
Yannis Tzitzikas
Lecture : 16
Date : 8-12-2005

HY 351: Ανάλυση και Σχεδίαση Πληροφοριακών Συστηµάτων
CS 351: Information Systems Analysis and Design

Data Management Layer Design
(II)

University of Crete, Fall 2005

.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 2

Outline

(A) Select the format of the storage

Object-Relational Databases

Object-Oriented Databases

(B) Map problem domain objects to object-persistence formats

Class Diagrams => Object-Relational Databases

Class Diagrams => Object-Oriented Databases

Code for accessing the database

(C) Optimizing the object-persistence formats

Estimating the load of the database

Use of Indexes - Denormalization

(D) Designing database management classes

DAM Classes - Patterns for data management

Other issues

Transactions

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 3

Relational, Object-Oriented and Object-Relational
Databases

• Relational Databases
– Based on the relational model (tables, 1NF, primary keys, foreign keys,

relational algebra, SLQ, views, normalization)

– Examples of relational DBMSs: Sybase, DB2, Oracle, MySQL, MS Access
(end-user DBMS)

• Object-Relational Databases
– Extend the relational model to include useful features from object-orientation,

e.g. complex types.

– Add constructs to relational query languages, e.g. SQL, to deal with these
extensions

– Example of ORDBMSs: PostgreSQL, UniSQL, Oracle8,

• Object-Oriented Databases
– Extend OO programming to include features required for database system,

e.g. persistent objects.

– Examples of OODBMSs: ObjectStore, Versant, Objectivity, O2, Gemstone

Object-Relational Databases

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 5

Object-Relational Databases

• The ORDB model was standardized in 1999, also known as SQL:1999

– upwards compatible with SQL’92

• Commercial DBMSs

– DB2, Informix and Oracle have extensions that provide some level of support for

objects

– Many ORDBMSs still do not support inheritance

• so again a mapping from UML class diagrams to a schema without inheritance is required

Object-Relational Databases

• Extend the relational model to include useful features from object-orientation,
e.g. complex types.

• Add constructs to relational query languages, e.g. SQL, to deal with these
extensions.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 6

About SQL:1999

• The object-relational features of SQL:1999 include:

– object tables,

– references between object tables to represent object

relationships (these are called REFs), and

– arrays to represent multi-valued associations.

• Object tables are created by first creating an object type.

• Object types are user defined types that establish the attributes, object
relationships, and methods of a class.

• A type is then used to create a table.

• Instances of the table will have object identifiers as in the oo model.

• Object types can be formed into hierarchies that support inheritance (“UNDER”).

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 7

create type Publisher as

(name varchar(20),

branch varchar(20))

create type Book as

(title varchar(20),

author-array varchar(20) array[10],

pub-date date,

publisher Publisher,

keyword-set setof(varchar(20)))

create table books of Book

create table books

(title varchar(20),

author-array varchar(20) array[10],

pub-date date,

publisher Publisher,

keyword-set setof(varchar(20)))

Object-Relational Databases:

Attributes

In contrast to the relational model, here attributes can be sets,

arrays and composite.

Defining a table without

first defining its type.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 8

Object-Relational Databases:

Inheritance over Types

Inheritance can be at the level of types or at the level of tables.

Inheritance at the level of types

create type Person as

(name varchar(20),

address varchar(20))

create type Student under Person

(degree varchar(20),

department varchar(20))

create type Teacher under Person

(rank varchar(20),

department varchar(20))

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 9

Object-Relational Databases:

Inheritance over Types: Multiple Inheritance

create type Person as

(name varchar(20),

address varchar(20))

create type Student under Person

(degree varchar(20),

department varchar(20))

create type Teacher under Person

(rank varchar(20),

department varchar(20))

create type TeachingAssistant under Student, Teacher

Department is inherited twice.

Does this attribute have the same semantics?

create type TeachingAssistant under

Student with (department as student-dept),

Teacher with (department as teacher-dept)

Renaming

can resolve

the ambiguity

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 10

Object-Relational Databases:

Inheritance

Inheritance at the level of tables

create table people of Person

create table students of Student under people

create table teachers of Teacher under people

create table teaching-assistants of TeachingAssistant under students, teachers

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 11

Object-Relational Databases:

Querying with Complex Types

• Composite attributes

– E.g. “find the title and name of publisher of each book”

select title, publisher.name

from books

• Set-valued attributes

– E.g. “find all the books that have “database” as one of

their keywords”

select title

from books

where ‘database’ in (unnest(keyword-set))

create type Publisher as

(name varchar(20),

branch varchar(20))

create type Book as

(title varchar(20),

author-array varchar(20) array[10],

pub-date date,

publisher Publisher,

keyword-set setof(varchar(20)))

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 12

Object-Relational Databases:

Querying with Complex Types (II)

create type Publisher as

(name varchar(20),

branch varchar(20))

create type Book as

(title varchar(20),

author-array varchar(20) array[10],

pub-date date,

publisher Publisher,

keyword-set setof(varchar(20)))

• Arrays
– E.g. “find the three authors of the Database System

Concepts book”

select author-array[1], author-array[2], author-array[3]

from books

where title = ‘Database System Concepts’

– E.g. “find title-author pairs for each book”

select B.title, A

from books as B, unnest(B.author-array) as A

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 13

Object-Relational Databases:

Nesting and Unnesting

• Transforming a nested relation into 1NF

select name, A as author, date.day, date.month, date.year, K as keyword

from doc as B, B.author-list as A, B.keyword-list as K

• Transforming 1NF relation into nested relation

Example: suppose that flat-books is the 1NF version of the table

select title, set(author) as author-set,

Publisher(pub-name, pub-branch) as publisher,

set(keyword) as keyword-set

from flat-books

group by title, publisher

create type Publisher as

(name varchar(20),

branch varchar(20))

create type Book as

(title varchar(20),

author-array varchar(20) array[10],

pub-date date,

publisher Publisher,

keyword-set setof(varchar(20)))
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 14

Object-Relational Databases:

Functions

Functions can be defined by users

• By using a PL or a DML (e.g. SQL). For example, an SQL (extended) function
that given a document returns the number of authors:

Q: “find the name of all documents

that have more than one author”

select title

from books

where author-count(title) > 1

create function author-count(title varchar(20))

returns integer

begin

declare a-count integer;

select count(author) into a-count

from authors

where authors.title = title

return a-count

end

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 15

Object-Relational Databases:

Creating Objects and Complex Values

insert into books values

(‘Compilers’, array[‘Smith’, ‘Jones’], Publisher(‘McGraw-Hill’, ‘NY’),
set(‘parsing’, ‘analysis’))

create type Publisher as

(name varchar(20),

branch varchar(20))

create type Book as

(title varchar(20),

author-array varchar(20) array[10],

pub-date date,

publisher Publisher,

keyword-set setof(varchar(20)))

• Inserting a tuple into relation book

– composite attributes: use parenthesis

– set valued attributes: use keyword set and ()

– arrays: use keyword array and []

Object-Oriented Databases

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 17

Object-Oriented Databases

Is the result of combining o-o programming principles

with database management principles

• OO concepts such as encapsulation, polymorphism and inheritance are
enforced as well as database management concepts such the ACID properties
(Atomicity, Consistency, Isolation and Durability) which lead to system integrity,
support for an ad hoc query language and secondary storage management
systems which allow managing very large amount of data.

The Object Oriented Database Manifesto [Atkinson et al. 1989] lists the following
features as mandatory for a system to support before it can be called OODBMS:

– Complex Objects, Object Identity, Types and Classes, Class or Type
Hierarchies, Overriding, Overloading and late binding, Computational
Completeness, Extensibility, Persistence, Secondary Storage management,
Concurrency, Recovery and Ad Hoc Query Facility

http://www.cs.cmu.edu/People/clamen/OODBMS/Manifesto/htManifesto/Manifesto.html
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 18

Object-Oriented Databases: The distinctive features

• Each object has an OID that is permanent and system generated

• Accessing objects in the database is done in a transparent manner

– the interaction of persistent objects is no different from the interaction of in-memory

objects.

• So you are not obliged to use a query language (like SQL in relational DBMS)

– however Object SQL can be used for making queries outside of a programming

environment

• When a client requests an object from the database, the object is transferred
from the database into the applications’ memory where it can be used either as

– a transient value (i.e. disconnected from its representation in the database), or as

– a mirror of the version in the database

• updates to the object are reflected in the database

• changes to objects in the database require that the object is refetched from the database.

• Database operations typically involve obtaining a database root from the
OODBMS which is usually a data structure (like a graph, vector, hash table, or
set) and traversing it to obtain objects to create, update or delete from the db.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 19

Object-Oriented notions vs
Relational databases notions

table

tuple

class

instance

methods
No support

•… ~ stored procedures
methods are

computationally complete

(general purpose control

and computational

structures are provided)

tuples of the tableextent: instances of a class

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 20

ODL - OML - OQL

• ODL: Object Definition Language

• OML: Object Manipulation Language

• OQL: Object Query Language

• The Object Database Standard: ODMG 3.0 (www.odmg.org)

– ODMG: a consortium of object-oriented DBMS vendors and users

– Standard for object-relational mapping products as well as object DBMSs

– Free sample from the ODMG 2.0 book are available at

• http://www.odmg.org/odmgbookextract.htm

The ODMG is now an Object Storage API standard that can work

with any DBMS or tool.

See also: JDO (Java Data Object) API.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 21

Object Oriented DBMSs and Applications

Examples of pure OODBMSs:

• Gemstone, Jasmine

• O2, Objectivity

• Object-Store, POET

• Versant, Ontos, Poet, EyeDB

Open source OODBMSs:

• Ozone

• Zope

• FramerD

• XL2

• Chicago Stock Exchange: uses Versant

• CERN (Large Hadron Collider): uses Objectivity

• Stanford Linear Accelerator Center (SLAC): uses Objectivity

– 169 terabytes (Nov 2000)

• SouthWest Airline’s Home Gate: uses ObjectStore

• Iridium System (by Motorola): Data repository for system component naming, satellite

mission planning data and orbital management data : uses Objectivity

Some systems (that handle mission critical data) that are based on OODBMSs:

Mainly used for multimedia applications (that involve complex data: graphics, video,

sound).

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 22

Advantages of OODBMSs (versus RDBMSs)

Advantages of OODBMSs

• Avoid the “impedance mismatch”

• They are better in handling complex data (allow storing Composite Objects)

– in a RDBMS we would either have to define a table with many columns and a lot of

null values, or a set of tables linked via foreign keys (querying would have joins)

• Class Hierarchy

• A QL is not necessary to access the db

• No need to define primary keys (ODBMS does this behind the scenes via OIDs)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 23

Disadvantages of OODBMSs (versus RDBMSs)

Disadvantages of OODBMSs

• Schema changes are … hard

– In a RDBMS changes at the schema are independent from the application programs

– in an OODBMS changes at the schema require recompiling the application

program

• They are language dependent (usually tied to an o-o PL)

– OODBMSs are typically accessible from a specific PL using a specific API

• Lack of Ad-Hoc Queries

– in RDBMS and with SQL we can define queries that create new tuples from joining

existing tables and querying them. It is not possible to duplicate the semantics of

joining 2 tables by joining two classes (so OODBMSs are less flexible than RDBMSs

from that perspective)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 24

A four step design approach:

(A) Select the format of the storage

Files

Relational Databases

Object-Relational Databases

Object-Oriented Databases

(B) Map problem domain objects to object-persistence formats

(C) Optimizing the object-persistence formats

(D) Design data access and manipulation classes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 25

Selecting an Object Persistence Format

Dennis et al. 2005
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 26

A four step design approach:

(A) Select the format of the storage

(B) Map problem domain objects to object-persistence formats

we have to map the structures defined by the UML class diagrams to data
structures that are recognized by the database model selected

problem domain

classes

Object persistence

format

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 27

Map problem domain objects to object-persistence formats

problem domain

classes

RDBMS

“Impedance mismatch”:

caused by having to

map objects to tables

and vice versa is a

performance penalty.

Conversion method: See

Lecture 15.

ORDBMS OODBMS

Less “impedance

mismatch”:

A conversion is still

needed depending on

the support of

inheritance (some

ORDBMSs do not

support inheritance).

Less “impedance mismatch”:

A conversion is still needed

depending on the support

of inheritance (e.g. some

do not support multiple

inheritance)

We can apply the rules described in the lecture about “Class and Method Design”
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 28

Map problem domain objects to object-persistence formats

problem domain

classes

RDBMS ORDBMS OODBMS

• Even in these cases it is suggested to create one object persistence class
in the ORDBMS/OODBMS for every concrete problem domain class that
needs persistent storage.

• Later on we will define data access and manipulation (DAM) classes that
contain the functionality required to manage the interaction between each
such pair of classes. This design increases portability.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 29

Example: A class diagram

Student

status

Person

pId

dob

firstName

lastName

CampusClub

cId

name

location

phone

Faculty

rank

{complete, disjoint}

* <advises 0..1* clubs> *

advisorOfmembers memberOf advisor

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 30

Its translation to the Relational model

Student

status

Person

pId

dob

firstName

lastName

CampusClub

cId

name

location

phone

Faculty

rank

role

{complete}

* <advisesclubs> *

Person(pId, dob, firstName, lastName)

Student(pId, status)

foreign key (pId) references Person(pId)

Faculty (pId, rank)

foreign key (pId) references Person(pId)

CampusClud(cId, name, phone, location, advisor)

foreign key(advisor) references Faculty(pID)

Clubs(pId,cId)

foreign key (pId) references Person(pId)

foreign key (cId) references CampusClub(cId)

*

0..1

An alternative approach would be to flatten the
isA hierarchy (see Lectures 13,15)

The unidirectional association here just indicates what is

possible in the above relational schema (the reverse

direction can be supported by posing a query).

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 31

Translating to an Object-Relational DBMS

Student

status

Person

pId

dob

firstName

lastName

CampusClub

cId

name

location

phone

Faculty

rank

role

{complete}

* <advisesclubs> *

* 0..1

advisorOf

members

memberOf

Array in Faculty
Array in Student

Nested table

In CampusClub
Oracle 8i

Array: fixed-sized collection

Nested table: variable-sized collection

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 32

Its translation to an ORDBMS: SQL:1999 (1/2)

Student

status

Person

pId

dob

firstName

lastName

CampusClub

cId

name

location

phone

Faculty

rank

role

{complete}

* <advisesclubs> *

* 0..1

CREATE TYPE person_udt AS (

pID VARCHAR(11),

dob DATE,

firstName VARCHAR(20),

lastName VARCHAR(20))

NOT FINAL

REF IS SYSTEM GENERATED;

CREATE TABLE person OF person_udt (

CONSTRAINT person_pk PRIMARY_KEY(PID),

REF IS oid SYSTEM GENERATED);

CREATE TYPE faculty_udt UNDER person_udt AS (

rank VARCHAR(20),

advisorOf REF(campusClub_udt) SCOPE campusClub

ARRAY[20])

NOT FINAL

CREATE TABLE faculty OF faculty_udt under person;

advisorOf

members

memberOf

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 33

Its translation to an ORDBMS: SQL:1999 (2/2)

Student

status

Person

pId

dob

firstName

lastName

CampusClub

cId

name

location

phone

Faculty

rank

role

{complete}

* <advisesclubs> *

* 0..1

CREATE TYPE student_udt UNDER person_udt AS (

status VARCHAR(20),

clubs REF(campusClub_udt) SCOPE campusClub ARRAY[20])

NOT FINAL

CREATE TABLE student OF student_udt under person;

CREATE TYPE campusClub_udt UNDER person_udt AS (

cID VARCHAR(11),

name VARCHAR(25),

location VARCHAR(25),

phone VARCHAR(25),

advisor REF(faculty_udt) SCOPE faculty,

members REF(students_udt) SCOPE student ARRAY[100])

NOT FINAL

REF IS SYSTEM GENERATED;

CREATE TABLE campusClub OF campusClub_udt (

CONSTRAINT campusClub_pk PRIMARY KEY (cID),

REF IS oid SYSTEM GENERATED);

advisorOf

members

memberOf

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 34

SQL:1999

• FINAL types may not have subtypes

• The table of a type has one column for each attribute of its type plus one column
to define REF value for the row (object id).

• REF

– User generated (REF USING <predefined type>)

– System generated (REF IS SYSTEM GENERATED)

– Derived from a list of attributes (REF (<list of attributes>)

• Default is system generated

CREATE TYPE real_estate AS (owner REF (person), ...)

NOT FINAL REF USING INTEGER

CREATE TYPE person AS (ssn INTEGER, name CHAR(30),...)

NOT FINAL REF (ssn)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 35

Translating to an Object-Oriented DBMS

Student

status

Person

pId

dob

firstName

lastName

CampusClub

cId

name

location

phone

Faculty

rank

role

{complete}

* <advisesclubs> *

* 0..1

Implemented as

bidirectional

relationship

Implemented as

a bidirectional

relationship advisorOf

members

memberOf

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 36

Target OODBMS
Translating associations: Attributes or Relationships?

An association (of the class diagram) can be represented as

• an attribute (at one side) // if of course it is not N-M

• two attributes (one at each side)

• In this case the application programmer is responsible for

maintaining the consistency in both sides

•as a bidirectional relationship

• These are stored at both sides and their consistency is

automatically maintained by the DBMS

•A modification to one side results in the automatic maintenance of the
data on the other side of the relationship

•These relationships should be explicitly defined in ODL (direct and
inverse direction)

In ORDBMS this is not possible. We have to write triggers for maintaining consistency

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 37

Its translation to an OODBMS (e.g. Objectivity):
using ODL (1/2)

Student

status

Person

pId

dob

firstName

lastName

CampusClub

cId

name

location

phone

Faculty

rank

role

{complete}

* <advisesclubs> *

* 0..1

class Person

(extent people

key pID)

{attribute string pID;

attribute date dob;

attribute string firstName;

attribute string lastName;

}

class Student extends Person

(extent students)

{ attribute string status;

relationship set <CampusClub> memberOf

inverse CampusClub::members;

}

advisorOf

members

memberOf

Keys are optional in ODL since each object has a unique OID.

However we can declare keys using the keyword “key”.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 38

Its translation to an OODBMS (e.g. Objectivity):
using ODL (2/2)

Student

status

Person

pId

dob

firstName

lastName

CampusClub

cId

name

location

phone

Faculty

rank

role

{complete}

* <advisesclubs> *

* 0..1

class Faculty extends Person

(extent facultyMembers)

{attribute string rank;

relationship set <CampusClub> advisorOf inverse

CampusClub::advisor;

}

class CampusClub

(extent campusClubs

key cID)

{attribute string cID;

attribute string name;

attribute string location;

attribute string phone;

relationship set <Student> members inverse

Student::memberOf;

relationship Faculty advisor inverse Faculty::advisor;

}

advisorOf

members

memberOf

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 39

Its translation to an OODBMS (e.g. Objectivity)
Remark

class Faculty extends Person

(extent facultyMembers)

{attribute string rank;

relationship set <CampusClub> advisorOf inverse CampusClub::advisor;

}

class CampusClub

(extent campusClubs

key cID)

{attribute string cID;

attribute string name;

attribute string location;

attribute string phone;

relationship set <Student> members inverse Student::memberOf;

relationship Faculty advisor inverse Faculty::advisor;

}

CampusClub

cId

name

location

phone

Faculty

rank

* <advises

0..1

advisorOf

Here we translated this association as a relationship

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 40

Its translation to an OODBMS (e.g. Objectivity):
Remark (II)

class Faculty extends Person

(extent facultyMembers)

{attribute string rank;

attribute set <CampusClub> advisorOf;

}

class CampusClub

(extent campusClubs

key cID)

{attribute string cID;

attribute string name;

attribute string location;

attribute string phone;

relationship set <Student> members inverse Student::memberOf;

attribute Faculty advisor;

}

CampusClub

cId

name

location

phone

Faculty

rank

* <advises

0..1

advisorOf

Here we translated this association using attributes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 41

A four step design approach:

(A) Select the format of the storage

(B) Map problem domain objects to object-persistence formats

(C) Optimizing the object-persistence formats

(D) Accessing the database from the code

Design data access and manipulation classes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 42

(C) Optimizing the object-persistence formats

As the objective of normalization in relational databases (recall lecture 15) aims at
reducing redundancies, we can consider that the normalization falls into this
category.

Dimensions of optimization:

• Storage efficiency (minimizing storage space)

• Speed of access (minimizing time to retrieve desired information)

This task is often called Physical Database Design

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 43

Estimating Data Storage Size and Number of Accesses

• Estimating data storage size

– For each table

• calculate the tuple size

• estimate the number of tuples at the beginning and its growth rate (e.g. in a per

year basis)

– Estimate the storage size of the entire database in 1 year, 2 years, …

• Estimating workload and response times

– Estimate the frequency of each use case scenario

– For each use case identify the operations that need to access the database

– For each operation see which tables need to be accessed, the type of
access (read/write) and count the average number of tuples that need to be
accessed.

– From the above we can estimate the response time of an operation

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 44

Estimating Data Storage Size and Number of Accesses
and Non-Functional Requirements

• Estimating data storage size

• Estimating response time

Identify problematic cases

Non functional requirementsNon functional requirementscompare

Response time:
Identify potential efficiency problems and investigate
whether redundancy (at the data storage level) can
alleviate the problem.

Storage:
Revisit the definition of attribute (field sizes).
Employ coding and compression techniques.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 45

Denormalization

Denormalization is the process of spliting or combining normalized relations into
physical tables based on afinity of use of rows and fields.

– Denormalization by columns

– Denormalization by rows

• By placing data used together close to one another on disk, the number of I/O
operations needed to retrieve all the data needed by a program is minimized.

• Denormalization is best suited for data that are accessed very frequently and
rarely updated

The capability to split a table into separate sections, often called partitioning, is
possible in most commercial DBMSs. For example Oracle 9i supports:

• range partitioning: partitions are defined by non-overlapping ranges of values from a

specified attribute

• hash partitioning: a table row is assigned to a partition by an algorithm and then maps the

specified attribute value to a partition

• composite partitioning: combines range and hash partitioning by first segregating data by

ranges on the designated attribute, and then within each of these partitions it further

partitions by hashing on the designated attribute

– each partition is stored in a separate contiguous section of disk space, which Oracle

calls a tablespace.
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 46

Guidelines for Creating Indexes

• There is a trade-off between improved performance on retrievals and

degrading performance for inserting, deleting and updating rows.

• So indexes should be used generously for databases intended primarily to

support data retrievals (e.g. decision support applications).

• Use indexes sparingly for transaction systems and applications with heavy

updating requirements.

• Typically, for each each table we usually create

– a unique index based on the primary key

– an index based on the foreign key

• Create an index for fields used frequently for grouping or sorting.

(D) Designing database management classes

Levels of accessing a database

DAM (data access and manipulation) classes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 48

Levels of Accessing a Database
Case: RDB

Level 1

designer/DBA

Level 2

ad -hoc user/DBA

Level 3

programmer

Level 4

designer/programmer

SQL, data

definition language

SQL, data

manipulation language

SQL, embedded

language

4GL/SQL, application

generator

• native SQL

• client DB library

• ODBC/JDBC

Level 5

designer/programmer

PL/SQL, stored

procedures

• native SQL

• client DB library

• ODBC/JDBC

Level 1

designer/DBA

Level 2

ad -hoc user/DBA

Level 3

designer/programmer

Level 4

designer/programmer

SQL, data

definition language (DDL)

SQL, data

manipulation language (DML)

SQL, embedded

language

4GL/SQL

(application generation)

• native SQL

• client DB library

• ODBC/JDBC

Level 5

designer/programmer

procedural SQL

(stored procedures)

• native SQL

• client DB library

• ODBC/JDBC

Queries, updates

Cursor

(record-at-a-time processing)

Embedded SQL in a PL and use of

a preprocessor

Alternatively, the programmer uses

the DB library functions

UI building capabilities using a 4GL

Concerning how a client program communicates with a database server note that SQL

comes in different dialects that can be used at different levels of programming

abstraction.

Accessing the database from a PL
Object-Oriented vs Relational

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 50

Relational vs OO DBMS
Example Java code for an instant messaging appl.

1. Validating a user

import COM.odi.*;

import COM.odi.util.query.*;

import COM.odi.util.*;

import java.util;

try {

// start database session

Session session = Session.create(null,null);

session.join()

// open database and start transaction

Database db =

Database.open(“Imdatabase”, ObjectStore.UPDATE);

Transaction tr = Transaction.begin(ObjectStore.READONLY);

//get hashtable of user objects from DB

OSHashMap users = (OSHaspMap)

db.getRoot(“IMusers”);

// get password and username from user

String username = getUserNameFromUser();

String passwd = getPasswordFromUser();

ObjectStore (OODBMS) IBM’s DB2 (RDBMS)

import java.sql.*;

import sun.jdbc.odbc.JdbcOdbcDriver;

import java.util;

try {

// launch instance of database driver

Class.forName(“COM.ibm.db2.jdbc.app.DB2Driver”).newInstance
();

// create database connection

Connection con =
DriverManager.getConnection(“jdbc:db2:Imdatabase”);

// get password and username from user

String username = getUserNameFromUser();

String passwd = getPasswordFromUser();

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 51

Relational vs OO DBMS
Example Java code for an instant messaging appl. (2)

// get user object from db and see if it exists

UserObject user = (UserObject) users.get(username);

if (user == null)

System.out.println(“Non-existent user”);

else

if (user.getPassword().equals(passwd)

System.out.println(“Successful login”);

else

System.out.println(“Invalid Password”);

//end transaction, close db and terminate session

tr.commit();

db.close();

session.terminate();

}

// exception handling ...

ObjectStore IBM’s DB2

// perform SQL query

Statement sqlQry = conn.createStatement();

ResultSet rset = sqlQry.executeQuery(“SELECT password

from user_table WHERE username=‘” + username +”’”);

if (rset.next()){

if (rset.getString(1).equals(passwd))

System.out.println(“Successful login”);

else

System.out.println(“Invalid Password”)

} else System.out.println(“Non-existent user”);

// close database connection

sqlQry.close()

conn.close();

}

// exception handling ...

1. Validating a user (cont)

Remark: It is more .. “clean” to perform operations on a UserObject than on a ResultSet

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 52

Relational vs OO DBMS
Example Java code for an instant messaging appl. (3)

import COM.odi.*;

import COM.odi.util.query.*;

import COM.odi.util.*;

import java.util;

try {

/* start session and open db, as before */

//get hashtable of user objects from DB

OSHashMap users = (OSHaspMap) db.getRoot(“IMusers”);

UserObject u = (UserObject) users.get(“MARIA”);

UserObject[] contactList = u.getContactList();

System.out.println(“These are persons of the contact list”);

for (int i=0; i< contactList.length; i++)

System.out.println(contactList[i].toString());

/* close session as before */

ObjectStore IBM’s DB2
import java.sql.*;

import sun.jdbc.odbc.JdbcOdbcDriver;

import java.util;

try {

// launch instance of database driver

Statement sqlQry = conn.createStatement();

ResultSet rset = sqlQry.executeQuery(“SELECT fname,
lname, user_name, online_status, webpage FROM
contact_list, user_table WHERE
contact_list.owner_name=‘MARIA’ and
contact_list.buddy_name=user_table.user_name”);

System.out.println(“These are persons of the contact list”);

while (rset.next())

System.out.println(“Full Name:” + rset.getString(1) + “ “
+ rset.getString(2) + “…..

/* close session and db as before */

2. Getting user’s contact lists

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 53

Relational vs OO DBMS
Example Java code for an instant messaging appl. (3)

Query q = new Query = (UserObject.class,

“onlineStatus.equals(\”online\””);

Collection users = db.getRoot(“Imusers”);

Set onlineUsers = q.select(users);

Iterator iter = onlineUsers.iterator();

while (iter.hasNext())

{

UserObject user = (UserObject) iter.next();

< do something >

}

ObjectStore IBM’s DB2

Statement sqlQry = conn.createStatement();

ResultSet rset = sqlQry.executeQuery(“SELECT fname,
laname, user_name, online_status,wepage FROM
user_table WHERE online_status=‘online’”);

while (rset.next())

{

UserObject user = new UserObject(rset.getString(1),
rset.getString(2), rset.getString(3) ….)

< do something>

}

3. Get all on-line users

(D) Designing database management classes

DAM (data access and manipulation) classes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 55

Designing database management classes

Classes are less reusable if they are tightly coupled to the mechanisms by which
instances are stored in some kind of file system or database

problem domain

classes

Object persistence

classes

?

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 56

Designing database management classes
Available Options

[i] Add operations to each class to enable objects to save and store

themselves
– This reduces the reusability of the problem domain classes (low class cohesion)

– If an object is not currently instantiated how we can send it a message to invoke an

operation to load itself?

[ii] We can bypass the last problem by making the storage and

retrieval operations class-scope methods rather than instance-

scope methods
– Ok, but this still reduces the reusability of the problem domain classes (low cohesion

again)

[iii] All persistent objects could inherit methods for storage from an

abstract superclass PersistentObject.
– It couples all problem domain classes that need persistent storage to the superclass

PersistentObject, as they all inherit from this superclass (low inheritance cohesion)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 57

Designing database management classes
Option [iii] in more detail

[iii] All persistent objects could inherit methods for storage from an abstract
superclass PersistentObject.

Application classes must
implement write() and
read() (disadvantage).

Sequence diagrams are like before with the exception

that now the message is sent to the class and the

class then instantiates the object ….

PersistentObject

-objID:int

-iterator: RandomAccessFile

+getObject():Object

+store()

+delete()

+update()

+iterate():Object

+write()

+read()abstract

Location

-locationCode: String

-locationName:String

+findByLocationCode(string):Location

+iterateLocation():Location

+write()

+read()

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 58

Designing database management classes
Available Options (II)

[iv] Introduce separate classes into the system to deal with storage

and retrieval. This is the “database broker” approach.

– The advantage is that problem domain classes contain nothing that indicates
how they are to be stored, so they can be reused unchanged with different
storage mechanisms.

[v] Use only one data storage class. Different instances of this class

will be created with attributes to hold the names of tables/files that
are to be used to store and retrieve instances of their associated

class.

– more difficult to set up and implement

More OO developers prefer option [iv].

Option [iv] involves a number of patterns.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 59

Designing database management classes
Options [iv] in more detail

[iv] Introduce separate classes into the system to deal with storage and retrieval.
This is the “database broker” approach.

– The advantage is that problem domain classes contain nothing that indicates how

they are to be stored, so they can be reused unchanged with different storage

mechanisms.

These classes are called broker classes or DAM (Data Access and Manipulation) classes

problem domain

classes

DAM classes

Object persistence

classes

• The DAM (Data Access and Manipulation)

classes act as “translators” between the

object persistence and the problem domain

objects.

• They should be able to read and write both

object persistence and the problem domain

objects (so they provide mechanisms to

materialize objects from the db and to

dematerialize them back to the db).

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 60

DAM (data access and manipulation) classes

problem domain

classes

DAM classes

Object persistence

classes

dependency

dependency

• Οbject persistence classes are created for the concrete problem domain classes

• DAM classes depend on both problem domain and object persistence classes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 61

DAM classes and UI classes

Sometimes DAM classes are associated to UI classes.

This however adds extra dependencies (which in general is undesirable).

problem domain

classes

DAM classes

Object persistence

classes

UI classes

problem domain

classes

DAM classes

Object persistence

classes

User Interface

classes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 62

DAM classes and problem domain classes

Rule: one DAM class per problem domain class

problem domain

classes

DAM classes

Object persistence

classes

Remarks:

• Each DAM class is responsible for a one-to-one translation

The DAM classes will be placed in a separate package.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 63

problem domain

classes

DAM classes

Object persistence

classes

RDBMS ORDBMS OODBMS

• Notice that in this way the problem domain classes remain
unchanged

• We have kept them independent from the underlying database
management system.

• Changing DBMS requires changing only the DAM classes

Important Remark

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 64

Example: Mapping problem domain objects to ORDBMS

ORDBMS Tables Problem Domain Classes

Person

-lastname

-firstname

-address

-/age

Patient

-amount

+makeAppointment()

+calculateLastVisit()

Appt

-time

-date
1 schedules> 0..*

Symptom

-name

0..* suffers> 1..*

PersonTable

-lastname[1..1]

-firstname [1..1]

-address [1..1]

-SubClassObjects [1..1]

PatientTable

-amount[1..1]

-Person [1..1]

-Appts [0..*]

-Symptoms[1..*]

1..1

1..1

SymptomTable

-name [1..1]

-Patients[0..*]

0..*
1..* ApptTable

-Patient[1..1]

-time [1..1]

-date[1..1]

0..*

0..*

Assuming that the ORDBMS supports Object Ids,

multi-valued attributes, stored procedures and

no support of inheritance.

Oracle 8i does not directly support inheritance using the

UNDER clause as in SQL:1999

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 65

Example: Mapping problem domain objects to ORDBMS>
DAM Classes

ORDBMS Tables Problem Domain Classes

Person

-lastname

-firstname

-address

-/age

Patient

-amount

+makeAppointment()

+calculateLastVisit()

Appt

-time

-date
1 schedules> 0..*

Symptom

-name

0..* suffers> 1..*

PersonTable

-lastname[1..1]

-firstname [1..1]

-address [1..1]

-SubClassObjects [1..1]

PatientTable

-amount[1..1]

-Person [1..1]

-Appts [0..*]

-Symptoms[1..*]

1..1

1..1

SymptomTable

-name [1..1]

-Patients[0..*]

0..*

1..* ApptTable

-Patient[1..1]

-time [1..1]

-date[1..1]

0..*

0..*

DAM

classes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 66

3 DAM classes

ORDBMS Tables Problem Domain Classes

Person

-lastname

-firstname

-address

-/age

Patient

-amount

+makeAppointment()

+calculateLastVisit()

Appt

-time

-date
1 schedules> 0..*

Symptom

-name

0..* suffers> 1..*

PersonTable

-lastname[1..1]

-firstname [1..1]

-address [1..1]

-SubClassObjects [1..1]

PatientTable

-amount[1..1]

-Person [1..1]

-Appts [0..*]

-Symptoms[1..*]

1..1

1..1

SymptomTable

-name [1..1]

-Patients[0..*]

0..*

1..* ApptTable

-Patient[1..1]

-time [1..1]

-date[1..1]

0..*

0..*

As Person is abstract

we need only 3 DAM classes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 67

3 DAM classes

ORDBMS Tables Problem Domain Classes

Person

Patient

Appt

Symptom

PersonTable

PatientTable

SymptomTable

ApptTable

PatientDAM

ApptDAM

SymptomDAM

DAM classes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 68

PatientDAM

• The process to create an instance of the Patient problem domain class can be
complicated:

• the PatientDAM may have to be able to retrieve information from all four
ORDBMS tables.

– Patient-DAM class retrieves the information from the Patient table.

– Using the OIDs stored in the attribute values associated with Person, Appts and

Symptoms attributes, its retrieves the the remaining information required for creating

an instance of Patient

Person

Patient

Appt

Symptom

PersonTable

PatientTable

SymptomTable

ApptTable

PatientDAM

ApptDAM

SymptomDAM

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 69

Case: Mapping problem domain objects to RDBMS

Problem Domain Classes

Person

-lastname

-firstname

-address

-/age

Patient

-amount

+makeAppointment()

+calculateLastVisit()

Appt

-time

-date
1 schedules> 0..*

Symptom

-name

0..* suffers> 1..*

DAM

classes
PersonTable(pId,lastname,firstname,address)

Patient(pid,amount)

ApptTable(apId, pId, time,date)

Symptom(sId,name)

Suffers(pid,sid)

To create an instance of the Patient

problem domain class, the

PatientDAM must query (join) all

tables.

• Here the DAM classes are more

complicated

• The relational schema comprises 5

tables.

• So the number of dependencies

between from DAM classes to the

databases tables has increased.
Designing DAM classes in more detail

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 71

Designing the LocationDAM class

• In order to ensure that for each DAM class there will be only one instance, we
can use the Singleton pattern.

• This means that we use a class-scope operation but only to obtain an instance
of the DAM class that can be used to subsequently access the database.

LocationDAM

- instance:LocationDAM

-LocationDAM()

+instance():LocationDAM

+findByLocationCode(string):Location

+iterateLocation():Location

Location

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 72

(Pattern: Singleton)

Singleton

- uniqueInstance

-singletonData

+getInstance()

+getSingletonData()

+singletonOperation()

-Singleton()

Holds object identifier for the Singleton instance

Returns object identifier for the unique instance

Private constructor - only accessible via getInstance()

Singleton Pattern: Οne and only one instance of the class can exist.

public LocationDAM instance() {

if (instance==null) {

instance = new LocationDAM()

}

return instance;

}

LocationDAM

- instance:LocationDAM

-LocationDAM()

+instance():LocationDAM

+findByLocationCode(string):Location

+iterateLocation():Location

In our case:

Class scope

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 73

Designing the LocationDAM class

• As each persistent class in the system will require a DAM class, it makes sense to create

a superclass that provides the services required by all the DAM classes.

• We could have 2 levels of generalization

– At the top is an abstract class “DAM” that provides the operation to materialize an object using

its object identifier.

– This class is then specialized to provide different abstract classes of brokers for different kinds

of storage.

DAM

RelationalDAMObjectRelationalDAM

oracle::jdbc::driver::OracleDriver

java::sql::Connection

java::sql::Statement

java::sql::ResultSet

LocationDAM

- instance:LocationDAM

-LocationDAM()

+instance():LocationDAM

+findByLocationCode(string):Location

+iterateLocation():Location

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 74

Proxies and Caches

Problems that remain to be resolved

• what happens if a loaded object has to send a message that has not been
retrieved from the database?

• How to handle transactions where a number of objects are created, retrieved
from the database, updated and deleted?

We can handle these problems by extending the previous design with

• proxies

– use proxy objects for those that have not yet been retrieved from the
database

– The Proxy Pattern provides a proxy object as a placeholder for another
object until it is required.

• caches

– caches hold objects in memory and keep track of which has been created,
updated or deleted.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 75

(Structural Patterns: Proxy)

• Example: Remote object interaction protocols. When an object needs to interact
with a remote object (across a network) the most preferred way of encapsulating
and hiding the interaction mechanism is by using a proxy object that mediates
communication between the requesting object and the remote object.

A proxy object acts as a substitute for the actual object.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 76

Proxies: In our case

Product Locations
* availableAt> *

Product LocationsProxy Locations

Conceptual level

Main memory Database

• Suppose that an object of the class Product is already loaded in memory.

• If no message is sent to the associated location objects, then the proxy does
nothing

• If a message is sent (e.g. myProduct.locations[1].printAddress()) , then the proxy
asks the relevant DAM class to retrieve the object from the db (the proxy just
knowns the oid of the real object), and once it has been materialized, the proxy
can pass the message directly to it. Subsequently messages can be sent
directly to the object by the proxy.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 77

Proxies

• The proxy class must also implement the same interface as the real class so
that it appears to other objects as if it is the real thing.

DAM

RelationalDAM

LocationDAM

Location

materializes

<<interface>>

LocationInteface

<<Proxy>>

LocationProxy

Product

Runs in

<<realize>> <<realize>>

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 78

Caches

The DAM superclass can maintain one or more caches of objects that have been
retrieved from the database. Each cache can be implemented as a hashtable,
using the object identifier as the key.

• We can use 1 cache or 6 caches:

– new clean cache: newly created objects,

– new dirty cache: newly created objects that have been modified,

– new deleted cache: newly created objects that have been deleted,

– old clean cache: objects retrieved from the database,

– old dirty cache: retrieved objects that have been modified,

– old delete cache: retrieved objects that have been deleted.

• As objects are changed, the DAM superclass must be notified so

that it can move them from one cache to the other.

– This can be achieved using the Observer-Observable pattern: the object
implements Observable, and the broker inherits from Observer.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 79

Caches (2)

• When the transaction is complete, the DAM superclass can be notified. If the
transaction is to be committed, the DAM superclass can process each object
according to which cache it is in:

– new clean cache: newly created objects => write to the db

– new dirty cache: newly created objects that have been modified => write to the db

– new deleted cache: newly created objects that have been deleted => delete from the cache

– old clean cache: objects retrieved from the database, => delete from the cache

– old dirty cache: retrieved objects that have been modified, => write to the db

– old delete cache: retrieved objects that have been deleted. => delete from the db

• The cache or caches can be used by the proxy object to check whether an
object is already available in memory. When it receives a message, the proxy
can ask the DAM superclass for the object, if it is in a cache, the DAM
superclass will return a reference to it directly, if it is not in cache, the DAM
superclass will retrieve it.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 80

Proxies and Caches

DAM

RelationalDAM

LocationDAM

Location

materializes

<<interface>>

LocationInteface

<<Proxy>>

LocationProxy

Person

Runs in

<<realize>> <<realize>>

Cache
6 1

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 81

Sketch of the communication diagram
for loading an object (assuming proxies and caches)

:Product :LocationsProxy

:LocationsDAM

:Cache

:Locations

1.printPointsOfSale() 2. printAddress()

3. [not in memory]/ getLocation(oid)

4. inCache(oid)5. [notInCache]

retrieveLocation(oid)

db

6. [in memory]

printAddress()

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 82

Using a Data Management Product or Framework

There are products frameworks that provide a persistence mechanism

• Webgain Toplink Foundation Library jor Java is a product that will take classes
and map their attributes to columns in relational database tables. It can either
map attributes to columns in existing tables, or it can generate the schema for
the necessary tables from a class definition. It also provides Java classes to
provide the persistence mechanism. There are versions that work with
applications servers

• CocoBase (from Thought Inc)

• JDO (Java Data Objects)

• Application servers

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 83

Designing Business Transactions (outline)

• Short Transactions

– Pessimistic concurrency control

• Levels of isolation

• Automatic recovery

– Programmable recovery

• Savepoint

• Trigger rollback

– Designing stored procedures and triggers

• Long transactions

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 84

Designing Business Transactions

• Transaction

– a logical unit of work that comprises one or more SQL statements executed
by a user

– is a unit of database consistency – the state of the database is consistent
after the transaction completes

– Is atomic: the results of all SQL statements in the transaction are either
committed or rolled back

• Transaction manager of DBMS serves two purposes

– Database recovery

– Concurrency control

• Enabling multi-user concurrent access to db while ensuring db consistency

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 85

Designing Business Transactions

Pessimistic concurrency control

• Locks are acquired on every persistent object that a transaction

processes.

• Types of locks:

– Exclusive (write) lock – other transactions must wait until the transaction
holding such a lock completes and releases the lock.

– Update (write intent) lock – other transactions can read the object but the
transaction holding the lock is guaranteed to be able to upgrade it to the
exclusive mode, as soon as it has such a need.

– Read (shared) lock – other transactions can read and possibly obtain an
update lock on the object.

– No lock – other transactions can update an object at any time; suitable only
for applications that allow ‘dirty reads’ – i.e. a transaction reads data that can
be modified or even deleted (by another transaction) before the transaction
completes.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 86

Designing Business Transactions

Levels of Isolation

Associated with these four kinds of locks are the four levels of isolation between
concurrently executing transactions:

• Dirty read possible – transaction t1 modified an object but it has not committed
yet; transaction t2 reads the object; if t1 rolls back the transaction then t2
obtained an object that in a sense never existed in the database.

• Nonrepeatable read possible – t1 has read an object; t2 updates the object; t1
reads the same object again but this time it will obtain a different value for the
same object.

• Phantom possible – t1 has read a set of objects; t2 inserts a new object to the
set; t1 repeats the read operation and will see a ‘phantom’ object.

• Repeatable read – t1 and t2 can still execute concurrently but the interleaved
execution of these two transactions will produce the same results as if the
transactions executed one at a time (this is called serializable execution).

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 87

Designing Business Transactions

Levels of Isolation (II)

• The level of isolation may differ between transactions in the same

application.
– The SQL statement set transaction can be used for that purpose

• Increasing the level of isolation reduces the overall concurrency of
the system

• In every case, the beginning of the transaction must always be
delayed to the last second.

– E.g. suppose a form that allow users to register to a service. They should
first fill in all the fields of the form. We should begin the transaction at the
end (when the user presses the submit button).

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 88

Designing Business Transactions

Automatic recovery

Many things may go wrong

• power supply shutdown

• disk head crash

• running processes can hang or be aborted

• DBMSs provide automatic recovery for most situations.

• Depending on the state of the transaction at failure point, a DBMS will
automatically perform a rollback or rollforward of the transaction as soon as
the problem has been eliminated.

• The database administrator can control the amount of recovery time by setting
the frequency of checkpoint.

• A checkpoint forces the DBMS to stop all transactions temporarily and write all
the transactional changes (made since the previous checkpoint) to the
database.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 89

Designing Business Transactions

Automatic recovery

t1

t2

t3

t4

t5

commit

commit

rollback

rollback

checkpoint failure

t1

t2

t3

t4

t5

commit

commit

rollback

rollback

checkpoint failure

Recovery after failure:

t1 - rollforward (redo)

t2 - rollback

t3 - rollforward

t4 - rollback

t5 - no action

• Depending on the state of the transaction at failure point, a DBMS will
automatically perform a rollback or rollforward of the transaction as soon as
the problem has been eliminated.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 90

Designing Business Transactions

Short and Long Transactions

• Most conventional IS applications require short transactions.

– A short transaction contains one or more SQL statements and must be completed as

quickly as possible so that other transactions are not held up.

– Example application: airline reservation systems

• Some new classes of IS applications encourage cooperation between users and
require long transactions

– A long transaction can span computer sessions (users can take breaks then

continue working in the same long transaction after returning)

– Example applications: CSCW (computer-supported cooperative work)

– Users work in their own workspaces using personal databases of data checked-out
(copied) from the common workgroup database

– A long transaction is not allowed to be automatically rolled back (the users would

lost their work)

– Short transactions are still necessary to guarantee atomicity and isolation during

the check-out and check-in operations between the group database and private

databases

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 91

Reading and References

• Systems Analysis and Design with UML Version 2.0 (2nd edition) by A. Dennis, B. Haley Wixom,

D. Tegarden, Wiley, 2005. Chapter 11

• Requirements Analysis and System Design (2nd edition) by Leszek A. Maciaszek, Addison

Wesley, 2005, Chapter 8

• Dare Obasanjo, An Exploration of Object Oriented Database Management System, 2001

• S. D. Urban et al. , “Using UML Class Diagrams for a Comparative Analysis of Relational, Object-

Oriented, and Object-Relational Database Mappings”, SIGCSE’2003

• Patterns of Enterprise Application Architecture, Martin Fowler, Addison-Wesley, 2003

• Modern Systems Analysis & Design (4th Edition) by Jeffrey A. Hoffer, Joef F. George, Joseph S.

Valacich, Prentice Hall, 2005, Chapter 10

• Object-Oriented Systems Analysis and Design Using UML (2nd edition) by S. Bennett, S.

McRobb, R. Farmer, McGraw Hil, 2002, Chapter 18

