("<title>Hello World!</title>");
out.printin("</head>");
out.printin("<body>");
out.printin("<h1>Hello World!</h1>");
out.printin("</body>");
out.printin("</html>");

}

U. of Crete, Information Systems Analysis and })ex]gn

Yannis Tzitzikas, Fall 2005 55

Pattern
Model-View-Controller (MVC)

Boa'
YE): Model-View-Controller (MVC)

e A
rygrs'

« This pattern is used in applications where the Ul is very important
» Motivation
— same data may be displayed differently
— display and application must reflect data changes immediately
— Ul changes should be easy and even possible at runtime
Porting the Ul to another platform should not affect core application code
« Solution
— Divide application into 3 parts
* Model
* View
« Controller

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 57

%

\
Y@): Model-View-Controller

C &
Hiygrs

Model: provides the essential functionality of the application (application logic)
View: supports a particular style of interaction with the user (display output)

Controller: accepts user input in the form of events and synchronizes changes
between the model and its views (user input)

Model View
Responsibilities Responsibilities
-- core application -- render the model on the screen

-- manage movement and resizing
of the view
-- intercept user events

Controller

Responsibilities

- synchronize changes Decoupling achieved: We can:
Lin the model and its views | + have multiple views/controllers for the
same model
« reuse views/controllers for other
models
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 58

\
D

5
Wiygrs'

05 ne”

MVC: connection with the previous discussion

Controller| | View
B jon L.

Model Application L. K -~
eypoints
« One central model, many views
(e

20 4|

+ Each view has an associated
— g < controller
=i . = « The controller handles updates
HM | l[_C] from the user of the view

v = « Changes to the model are

BDoa
N): Example: The Views of Powerpoint

C 4
Hiygrs

Server Clients/Terminals propagated to all the views
Viewi | [View2 | [view3
Controller 1 UComroller ZUComro\ler 3 View 1 |Controller 1‘ l View 2 [Controller 2‘ l View 3 [Controller 3|
Model Model
Data Storage Data Storage

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 59

Slide Sorter View

]
L]

Outline View
L]

Slide Editing View

HY 351: AvaAuon Kai Zxediaon MTANPOGOpIGKGY ZuoTnaTwY
CS 351: Information Systems Analysis and Design

Physical Architecture Design

Software + communication

" Lecture : 18 Yannis Tzitzikas
Dote 15122005 Universiy of Crete, Fall 2005,

The structure of the model of Powerpoint

Application }—*{ Presentation }—*{ Slides }—*{ Shape ‘

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2005 60

3

Y8 mvc
* Model

— Core application code
« maintains application state

— Contains a list of observers (view or controller)

— Has a broadcast mechanism to inform views of a change
* View

— displays information to user

— obtains data from model

— each view has a controller
« Controller

— handles input from user as events (keystrokes, mouse clicks and
movements)

— maps each event to proper action on model and/or view

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

é’
e

Model access
and editing

State change notification

Application
state and
behaviour

U. of Crete, Information Systems Analysis and Design

State change notification

D”lvzw'v;‘
. View
User input sessions Controller View messages) Display Output
User input Display
device layout and
i X interaction
interaction views

display

change events

Mutable
String

Hyperlink

Screen
handler

Rendered
page view

load new page

change events
Document

Object
Model
(DOM)

Yannis Tzitzikas, Fall 2005 62
Yy . Py
VED: MVC Example: Text Field \@ MVC Example: Web Browser
[v c v
Keyboard Keystroke Text Screen Mouse
handler

Database

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

Model access
and editing
messages

Change
messages

Model

Application
state and

behaviour
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

M
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 63 U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 64
Wy Vs
VED: MVC Example: Database-backed web server yED: MVC and MV
L Ll
In many cases, view and controller are
c v very tightly coupled.
+ soinstead of MVC we have MV
Network Request Web page Network (Model-View) User input View Display Output
. . isplay Outpu
(er;a:::;:‘) generator + areusable view manages both sessions UZi'v'iZEm
ha (e.g.isp) output and input Ineraction &
— also called widgets, components, ... Display
« e.g. scrollbars, buttons, ... layout and
update get data |nte_racnon
views

s'@ Observer pattern is used to decouple model from
& views

interface Model {
void register(Observer)
void unregister(Observer)
Object get()
void modify()

observers

}
interface Observer {
void update(Event)

E.g. table

N
D

5
Hiygrs

95 gne”

A

register register register
modif i
'y . modify modify
update update update
get unregister modify
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 o

» How we can depict the Physical Architecture of a
System?

« Is there any standard diagrammatic notation?

=> UML Components and Deployment diagrams
— (next lecture)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

T
\‘@ Reading and References

2 o
rygrs'

+ Systems Analysis and Design with UML Version 2.0 (2nd edition) by A. Dennis, B. Haley Wixom,
D. Tegarden, Wiley, 2005. Chapter 13

« Object-Oriented Systems Analysis and Design Using UML (2nd edition) by S. Bennett,
S. McRobb, R. Farmer, McGraw Hil, 2002, Chapter 18

« The Unified Modeling Language User Guide (2nd edition) by G. Booch, J. Rumbaugh, 1.
Jacobson, Addison Wesley, 2004

« Slides of “ Ul Software Architecture, 6.831” (Ul Design and Implementation)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 69

