
Yannis Tzitzikas
Lecture : 15
Date : 1-12-2005

HY 351: Ανάλυση και Σχεδίαση Πληροφοριακών Συστηµάτων
CS 351: Information Systems Analysis and Design

Data Management Layer Design (I)

University of Crete, Fall 2005

.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 2

Analysis and Design

High level

business requirements

described in the system request

Detailed list of more

precise requirements

Functional/Structural/Behavioral

modeling of the system

Requirements

determination

modeling
Analysis

Design

Design Models

• Class and Method Design

– Layering, Packaging, OCL

• Data Management Layer Design

• Human Computer Interaction Design

• Physical Architecture Layer Design

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 3

Outline

• Introduction

• Object-persistence formats

– Files (Sequential and Random Access)

– Databases (Relational, Object-Relational, Object-Oriented)

• Relational Databases,

• ER Model

• ER Model vs Class Diagrams

• ER Model => Relational Model

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 4

What is the Data Management Layer ?

The data management layer is about

how data is stored and handled by the programs that run the system

A design approach of 4 steps:

(A) Select the format of the storage

(B) Map problem domain objects to object-persistence formats

(C) Optimizing the object-persistence formats

(D) Design data access and manipulation classes

How to design the data management layer ?

In an object-oriented system we are concerned with both persistent objects and
transient objects.

– Persistence objects are those that must be stored using some kind of storage

mechanism

– Transient objects will be erased from memory after they have been used.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 5

How to design the data management layer
(A) Select the format of the storage

There are four basic formats used for object persistence:

• files

• databases

– relational database (RDB)

– object-relational databases (ORDB)

– object-oriented databases (OODB)

Object persistence

format Files/databases

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 6

How to design the data management layer
(B) Map problem domain objects to object-persistence
formats

• UML class diagrams define the data structures required by an

application

• Some of these structures need to be persistently stored

• If we are going to use a DBMS we have to map these structures to
data structures that are recognized by the database

• The latter depends on the underlying data model which can be
relational, object-relational or object-oriented.

problem domain

classes

Object persistence

format

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 7

How to design the data management layer
(C) Optimizing the object-persistence formats

Dimensions of optimization:

• Storage efficiency (minimizing storage space)

• Speed of access (minimizing time to retrieve desired information)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 8

How to design the data management layer
(D) Design data access and manipulation classes

• The DAM (Data Access and Manipulation) classes act as

“translators” between the persistent objects and the problem
domain objects.

• They should be able to read and write both persistent objects and
problem domain objects.

problem domain

classes

DAM classes

Object persistence

classes

(A) Select the format of the storage

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 10

Files

• Sequential Access
– They allow sequential file operations (read, write, search)

– Typically efficient for reports using all or most of the file’s data

– Types

• Unordered sequential files

• Ordered sequential files

– e.g. in ascending order by customer number

• Random Access
– Data stored in unordered fashion

– Typically efficient for finding individual records

– However they do not support fast sequential accessing (e.g. report writing could be

inefficient)

Most oo PLs support sequential and random access files as part of the language

e.g. FileInputStream, FileOutputStream, RandomAccessFile (in java.io package)

Moreover they offer mechanisms for converting objects into a form that can be written out to

a file (serializing them) and for reading them back into memory from a file.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 11

Types of Application Files

Master files

• store core information for the application (e.g. information about customers, orders, payments, etc)

• Usually new records are appended to these files

Transaction files

• store information that can be used to update the master file

• it can be destroyed after the update of the master file

Audit

• stores “before” and “after” images of data so that an audit can be performed if the integrity of data is

questioned (e.g. in order to check who and when changed the salary of an employee)

History

• stores old information that is no longer used (old customers, old orders, etc)

Look-up

• contain static values, like the list of all countries, the list of all telephone codes of Greece.

Typically used for validation purposes.

Configuration files and Backup files

• e.g. for localizing the system (so that labels, button captions and menu entries to be displayed in

the language of the country where the system is being used)

Select the format of the storage

Databases

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 13

Databases

Basic functionalities offered by a DBMS

• Referential Integrity of data

• Query Language

• Concurrent access of data by large number of users and applications programs

• Transactions

• Authorization, Security

• Recovery

• ….

Relational Object-Relational Object-Oriented

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 14

Relational, Object-Oriented and Object-Relational
Databases

• Relational Databases
– Based on the relational model (tables, 1NF, primary keys, foreign keys,

relational algebra, SLQ, views, normalization)

– Examples of relational DBMSs: Sybase, DB2, Oracle, MySQL, MS Access
(end-user DBMS)

• Object-Relational Databases
– Extend the relational model to include useful features from object-orientation,

e.g. complex types.

– Add constructs to relational query languages, e.g. SQL, to deal with these
extensions

– Example of ORDBMSs: PostgreSQL, UniSQL, Oracle

• Object-Oriented Databases
– Extend OO programming to include features required for database system,

e.g. persistent objects.

– Examples of OODBMSs: ObjectStore, Versant, Objectivity, O2, Gemstone

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 15

IS Modeling vs Database Modeling

• Modeling an application program and modeling a database are

sometimes disjoint activities

– The former is done by application developers

– The latter by database designers/administrators

However, we will see how from the application model (that we have
already specified using UML), we can proceed and model the needed
database.

Relational Databases

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 17

Relational Databases

• The relational model has been dominant for over 20 years

• It dominates in business information systems

• It was standardized with SQL’92

• Modeling primitives

– Tables consist of columns and rows

– Cells can only contain values of atomic types (1NF)

• object types, structured types, collections and references are not supported

• references between tables are maintained by comparing values in columns

Key notions:

• 1NF, Primary key, Foreign key, Structured Query Language (SQL),
Functional Dependency, Normalization.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 18

Relational DBMSs

• "Relational Databases Rule the Roost" published in SD Times in July 2004:

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 19

Tables

• A relational table is defined by a fixed set of columns

• Columns have built-in or user-defined types (i.e. domains)

• Tables can have any number of rows (tuples)

• There are no duplicate rows in a table

• A column value may be allowed to be NULL

• Every table has a primary key

– A key is a minimal set of columns such that the values in these columns
uniquely identify a single row in a table

– A table can have many such keys

– One of these selected by the user is the primary key (the rest are called
candidate or alternate keys)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 20

Domains and Rules

• A domain defines the legal set of values that a column can take

– It can be anonymous: e.g. gender char(1)

– It can be named, e.g. gender Gender

• create domain Gender char(1);

– A named domain can be used in the definition of many columns in different tables

• Changes to the domain definition are automatically reflected in column definitions

• Columns and domains can have “business rules” that constrain them

– Default value (e.g. if no value is provided for city, assume “Heraklio”)

– Range of values (e.g. range of ages: 10-90)

– List of values (e.g. the allowed color is “green”, “yellow”, “red”)

– Case of value (e.g. the value must be in lowercase)

– Format of value (e.g. the value must start with the letter “F”)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 21

A diagrammatic technique for Tables
and its definition in SQL

emp_id CHAR(7) <pk> not null

family_name VARCHAR(30) <ak> not null

first_name VARCHAR(20) not null

date_of_birth DATE <ak> not null

gender Gender not null

phone1 VARCHAR(12) null

phone2 VARCHAR(12) null

salary DEC(8,2) null

Employee

--=====================================

-- Domain: “Gender”

--=====================================

create distinct type “Gender” as CHAR(1) with
comparisons;

--=====================================

-- Table “Employee”

--=====================================

create table “Employee” (

“emp_id “ CHAR(7) not null,

“ family_name“ VARCHAR(30) not null,

“ first_name “ VARCHAR(20) not null,

“ date_of_birth“ DATE not null,

“ gender“ “Gender” not null

constraint “C_gender” check (“gender” in
(‘F’,’M’,’f’,’m’)),

“ phone1“ VARCHAR(12),

“ phone2“ VARCHAR(12),

“ salary “ DEC(8,2),

primary key (“emp_id”),

unique (“date_of_birth”, “family_name”)

);

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 22

Referential Integrity

• A foreign key is defined as a set of columns in one table whose values are either
NULL or are required to match the values of the primary key in the same or
another table.

• This primary-to-foreign key correspondence is called the referential integrity.

emp_id CHAR(7) <pk> not null

family_name VARCHAR(30) <ak> not null

first_name VARCHAR(20) not null

date_of_birth DATE <ak> not null

gender Gender not null

phone1 VARCHAR(12) null

phone2 VARCHAR(12) null

salary DEC(8,2) null

dept_id SMALLINT <fk> null

Employee

dep_id SMALLINT <pk> not null

dept_name VARCHAR(50) <ak> not null

address VARCHAR(120) null

Department

dept_id=dept_id

Upd(R);Del(N)

alter table “Employee”

add foreign key “RefToDepartment” (“dept_id”)

references “Department” (“dept_id”)

on delete set null;

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 23

Referential Integrity

Declarative referential integrity constraints associated with delete and update operations

• Upd(R); Del(R)

– Restrict the update or delete information

• Here: do not allow this operation if there are tuples of Employee linked to that department

• Upd(C);Del(C)

– Cascade the operation

• Here: update or delete all linked employees rows

• Upd(N);Del(N)

– Set null

• Here: set dept_id of the linked Employee rows to NULL

• Upd(D); Del(D)

– Set default

• Here: set dept_id of the linked Employee rows to the default value

What should happen if a department row is updated or deleted?

Specifically, if dept_id is updated or when a row of department is deleted ?

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 24

Triggers

• Declarative referential integrity constraints allow only simple

business rules to be recorded.

• A more expressive solution is triggers (standardized in SQL:1999)

• A trigger is a small program (e.g. written in an extended SQL) that
is executed automatically (triggered) as a result of a modification

operation on a table on which the trigger has been defined.

– A modification can be any of the SQL modification statements: insert,
update, or delete.

• A trigger can be used to implement business rules

– E.g. updates are not allowed in weekends

– After deleting a department all deptIds of the Employee rows (that have the
deleted deptId) should be set to Null.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 25

Example of Trigger (Sybase)

create trigger keepdpt

on Department

for delete

as

if @@rowcount = 0

return /* avoid firing trigger if no rows affected */

if exists

(select * from Employee, deleted where Employee.dept_id = deleted.dept_id)

begin

print ‘Test for RESTRICT DELETE failed. No deletion’

rollback transaction

return

end

return

go

This trigger implements the Del(R) declarative constraint

Internal table

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 26

Stored Procedures

• A stored procedure is given a name, can have input and output

parameters, and it is compiled and stored in the database.

• It is written in an extended SQL that allows variables, loops,
branches, and assignment statements

• Stored procedures turn a database into an active programming
system.

– Stored procedures (first introduced by Sybase now part of every major
commercial DBMS)

• Triggers are a special kind of stored procedures

– They trigger themselves on insert, update and delete events on a table, and
cannot be otherwise called.

– So for each table we can have at most 3 triggers, while we can have
unlimited number of stored procedures.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 27

Stored Procedures (II)

A client program can call a stored
procedure rather than sending a
complete query to the server.

• Sending a query requires parsing it
and checking its syntax (at the server
side)

• Stored procedures are more efficient
(less network traffic, parsing and
compilation steps are done only once)

• A stored procedure can be exploited by
many clients

Server

Database

SQL query

(from the client application)

Stored procedure call

Parse

Validate syntax

and object references

Check authorization

Optimize

Compile

Locate procedure
(perhaps in procedure cache)

Check authorization

Substitute parameters

Execute

(from the client application)

Server

Database

SQL query

(from the client application)

Stored procedure call

Parse

Validate syntax

and object references

Check authorization

Optimize

Compile

Locate procedure
(perhaps in procedure cache)

Check authorization

Substitute parameters

Execute

(from the client application)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 28

SQL

• See HY360

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 29

Views

• Is a stored and named SQL query

• This is a very useful feature for

– Providing different perspectives of the data

– For database security (restring users to the contents of certain views)

– For alleviating the query formulation effort (SQL queries that use views
instead of tables)

The traditional way to design a relational database is to
start from the Entity-Relationship model.

Below we will review ER model and we will compare it with
UML class diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 31

The Entity-Relationship Model

.

0-N

0-N

0-N
Supp_Part_Proj

Quantity

0-N

0-N

Supp_Part
0-N0-N

Proj_Work

timePercentage

0-10-N

Proj_Manager

1-1

supporter

0-N

Emp_Dep

0-1

0-N

Dept_Emp

0-N

consistsOf

0-N

Component

Quantity

Supplier

SupId

Name

Status
Address

Project

ProjId

Title

Part

PartNo

PartDescription

QuantityOnHand

Employee

EmpId

FirstName

LastName

MiddleName

YearOfBirth

Salary

Dependent

FirstName

LastName

YearOfBirth

Deparment

DepId

DepName

Address

• Introduction

• The Entity-Relationship model

– Entities, Relationships, Attributes,Generalization

• ER diagrams vs UML Class Diagrams

• Conceptual Database Design (ER Design)

– Documentation for ER Diagrams
• business rules, data dictionary

• ER model => Relational model

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 32

The Entity Relationship Model

• The Entity Relationship (ER) model is a conceptual model for

describing the data requirements for a new information system in
direct and easy to understand graphical notation.

• It views the real world as entities and relationships.

• A basic component of the model is the Entity-Relationship diagram

which is used to visually represents data objects.

• ER Model History

– The Entity-Relationship (ER) model was originally proposed by Peter in 1976
[Chen76] as a way to unify the network and relational database views.

– Since Chen wrote his paper the model has been extended and today it is
commonly used for database design

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 33

The Utility of the ER model

For the database designer, the utility of the ER model is:

• it maps well to the relational model. The constructs used in the ER model can
easily be transformed into relational tables.

• it is simple and easy to understand with a minimum of training. Therefore, the
model can be used by the database designer to communicate the design to the
end user.

• In addition, the model can be used as a design plan by the database developer
to implement a data model in a specific database management software.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 34

Basic Constructs of ER Model

• Entities

• Relationships

• Attributes

Person Carownsname

identity

address

platesNum

model

color

attribute

entity

relationship

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 35

Entities

• Entities are the principal data object about which information is to be collected.

• They are usually recognizable concepts, either concrete or abstract, such as
person, places, things, or events which have relevance to the database.

• An entity occurrence (also called an instance) is an individual occurrence of an
entity. An occurrence is analogous to a row in the relational table.

Person Car
Products Orders Invoices

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 36

Relationships

A Relationship represents an association between two or more entities.

Person Carowns

Employee ProjectworksFor

Person Orderplaces

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 37

Attributes

Person Carownsname

identity

address

platesNum

model

color

• Attributes describe the entity of which they are associated.

• A particular instance of an attribute is a value, e.g. «Yannis» is one value of the
attribute Name.

• The domain of an attribute is the collection of all possible values an attribute can
have. The domain of Name is a character string.

• Attributes can be classified as:

– identifiers
• An identifier (more commonly called key), uniquely identifies an instance of an entity. We

underline them in diagrams

– descriptors

• A descriptor describes a non-unique characteristic of an entity instance.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 38

Different notations for ER diagrams

Person Carownsname

identity

address

platesNum

model

color

owns

Person

Identity

name

address

Car

platesNum

model

color

Person

Identity

name

address

Car

platesNum

model

color

owns

Person Carowns

identity

address

name

platesNum

color

model

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 39

Composite and Multi-valued Attributes

Person Carowns

name identity

address

platesNum

model

color

city street number

hobbies

Multi-valued attribute

Composite attribute

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 40

Relationships can also have Attributes

Person Carownsname

identity

address

platesNum

model

colordateOfBuy

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 41

Degree of a relationship

Project Suppliersupplies

Part

Person Carowns degree 2: binary relationship

degree 3: ternary relationship

Recursive relationships
Part componentOf

consistsOf

Employee manages
managerOf

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 42

Reminder: Multiplicity Constraints of Class Diagrams

• Multiplicity constraints

– how many objects may participate in a given relationship?

– multiplicity indicates lower & upper bounds

* ≡≡≡≡ 0..* ≡≡≡≡ 0.. ∞∞∞∞ // no constraint

1 ≡≡≡≡ 1..1 // mandatory and single-valued association

0..1 // optional single-valued association

1..* // mandatory and multi-valued association

– other more general multiplicity constraints

1..11 (for soccer teams)

3..4 (wheels of a car)

Person

name

age
stockPrice()

Company

name

employment

employee employer

hasPresident

1 0..1

0..10..*

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 43

Multiplicity (or Cardinality) Constraints
(ER vs UML)

Person

name

age

Company

name

employment

employee employer

hasPresident

1 0..1

0..10..*

employment

Person

name

age

Company

name

employee employer

(0,1) (1,1)

(0,N)(0,1)

hasPresident

UML

ER

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 44

Attributes and Cardinalities

Person Carowns

name identity

address

platesNum

model

color

city street number

hobbies

Default cardinality for attributes: (1,1)

1

1
1

1

1,N

1

1

1 1 1

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 45

Strong and Weak Entities
(Independent and Dependent Entities)

Flight Seathas assign Passenger

travel

(1,1)

(1,1)(0,1)(1,N)

(1,N)

BankAccount Transactionlog
Weak entity

• Strong (or Independent) entity

– does not rely on another entity for identification.

• Weak (or dependent) entity

– relies on another entity (which it is related though a relationship) for identification.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 46

Strong and Weak Entities

• The identifiers of a weak entity are formed by the identifiers of the strong entity
plus the partial identifiers of the weak entity

• A weak entity can be the owner of other weak entities

• A weak entity can be associated with more than one strong entities (through
different relationships)

Weak entities

• they do not have their own identifiers

• they can only have partial identifiers, ι.e. attributes that can identify the instances
of the weak entity that are associated with the same instance of the strong entity
(the strong entity is called the «owner» of these instances)

Flight Seathas assign Passenger

travel

(1,1)

(1,1)(0,1)(1,N)

(1,N)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 47

AND/XOR for Relationships

• Orders either order a part, or
request a service. Not both

• For any given order, whenever
there is at least one invoice there
is also at least one shipment and
vice versa.

Part

Order

contains

Servicerequests

XOR

Shipment

Order

FilledBy

InvoiceGenerates

AND

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 48

Generalization (or specialization) Hierarchies

• Generalization occurs when two or more entities represent categories of the
same real-world object

• A generalization hierarchy is a form of abstraction that specifies that two or more
entities that share common attributes can be generalized into a higher level
entity type called a supertype or generic entity.

• The lower-level of entities become the subtype to the supertype.

• Subtypes are dependent entities.

(Specialization is the dual counterpart of generalization)

Vehicle

CarnumOfSeats

platesNum

loadCapacityTruck

fuel

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 49

Generalization Hierarchies

• Generalization hierarchies can be nested. That is, a subtype of one hierarchy
can be a supertype of another. The level of nesting is limited only by the
constraint of simplicity.

Account

Savings-Account Checking-Account

Standard Gold Senior

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 50

Generalization and Inheritance

• The subtypes inherit

– attributes

– participation in relationship types (with the same cardinality constraints)

Vehicle

CarnumOfSeats

platesNum

loadCapacityTruck

fuel

Person owns
(1,1)(0,N)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 51

Disjoint and Overlapping Subtypes

Subtypes can be either mutually exclusive (or disjoint), or overlapping (or
inclusive).

• A mutually exclusive category is when an entity instance can be in only one
category.

– A vehicle cannot be automobile and bicycle.

• An overlapping category is when an entity instance may be in two or more
subtypes.

– A student can also be an employee.

Vehicle

Automobile Bicycle

Disjoint Person

Student Employee

Overlapping

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 52

Partial vs Total Subtypes

• Partial

– an entity occurrence may not necessarily belong to one subtype

• Total

– every entity occurrence should belong to one subtype

Person

Man Woman

Total and disjoint

Vehicle

Automobile Bicycle

Partial and disjoint

Person

Student Employee

Partial and Overlapping

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 53

Example

Account

Savings-AccountInterest

AccNum

Overdraft

Balance

Checking-Account

Standard Gold Senior

MinBalance

BirthDate

Total, overlapping

Total, disjoint

Account

Savings-AccountInterest

AccNum

Overdraft

Balance

Checking-Account

Gold Senior

MinBalance

BirthDate

Total, overlapping

Partial, disjoint

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 54

The ER metamodel (as an E-R Diagram)

ER Diagrams vs UML Class Diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 56

What is the difference between ER diagrams and
UML Class Diagrams?

• Class Diagrams are a superset of ER diagrams.

• ER diagrams focus only on data, while Class Diagrams go a step

further by allowing modeling the behaviour.

– In the context of database design, these logical operations can be turned
into triggers or stored procedures.

• ER diagrams allow N-ary (N>2) relationships

– Class Diagrams mainly comprise binary but n-ary could be used too

• ER diagrams allow the specification of identifiers

– class diagrams do not

• we could however use a stereotype or tagged values to indicate them

• Class diagrams allow dynamic classification

– ER diagrams do not

• Class diagrams can have methods and constraints (e.g. pre/post-conditions
expressed in OCL)

– ER diagrams do not

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 57

ER vs UML: Notations

1-10-N owns
Car

platesNuem

Person

id

name

*1 owns

Car

platesNuem

Person

id

name

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 58

The first ER Diagram

0-N

0-N

0-N
Supp_Part_Proj

Quantity

0-N

0-N

Supp_Part
0-N0-N

Proj_Work

timePercentage

0-10-N

Proj_Manager

1-1

supporter

0-N

Emp_Dep

0-1

0-N

Dept_Emp

0-N

consistsOf

0-N

Component

Quantity

Supplier

SupId

Name

Status
Address

Project

ProjId

Title

Part

PartNo

PartDescription

QuantityOnHand

Employee

EmpId

FirstName

LastName

MiddleName

YearOfBirth

Salary

Dependent

FirstName

LastName

YearOfBirth

Deparment

DepId

DepName

Address

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 59

The first ER Diagram as UML Class Diagram

*
1

Sup_Sup

*1

Sup_Pro

*

1
Sup_Par *

*

Supp_Part

*
1

Pro_Pro

*

1 Pro_Emp

*

0..1

Proj_Manager

supporter

*

1

Emp_Dep

*

0..1

Dept_Emp

*
1

consistsOf

*

1 Com_Par

Supp_Part_Proj

Quantity

id: Sup_Par.Part

Sup_Sup.Supplier

Sup_Pro.Project

Supplier

SupId

Name

Status
Address

Proj_Work

timePercentage

id: Pro_Pro.Project

Pro_Emp.Employee

Project

ProjId

Title

Part

PartNo

PartDescription

QuantityOnHand

Employee

EmpId

FirstName

LastName

MiddleName

YearOfBirth

Salary

Dependent

FirstName

LastName

YearOfBirth

Deparment

DepId

DepName

Address

Component

Quantity

id: Com_Par.Part
consistsOf.Part

As translated automatically by DB-MAIN

Some ER Transformations

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 61

Ternary to Binary

Customer AccountCAB

Branch

(I)

Customer BranchCB AccountBA :(
(II)

(1,N) (1,N)

(0,N)

Customer AccountCA BranchAB

OK

(III)

(1,N) (1,1)
(1,1) (0,N)

Customer AccountCA BranchAB

CB .

(IV) (1,N) (1,1) (1,1) (0,N)

(1,N) (0,N)

Customer AccountC

Branch

A

B

(V)

(1,N) (1,1) (1,1) (1,N)

CAB

(0,N)

(1,1)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 62

Resolving Many-to-Many Relationships

ProjectEmployee works
(0,N)(1,N)

ProjectEmployee EA
(1,1)(1,N)

Assignment AP
(1,1) (0,N)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 63

Eliminate redundant relationships

Customer AccountCA BranchAB

CB

(1,N) (1,1) (1,1) (0,N)

(1,N) (0,N)

Customer AccountCA BranchAB
(1,N) (1,1) (1,1) (0,N)

• A redundant relationship is a relationship between two entities that is equivalent
in meaning to another relationship between those same two entities that may
pass through an intermediate entity.

Conceptual Database Design

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 65

Conceptual Database Design
(ER Diagram Design)

Questions

• What are the entities and relationships in the enterprise?

• What information about these entities and relationships should we

store in the database?

• What are the integrity constraints or business rules that hold?

• There is no standard process for doing so.

• Some methodologies propose a staged development process

– first model entities and relationships

– then key attributes,

– finally non-key attributes

• Other experts argue that in practice, using a phased approach is impractical
because it requires too many meetings with the end-users

The OO Analysis and Design methodology (on which this course focuses)

has given us one (use cases-> reqs gathering and determination, domain class diagrams,...)
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 66

Documentation of an ER Diagram

In many cases the diagram is not enough

We complement it with

• documentation that describes the properties of the data that cannot be expressed using

the constructs of the model

• A widely-used documentation concept for conceptual schemas is the business rule.

A business rule can be:

• the description of a concept relevant to the application (also known as a business object)

• an integrity constraint on the data of the application

• a derivation rule, whereby information can be derived from other information

The Data Dictionary

• Comprises two tables: the first describes the entities;

the second the relationships

• Business rules that describe constraints

– <concept> must/mustnot <expression on concepts>

• Business rules that describe derivations

– <concept> is obtained by <operation on concepts>

We have already

seen OCL

which is a formal language

for expressing all these.

From an ER model
to a Relational Database Schema

Entities and Relationships must be converted so they can be stored in tables

ER Diagram

Tables

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 68

ER=>Relational (1)

• Entity E => Table T

– single-valued attributes of E => attributes of T

– identifier attributes => candidate keys of T

• A multi-valued attribute of E => Table T

– attributes of T: identifier of E plus the multi-valued attribute

Person

name personId

address

city street number

hobbies

1

1,N

1

1

1 1 1

Person(personId, name, city, street,number)

Hobbies(personId, hobby)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 69

ER=>Relational (2)

• M-N Relationship R => Table T

– T contains all identifier attributes of the entities that participate in R

– T also contains the attributes of R

ProjectEmployee works
(0,N)(1,N)

name

personId projNum

title

Employee(personId, name)

Project(projNum, title)

Works(personId, projNum,percent)

percent

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 70

ER=>Relational (3)

• N-1 Relationship between E1 and E2 => no new table

– we add to the table of E2 the key of E1 (foreign key)

– if the participation of E2 is (1,1) and not (1,0) then this attribute cannot have
null values

CarPerson owns
(1,1)(0,N)

name

personId plates

color

dateOfBuy

Person(personId, name)

Car(plates, color, personId, dateOfBuy) // personId: foreign key

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 71

ER=>Relational (4)

• 1-1 Relationship between E1 and E2 => no new table

– If (0,1) (0,1) we add to one of the tables that correspond to E1 or E2 the key of the

other.

WomanMan marriedTo
(0,1)(0,1)

mName

mId wId

wName

Man(mId, mName,wId) // wId: foreigh key

Woman(wId, wName)

Equivalent alternatives

Man(mId, mName)

Woman(wId, wName, mId) // wId: foreigh key

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 72

ER=>Relational (5)

• 1-1 Relationship between E1 and E2 => no new table

– if (1,1)(1,1) then both tables can be combined into one

WinAccountStudent owns
(1,1)(1,1)

name

studId username

password

Student(studId, name, username, password)

WinAccount(username, password, studId, name)

Equivalent alternatives

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 73

ER=>Relational (all in one)

• Entity E => Table T

– single-valued attributes => attributes of relation

– identifier attributes => candidate keys of the relations

• A multi-valued attribute of E => Table T

– attributes of T: identifier of E plus the multi-valued attribute

• M-N Relationship R => Table T

– T contains all identifier attributes of the entities that participate in R

– T also contains the attributes of R

• N-1 Relationship between E1 and E2 => no new table

– we add to the table of E2 the key of E1 (foreign key)

– if the participation of E2 is (1,1) and not (1,0) then this attribute cannot have null

values

• 1-1 Relationship between E1 and E2 => no new table

– If (0,1) (0,1) we add to one of the tables that correspond to E1 or E2 the key of the

other. we add to the table of E2 the key of E1 (foreign key)

– if (1,1)(1,1) then both tables can be combined into one

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 74

How to map generalization/specialization hierarchies
to the relational model?

Recall the Lecture about

“Class and Method Design:

How to eliminate inheritance”

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 75

Class and Method Design>Eliminating Inheritance>
Method 1: Flattening

sA

a1

a2

sB

a3

a4

sC

a7

a8

C1

a5

a6

C2

a5

a6

C1

a1

a2

a3

a4

a5

a6

C2

a1

a2

a3

a4

a5

a6

Assuming sA, sB and sC are abstract

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 76

Class and Method Design>Eliminating Inheritance>
Method 1b: Flattening all in one table

• If the subtypes are disjoint

• Create one table with all attributes

• Define an extra attribute to discriminate the subtype

A

a1

a2

B

a3

a4

C

a5

a6

B

a1

a2

a3

a4

C

a1

a2

a5

a6

Assuming B,C are disjoint

ABC

a1

a2

a3

a4

a5

a6

BorC

method 1

method 1b

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 77

Class and Method Design>Eliminating Inheritance>
Method 1c: Flattening all in one table

• If the subtypes are not disjoint

• Create one table with all attributes

• Define an extra flag attribute for each subtype

A

a1

a2

B

a3

a4

C

a5

a6

B

a1

a2

a3

a4

C

a1

a2

a5

a6

Assuming B,C are disjoint

ABC

a1

a2

a3

a4

a5

a6

BorC

method 1

method 1b

Assuming B,C are not disjoint

ABC

a1

a2

a3

a4

a5

a6

isB

isC

method 1c

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 78

Class and Method Design>Eliminating Inheritance
Method 2: Convert all IsA-links to Associations

sA

a1

a2

sB

a3

a4

sC

a7

a8

C1

a5

a6

C2

a5

a6

1

1

1

1

sA

a1

a2

sB

a3

a4

sC

a7

a8

C1

a5

a6

C2

a5

a6

0..1 1..1 1..1 0..1

{XOR}

Assuming sA, sB and sC are abstract

sA

a1

a2

sB

a3

a4

sC

a7

a8

C1

a5

a6

C2

a5

a6

1

0..1

1

sA

a1

a2

sB

a3

a4

sC

a7

a8

C1

a5

a6

C2

a5

a6

0..1 1..1 1..1 0..1

{XOR}

Assuming sA, sB and sC are concrete

0..1

From a Class Diagram
to a Relational Database Schema

Objects must be converted so they can be stored in tables

class diagram

Tables

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 80

Class Diagram => Relational Model

• The structural part of the class diagram can be mapped to a relational schema
by employing the techniques that we described earlier for mapping an ER
diagram to a Relational Schema.

• The behavioral part of the class diagram (e.g. operation) could be turned into
triggers or stored procedures.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 81

Class Diagram => Relational Model

Class diagram

For permanent

storage
Person

idNum

firstName

lastName

dateOfBirth

/age

sex

<<db>>

Person

<<pk>>

idNum

firstName

lastName

dateOfBirth

sex

• However UML class diagrams define the data structures required by the entire
application. Not every class of the class diagram needs persistent storage.

• So

– we have to identify the classes that need persistence

– we can mark those classes (e.g. using a stereotype)

– we can create a class diagram that contains only these

– we cam mark the identifiers (keys) of those classes (e.g. using a stereotype)

(C) Optimizing the object-persistence formats
(assuming the Relational Model)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 83

(C) Optimizing the object-persistence formats

Dimensions of optimization:

• Storage efficiency (minimizing storage space, reduce redundant

data)

• Speed of access (minimizing time to retrieve desired information)

A well-formed logical data model does not contain redundancy or many null values

– muplitple possible interpretation of null values may lead to mistakes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 84

Normal forms

• There are six: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF

• A table that is in a higher NF is also in all lower NFs

• A table must be at least in 1NF (i.e. with no structured or multi-

valued columns).

• A table in a low NF can exhibit so-called update anomalies:

undesirable side effects as a result of a modification operation.

– E.g. if the same information is repeated many times (which may drive to
inconsistencies and storage space redundancies)

• We can normalize a table to a higher NF by splitting it vertically

– (the original table can be reconstructed using join operations)

• A db with very frequent updates should be in a high NF

• A rather static db can be in a low NF (more efficient, less joins)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 85

Functional Dependencies (in brief)

X→Y: t1[X] = t2[X] ⇒ t1[Y] = t2[Y]

• some trivial fds: A → A, X→Y and Y⊆ X

• if K is the primary key of a relation R

then K→R

Armstrong’s axioms

– Y⊆ X ⇒ X→Y

– X→Y ⇒ WX→WY

– X→Y, Y→Z ⇒ X→Z

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 86

Normal Forms (in brief)

A table is in:

• 1NF: If the domain of each attribute consists of atomic values only

– i.e. structured or multi-valued attributes are not allowed.

• 2NF: if it is in 1NF and every non-key attribute is functionally dependent on the
whole primary key

– If the primary key consists of more than one attribute and there is a column that

depends on only a part of the primary key, then the table is not in 2NF.

• 3NF: if it is in 2NF and no nokey attribute is transitively dependent on the
primary key

– If there is an attribute that depends on a non-primary key column then the
table in not in 3NF

• BCNF:

• 4NF: based on multivalued dependencies

– …..

More at HY360

For practical purposes it is usually adequate to normalize data into 3NF

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 87

Normal Forms: Examples

Not in 2NF:

Room(buildingNum, roomNum, street, streetNum, citypostalcode, city, numOfSeats)

is not in 2NF because buildingNum → street,...

In 2NF:

Room(buildingNum, roomNum, numOfSeats)

Building(buldingNum, street, streetNum, citypostalcode, city)

Not in 3NF:

Building(buldingNum, street, streetNum, citypostalcode, city)

is not in 3NF because citypostalcode → city

In 3NF:

Building(buldId, street, streetNum,citypostalcode)

CPostCode(citypostalcode, city)

we moved the attribute that depend on non-key attributes to another relation

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 88

View Integration

• As part of the logical database
design, normalized tables likely have
been created from a number of
separate ER diagrams.

• We should merge these tables and
remove any redundancy. This task
is usually called view integration.

• Common view integration problems:

– synonyms

• 2 or more attributes have different

name but the same meaning

– homonyms

• 2 or more attributes have the same

name but different meaning

• We have to identify such cases and
fix them

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 89

CASE Tools

• CASE tools targeting system design and implementation normally

provide a data-modeling technique that targets a vast variety of
specific DBMSs.

• They provide a capability for constructing a combined
logical/physical model and immediately generating the relevant

SQL code.

• They also support a number of functions that are useful for view

integration.

• Using them we can save a lot of time

• The CASE tool DB-MAIN will be presented in the tutorial of Dec 12

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 90

ER=>Relational
Example: First ER Diagram

0-N

0-N

0-N
Supp_Part_Proj

Quantity

0-N

0-N

Supp_Part
0-N0-N

Proj_Work

timePercentage

0-10-N

Proj_Manager

1-1

supporter

0-N

Emp_Dep

0-1

0-N

Dept_Emp

0-N

consistsOf

0-N

Component

Quantity

Supplier

SupId

Name

Status
Address

Project

ProjId

Title

Part

PartNo

PartDescription

QuantityOnHand

Employee

EmpId

FirstName

LastName

MiddleName

YearOfBirth

Salary

Dependent

FirstName

LastName

YearOfBirth

Deparment

DepId

DepName

Address

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 91

ER=>Relational
Example: Its translation to the relational model

Supp_Part_Proj

ID_Par

ID_Pro

ID_Sup

Quantity

id: ID_Par

ID_Sup

ID_Pro

acc

ref: ID_Sup

acc

ref: ID_Pro

acc

ref: ID_Par

Supp_Part

ID_Par

ID_Sup

id: ID_Par

ID_Sup

acc
ref: ID_Sup

acc

ref: ID_Par

Supplier

ID_Sup

SupId

Name

Status

Address

id: ID_Sup

acc

Proj_Work

ID_Emp

ID_Pro

timePercentage

id: ID_Pro

ID_Emp

acc

ref: ID_Pro

ref: ID_Emp

acc

Project

ID_Pro

ProjId

Title

ID_Emp[0-1]

id: ID_Pro

acc

ref: ID_Emp

acc

Part

ID_Par

PartNo

PartDescription

QuantityOnHand

id: ID_Par

acc

Employee

ID_Emp

EmpId

FirstName
LastName

MiddleName

YearOfBirth

Salary
ID_Dep[0-1]

id: ID_Emp

acc

ref: ID_Dep

acc

Dependent

FirstName

LastName

YearOfBirth

Supporter

ref: Supporter

acc

Deparment

ID_Dep

DepId

DepName

Address

id: ID_Dep

acc

Component

C_P_ID_Par

ID_Par

Quantity

id: C_P_ID_Par

ID_Par

acc

ref: ID_Par
acc

ref: C_P_ID_Par

Generated by DB-MAIN

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 92

ER => SQL DDL
Tables and Constraint Section

-- ***
-- * Standard SQL generation *
-- *---*
-- * Generator date: Nov 8 2004 *
-- * Generation date: Mon Nov 21 15:12:39

2005 *
-- ***
-- Database Section
-- ________________

create database SCHEMA compact;

-- DBSpace Section
-- _______________

Header section

-- Tables Section
-- _____________

create table Component (
C_P_ID_Par char(10) not null,
ID_Par char(10) not null,
Quantity char(1) not null,
constraint ID_Component primary key
(C_P_ID_Par, ID_Par));

create table Deparment (
ID_Dep char(10) not null,
DepId char(1) not null,
DepName char(1) not null,
Address char(1) not null,
constraint ID primary key (ID_Dep));

….

Tables section

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 93

ER => SQL DDL
Index Section

-- Index Section
-- _____________

create index ID_Component
on Component (C_P_ID_Par,
ID_Par);

create index FKconsistsOf
on Component (ID_Par);

create index ID
on Deparment (ID_Dep);

create index FKEmp_Dep
on Dependent (Supporter);

create index ID
on Employee (ID_Emp);

create index FKDept_Emp
on Employee (ID_Dep);

create index ID
on Part (ID_Par);

Instructions for the physical

Data layer of the db

Constraint section

-- Constraints Section
-- ___________________

alter table Component add constraint FKconsistsOf
foreign key (ID_Par)

references Part;

alter table Component add constraint FKCom_Par
foreign key (C_P_ID_Par)

references Part;
alter table Dependent add constraint FKEmp_Dep

foreign key (Supporter)

references Employee;

alter table Employee add constraint FKDept_Emp
foreign key (ID_Dep)

references Deparment;

alter table Project add constraint FKProj_Manager
foreign key (ID_Emp)

references Employee;
alter table Proj_Work add constraint FKPro_Pro

foreign key (ID_Pro)

references Project;

alter table Proj_Work add constraint FKPro_Emp
foreign key (ID_Emp)
references Employee;

alter table Supp_Part add constraint FKSup_Sup_1

foreign key (ID_Sup)

references Supplier;

Index section

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 94

ER: Reading and References

• Systems Analysis and Design with UML Version 2.0 (2nd edition) by A. Dennis, B. Haley Wixom,

D. Tegarden, Wiley, 2005. Chapter 11

• Requirements Analysis and System Design (2nd edition) by Leszek A. Maciaszek, Addison

Wesley, 2005, Chapter 8

• Slides from

– CS360 University of Crete: HY360 (www.csd.uoc.gr/~hy360)

– University of Texas at Austin (Data Modeling)

• More about the transition “Natural Language Specifications => ER Diagram” can be

found at:

– A. Min Tjoa, Linda Berger: Transformation of Requirement Specifications Expressed

in Natural Language into an EER Model. ER 1993: 206-217

– H. M. Harmain and Robert J. Gaizauskas, CM-Builder: An Automated NL-Based

CASE Tool, Automated Software Engineering", 45-54, 2000

