
Yannis Tzitzikas
Lecture : 14
Date : 29-11-2005

HY 351: Ανάλυση και Σχεδίαση Πληροφοριακών Συστηµάτων
CS 351: Information Systems Analysis and Design

OCL: Object Constraint Language

University of Crete, Fall 2005

.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 2

Outline

• Objectives of OCL

• Why to use OCL

• Presentation of OCL

• Assertions and Programming Languages

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 3

What is OCL (Object Constraint Language)?

• A formal language for specifying constraints on o-o models

• It is declarative (it describes what rather than how)

• it is a typed language

– and more … user friendly (comparing it with other formal languages)

Constraints?

• Some constraints can be expressed graphically (e.g. multiplicity of

an association, partition subclasses).

• Some other cannot, e.g.:

– constraints involving >1 associated classes

– constraints involving attribute values (and their combination)

– pre/post-conditions on operations

OCL can be used to express constraints formally

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 4

Why to write OCL constraints?

Why to express explicitly such constraints?

They make the models more precise

• so that to understand them better

• so that the programmers can implement them (correctly)

• so that to allow a formal validation of the model prior to

implementation

They can be “translated” to assertions in programming languages

– some CASE tools offer these validation and translation facilities

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 5

Class Diagrams are not very precise

• Can a minor (underage) work for a company ?

• Can a company hire a person already hired ?

Person

name

age

increaseAge()

Company

name
employment

hire(p:Person)

fire(p:Person)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 6

Class Diagrams are not very precise (II)

Employment

salary

startDate

endDate

employment

Person

name

age

increaseAge()

Company

name

hire(p:Person)

fire(p:Person)

promote(p,incr)

• Can a person start a job before his/her birth ?

• Can a promotion lower the salary of an employee?

• Is there any lower bound for the salaries of those working for more than 10
years?

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 7

Class Diagrams are not very precise (III)
… The importance of Background Knowledge

Emprego

stipend

comeceData

termineData

emprego

Empregado

sobrenome

idade

aumenteIdade()

Empresa

nome

empregue (p)

fogo(p)

promova(p,inc)

• What if you had to build a system whose class diagrams were in Spanish?

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 8

Class Diagrams are not very precise (IV)

Person

name

age

0..2
parent

children

0..*

Valid object diagram
Y: Person

parent

children

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 9

Object Constraint Language (OCL)

• OCL is a formal language used to describe expressions on UML models.

• OCL expressions typically specify invariant conditions that must hold for the
system being modeled.

• They also specify queries over objects described in a model.

• OCL is a typed language, so that each OCL expression has a type. To be well
formed, an OCL expression must conform to the type conformance rules of the
language. For example, you cannot compare an Integer with a String.

• When OCL expressions are evaluated, they do not have side effects; i.e. their
evaluation cannot alter the state of the corresponding executing system.

– However, OCL expressions could be used to specify operations / actions that, when
executed, do alter the state of the system.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 10

Where to use OCL?

OCL can be used for a number of different purposes:
• To specify invariants on classes and types in the class model

• To describe pre- and post conditions on Operations and Methods

• To specify derivation rules for attributes for any expression over a UML model.

• To describe Guards in State Diagrams

• To specify target (sets) for messages and actions

• To specify type invariant for Stereotypes

• As a query language

UML modelers can use OCL to
• to specify application-specific constraints in their models.

• to specify queries on the UML model, which are completely programming
language independent

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 11

The main types of OCL Constraints

• Invariants on classes

– conditions to be true always by all instances of a class

• e.g. salary > 1000 Euro

• pre-conditions on operations

– conditions to be true before the execution of an operation

• e.g. the operation “fire” can be executed only on a hired person

• post-conditions on operations

– conditions to be true after the execution of an operation

• e.g. after “withdraw(amount)” the balance of the bank account should be

reduced by “amount”.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 12

How we can specify a constraint?

• Declaration of the context of a constraint by referencing the model

element that a constraint applies to

• Declaration of the type of a constraint (inv, pre, post)

• Expressing the desired condition by referencing properties of

model elements and using various operations that are supported.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 13

Context Declaration

• Specifies the element the constraint applies to.

• The context can be

– a class (for invariants)

– an operation (for pre/post-conditions)

• Example:

Context Employee inv: self.salary > 1000

Context Employee::SetSalary(salary) pre: salary > 1000
Not equivalent

Employee

name

age

salary

SetAge(a)

SetSalary(s)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 14

Constraint names and comments

Context Employee::SetAge (age)
pre: age > 0

Context Employee::SetAge (age)
pre positive_age : age > 0

Optional constraint name

Employee

name

age

salary

SetAge(a)

SetSalary(s)

Context Employee::SetAge (age)
pre positive_age : age > 0

-- the age should always be positive

Everything immediately following the two dashes up to and

including the end of line is part of the comment.

Comment

Αllowing the constraint to be referenced by name.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 15

self

Employee

name

age

salary

SetAge(a)

SetSalary(s)

Context Employee
inv: self.salary > 1000

Context Employee
inv: salary > 1000

equivalent
In most cases, the keyword self can be dropped
because the context is clear. As an alternative
for self, a different name can be defined playing
the part of self.

Context e: Employee
inv: e.salary > 1000

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 16

Selectors (how we reference elements)

Person

name

age
stockPrice()

Company

name

employment

employee employer

president

1 0..1

0..10..*

self.age // returns the age of a particular person

self.employment // returns the employer (company) of a person

self.employer // as before

context context

self.employment // returns the set of all employees of a company

self.president // returns the singleton with the president of a company

self.stockPrice() // returns the value this method would return

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 17

Selectors (how we reference elements)

context Company

inv: self.manager.isUnemployed = false

Because the multiplicity of the role manager is
one, self.manager is an object of type
Person. This happens when the multiplicity
of the association-end has a maximum of
one (“0..1” or “1”) .

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 18

Selectors
Referencing Association Classes

Person

name

hire(c, date)

fire(c,date)

Company

name

Employment

salary

startDate

endDate

Context Person inv: self.employment.salary > 1000

employment

We use dot and the name of the association class starting with a lowercase letter

The salary should be > 1000

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 19

Selectors
Referencing Recursive Associations

Person

age

Context Person inv: self.hasParent[parent].age > self.age

HasParent

Father:Boolean

child

0..n

parent

0..2

The age of a children should be less than

the age of its parents.

Here the name of the association class alone is not
enough.

We need to distinguish the direction in which the
association is navigated.

To make the distinction, the rolename of the direction in
which we want to navigate is added to the association
class name, enclosed in square brackets.

self.hasParent.age is invalid

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 20

Selectors
Referencing Recursive Associations

Person

name

hire(c, date)

fire(c,date)

Company

name

Employment

salary

startDate

endDate

employment

Context Company inv: self.owns[owner].name <> self.name

Owns

numOfShares

owner

1..1

owned

0..n

Let c be a company. The name of the company that owns c

should be different than the name of c.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 21

Operations

• Boolean Operations

– and // ∧

– or // ∨

– not // ¬

– implies // →

– xor

• Comparison operations

– <, >, <=, >=, <>, ==

• Arithmetic

– +, -, *, /, abs(), div, floor(),
round()

• String operations

– concat(s1, s2), toUpper(s),

• Nil

– if an attribute attr of an object obj
has no value then obj.attr returns
nil

• Empty

– if there are no associated objects
to an object obj through an
association assoc then
obj.assoc returns the empty bag
{}.

• Nil <> Empty

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 22

Referring to enumerations

• Enumerations

Context Person inv: self.job=JobType::admin implies self.salary > 10.000

Context Person inv: self.name=“Yannis” implies self.sex::Male

<<enumeration>>

JobType

admin

programmer

secretary

Person

salary

sex

job 1

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 23

Collections in OCL

• Allow us to refer to the objects that are referred using associations
(typically in those with upper multiplicity > 1)

Person

age

Company

name

works

0,* 0,*

p1: Person

p2: Person

c1:Company

c2:Company

c3:Company

p1.works
c2.works

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 24

Collections in OCL (II)

Single navigation of an association results in a Set,

combined navigations in a Bag, and

navigation over associations adorned with {ordered} results in an OrderedSet.

Collection

Set Bag Sequence

Polygon Point
definedBy 3..*

{ordered}

Collection is an abstract type, with the concrete collection types (Set, Sequence,
and Bag) as its subtypes.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 25

Objects and Collections

• Objects

– are instances of classes, including the
predefined ones (e.g. Integer)

• Sets

– a “set” of objects

– example: Set { p1, p2}

• Bag

– duplicates allowed

– example: Bag { p1, p1, p1, p2, p1}

• Sequence

– is a bag of ordered elements

– example: Sequence {p1, p2, p3, p1 } // <p1,
p2, p3, p1>

Collection

Set Bag Sequence

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 26

Collection Operations

• c1->Size() // number of elements of c1

• c1->count(elem) // counts the number of occurrences of elem in c1

• c1->includes(elem) // checks if elem is member of c1

• c1->includesAll(coll) // checks if coll is contained in c1

• c1->excludes(elem) // returns True if elem is not member of in c1

• c1->isEmpty() // checks if c1={}

• c1->forAll(expr) // returns True if expr is true for all elements of c1

• c1->exists(expr) // returns True if expr is true for at least one element of c1

• c1->select (expr) // returns the elements of c1 that satisfy expr

• c1->reject (expr) // returns the elements of c1 that do not satisfy expr

• SET OPERATIONS:

– c1->union(c2), c1->intersection(c2), c1-c2

The type Collection defines a large number of predefined operations to enable the modeler to
manipulate collections.

As OCL is an expression language, collection operations never change collections (rather than
changing the original collection they project the result into a new one).

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 27

Collection Operations: Examples

p1: Person

age=18

p2: Person

age=30

c1:Company

c2:Company

c3:Company

p1.worksc2.works• p1.works->size() is 2

• p1.works->count(c3) is 0

• p1.works->includes(c2)

– is True

• p1.works->includes(c3) is False

• c2.works->includesAll(c1.works)

– is True

• c1.works->includesAll(c2.works)

– is False

• c3.works->isEmpty()

– is True

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 28

Collection Operations: Examples (ΙΙ)

p1: Person

age=18

p2: Person

age=30

c1:Company

c2:Company

c3:Company

p1.worksc2.works

• c2.works->forAll{ x | x.age>20 and x.age < 70}

– is False

• c2.works->exists{ x | x.age>20 and x.age < 70}

– is True

• c2.works->select{ x | x.age>20 and x.age < 70}

– will return {p2}

• p1.works->intersection(p2.works)

– will return {c2}

• p1.works - p2.works

– will return {c1}

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 29

A single object can be treated as a singleton

A single object can be used as a Set as well. It then behaves as if it is a Set
containing the single object. The usage as a set is done through the arrow
followed by a property of Set.

context Company
inv: self.manager->size() = 1

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 30

Select / Reject

The collection of all the employees who are not married is empty:

context Company

inv: self.employee->reject(isMarried)->isEmpty()

The reject operation is available in OCL for convenience, because each reject can
be restated as a select with the negated expression. Therefore, the following two
expressions are identical:

collection->reject(v : Type | boolean-expression-with-v)

collection->select(v : Type | not (boolean-expression-with-v))

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 31

Collect operation

The select and reject operations always result in a sub-collection of the original collection.

When we want to specify a collection which is derived from some other collection, but which
contains different objects from the original collection (i.e., it is not a sub-collection), we
can use a collect operation.

The collect operation uses the same syntax as the select and reject and is written as one of:

collection->collect(v : Type | expression-with-v)

collection->collect(v | expression-with-v)

collection->collect(expression)

The value of the reject operation is the collection of the results of all the evaluations of
expression-with-v.

An example: specify the collection of birthDates for all employees in the context of a
company. This can be written in the context of a Company object as one of:

self.employee->collect(birthDate)

self.employee->collect(person | person.birthDate)

self.employee->collect(person : Person | person.birthDate)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 32

Collect (2)

Shorthand for Collect
Because navigation through many objects is very common, there is a shorthand

notation for the collect that makes the OCL expressions more readable.
Instead of

self.employee->collect(birthdate)
we can also write:

self.employee.birthdate

In general, when we apply a property to a collection of Objects, then it will
automatically be interpreted as a collect over the members of the collection
with the specified property. For any property name that is defined as a property
on the objects in a collection, the following two expressions are identical:

collection.propertyname
collection->collect(propertyname)

and so are these if the property is parameterized:
collection.propertyname (par1, par2, ...)
collection->collect (propertyname(par1, par2, ...))

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 33

Collect (3)

When the source collection is a Set the resulting collection is not a Set but a
Bag.

If the source collection is a Sequence or an OrderedSet, the resulting collection
is a Sequence.

When more than one employee has the same value for birthDate, this value will be an
element of the resulting Bag more than once.

The Bag resulting from the collect operation always has the same size as the original
collection.

It is possible to make a Set from the Bag, by using the asSet property on the Bag.

Example:

self.employee->collect(birthDate)->asSet()

Results in the Set of different birthDates from all employees of a Company

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 34

Examples with Bags and other operations

• employment.age is a bag

• employment.income is a bag

• employment.income->asSet() returns all distinct incomes of the employees

Person

name

age

income

hire(c, date)

fire(c,date)

increaseAge()

promote(inc)

Company

name

employment

context

*

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 35

Examples of Invariants (using collection operations)

Person

name

age

Company

name

employment

Context Company inv: self.employment->forall(x | x.age > 18)

Context Person inv: self.age >0

All persons should have positive age

All persons that work for a company should be adults

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 36

Examples of Invariants (using collection operations)

Person

name

age

Company

name

manages

Context Company inv: not (self.manager->exists(x| x.employer->exists(y|y<>self))

All companies should have managers that are not employers of other companies

employee employer

manager

1..*

0..*

0..1

0..*

A person can be a
manager of only one

company

Context Company inv: self.manager.employer->forall(x | x = self)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 37

Another example

Person

name

age

0..2
parent

children

0..*

Context Person
inv: self.parent->excludesexcludesexcludesexcludes(selfselfselfself) and selfselfselfself.children->excludesexcludesexcludesexcludes(selfselfselfself)

Y: Person

parent

children

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 38

Forall

context Company

inv: self.employee->forAll(age <= 65)

inv: self.employee->forAll(p | p.age <= 65)

inv: self.employee->forAll(p : Person | p.age <= 65)

These invariants evaluate to true if the age property of each employee is less or equal to 65.

The forAll operation has an extended variant in which more then one iterator is used.

Both iterators will iterate over the complete collection.

Effectively this is a forAll on the Cartesian product of the collection with itself.

context Company inv:
self.employee->forAll(e1, e2 : Person | e1 <> e2 implies e1.forename <> e2.forename)

This expression evaluates to true if the forenames of all employees are different.

It is semantically equivalent to:

context Company inv:

self.employee->forAll (e1 | self.employee->forAll (e2 | e1 <> e2 implies e1.forename <>
e2.forename))

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 39

Examples of Constraints (using collection operations)
Pre/Post-Conditions

Person

name

age

income

hire(c, date)

fire(c,date)

increaseAge()

promote(inc)

Company

name

Context Person::hire(c:Company)
pre: not employment->includes(c)

post: employment->includes(c)

employment

Context Person::fire(c:Company)
pre: employment->includes(c)

post: not employment->includes(c)

Context Person::increaseAge ()
post: age = age@pre +1

@pre: the value of an attribute/association

before the execution of the operation

Context Person::Promote (inc) post: self.income = income@pre * (1+inc)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 40

@Pre

When the pre-value of a property evaluates to an object, all further properties that
are accessed of this object are the new values (upon completion of the
operation) of this object.

a.b@pre.c -- takes the old value of property b of a, say object18,

-- and then the new value of c of object18.

a.b@pre.c@pre -- takes the old value of property b of a, say object18

-- and then the old value of c of object18.

The ‘@pre’ postfix is allowed only in OCL expressions that are part of a
Postcondition.

Asking for a current property of an object that has been destroyed during execution of the
operation results in OclUndefined. Also, referring to the previous value of an object that
has been created during execution of the operation results in OclUndefined.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 41

Post-conditions
Result, out-parameters

Context Person::getIncome(d:Date): Integer
post: result = 1000

The reserved word result denotes the result of the operation, if there is one.

When the operation has no out or in/out parameters (like in this example), then the
type of result is the return type of the operation (here Integer).

When the operation has out or in/out parameters, the return type is a Tuple.

The postcondition for the income operation with an out parameter bonus could be:

Context Person::getIncome(d:Date, bonus:Integer): Integer
post: result = Tuple{bonus=300, result=1000}

The return type of operation calls is Tuple(bonus: Integer, result: Integer).

The right-hand-side of this definition may refer to the operation being defined (i.e., the

definition may be recursive) as long as the recursion is not infinite.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 42

Post-conditions
Result, out-parameters (2)

Context Person::getIncome(d:Date, bonus:Integer): Integer
post: result = Tuple{bonus=300, result=1000}

Τhe out parameters need not be included in the operation call (we have to provide
values only for the in or in/out parameters).

Let Yannis be an object of the class Person, and let d1 be a Date.
Then, Yannis.getIncome(d1) is a valid operation call.

The type of the result of this operation call is Tuple(bonus: Integer, result: Integer).

We can access these values using the names of the out parameters, and the
keyword result, for example:

Yannis.getIncome(d1).bonus = 300 and
Yannis. getIncome(d1).result = 1000

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 43

Body: Indicating the result of a query operation

An OCL expression may be used to indicate the result of a query operation.

The expression must conform to the result type of the operation.

Like in the pre/post-conditions, the parameters may be used in the expression.

Pre/post-conditions, and body expressions may be mixed together after one operation
context.

Context Person::getCompany():Company
pre:pre:pre:pre: self.employment->size()>0
body:body:body:body: self.employment

Person

name

age

income

getCompany ()

Company

name

employment
0..1

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 44

Body: Indicating the result of a query operation (ΙΙ)

Context Person::getCurrentSpouse():Person
pre:pre:pre:pre: self.isMarried = true
body:body:body:body: self.marriages->select(m| m.ended = false).spouse

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 45

Initial and Derived Attributes

An OCL expression may be used to indicate the initial or derived value of an
attribute or association end.

context Typename::attributeName: Type

init: -- some expression representing the initial value

context Typename::assocRoleName: Type

derive: -- some expression representing the derivation rule

The expression must conform to the result type of the attribute.

If the context is an association end the expression must conform to the classifier at that end
when the multiplicity is at most one, or Set or OrderedSet when the multiplicity may be
more than one. Initial, and derivation expressions may be mixed together after one
context.

Context Person::income: Integer
init:init:init:init: parents.income->sum()sum()sum()sum()*1% -- pocket allowance
derive:derive:derive:derive: ifififif underAge

then then then then parents.income->sum()sum()sum()sum()*1% -- pocket allowance
elseelseelseelse job.salary -- income from regular job

endifendifendifendif

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 46

Let Expressions

Sometimes a sub-expression is used more than once in a constraint.

The let expression allows one to define a variable which can be used in the constraint.

context Person inv:

let income : Integer = self.job.salary->sum() in

if isUnemployed then
income < 100

else

income >= 100

endif

A let expression may be included in any kind of OCL expression. It is only known within this
specific expression.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 47

«definition» expressions

The Let expression allows a variable to be used in one OCL expression.
To enable reuse of variables/operations over multiple OCL expressions we can use

the stereotype «definition».

All variables and operations defined in the «definition» constraint are known in the
same context as where any property of the Classifier can be used.

The syntax of the attribute or operation definitions is similar to the Let expression,
but each attribute and operation definition is prefixed with the keyword ’def’.

context Person
def: income : Integer = self.job.salary->sum()
def: nickname : String = ’Little Red Rooster’
def: hasTitle(t : String) : Boolean = self.job->exists(title = t)

The names of the attributes / operations in a let expression may not conflict with the
names of respective attributes/ associationEnds and operations of the Classifier.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 48

Re-typing or casting

In some circumstances, it is desirable to use a property of an object that is defined
on a subtype of the current known type of the object. Because the property is not
defined on the current known type, this results in a type conformance error.

When it is certain that the actual type of the object is the subtype, the object can be
re-typed using the operation oclAsType(OclType). This operation results in the
same object, but the known type is the argument OclType.

When there is an object obj of type Type1 and Type2 ìs a subtype of Type1, then it
is allowed to write:

obj1.oclAsType(Type2) --- evaluates to object with type Type2

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 49

Accessing overridden properties of supertypes

Whenever properties are redefined within a type, the properties of the supertypes can be
accessed using the oclAsType() operation.

Whenever we have a class B as a subtype of class A, and a property p1 of both A and B, we
can write:

context B inv:
self.oclAsType(A).p1 -- accesses the p1 property defined in A

self.p1 -- accesses the p1 property defined in B

In this model fragment there is an ambiguity with the OCL
expression on Dependency:

context Dependency inv:
self.source <> self
This can either mean normal association navigation, which is

inherited from ModelElement, or it might also mean navigation
through the dotted line as an association class. Both possible
navigations use the same role-name, so this is always
ambiguous. Using oclAsType() we can distinguish between
them with:

context Dependency

inv: self.oclAsType(Dependency).source->isEmpty()
inv: self.oclAsType(ModelElement).source->isEmpty()

ModelElement

Dependency

* source

* target

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 50

Predefined properties on all objects

There are several properties that apply to all objects, and are predefined in OCL.

• oclIsTypeOf (t: OclType) : Boolean
– returns true if the type of self and t are the same,e.g.

context Person

inv: self.oclIsTypeOf(Person) -- is true

inv: self.oclIsTypeOf(Company) -- is false

• oclIsKindOf (t: OclType) : Boolean
– The oclsIsTypeOf deals with the direct type of an object. The oclIsKindOf property

determines whether t is either the direct type or one of the supertypes of an object.

• oclInState (s: OclState) : Boolean
– will be discussed later on

• oclIsNew () : Boolean
– It returns true if, used in a postcondition, the object is created during performing the

operation. i.e., it didn’t exist at precondition time.

• oclAsType (t : OclType) : instance of OclType
– we have discussed this already

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 51

.allInstances()

All properties discussed until now in OCL are properties on instances of classes. The types
are either predefined in OCL or defined in the class model. In OCL, it is also possible to
use features defined on the types/classes themselves. These are, for example, the class-
scoped features defined in the class model. Furthermore, several features are predefined
on each type.

A predefined feature on classes, interfaces and enumerations is allInstances, which
results in the Set of all instances of the type in existence at the specific time
when the expression is evaluated.

Example

We want to make sure that all instances of Person have unique names:

context Person

inv: Person.allInstances()->forAll(p1, p2 | p1 <> p2 implies p1.name <> p2.name)

The Person.allInstances() is the set of all persons that exist in the system at the time that the
expression is evaluated and is of type Set(Person).

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 52

Type conformance rules

Type conformance rules:
• Type1 conforms to Type2 when they are identical or when Type1 is a subtype of

Type2 (standard rule for all types).
• Collection(Type1) conforms to Collection(Type2), when Type1 conforms to

Type2. This is also true for Set(Type1)/ Set(Type2), Sequence(Type1)/
Sequence(Type2), Bag(Type1)/Bag(Type2)

• The types Set (X), Bag (X) and Sequence (X) are all subtypes of Collection (X).

Type conformance is transitive: if Type1 conforms to Type2, and Type2 conforms
to Type3, then Type1 conforms to Type3 (standard rule for all types).

For example, if Bicycle and Car are two separate subtypes of Transport:
Set(Bicycle) conforms to Set(Transport)

Set(Bicycle) conforms to Collection(Bicycle)

Set(Bicycle) conforms to Collection(Transport)

However
Set(Bicycle) does not conform to Bag(Bicycle), nor the other way around.

They are both subtypes of Collection(Bicycle) at the same level in the hierarchy.

Use of OCL expressions in UML models
(apart from class diagrams)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 54

OCL and State Diagrams

• Event:

– if nil then when the task is completed we

continue

• Condition

– logical condition (transition occurs if its

value is True)

– the guards of transitions from a state

must be mutually exclusive so that to

have a unique next state

• Action

– processes that occur quickly and are not

interruptible

Transition labels: Event[Condition]/Action
• all three are optional

IdleActive

OCL expression
An OCL expression acting as
value of a guard is of type
Boolean.
The expression is evaluated at the
moment that the transition
attached to the guard is attempted

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 55

OCL and State Diagrams (II)

Checking

do/ Check item

Dispatching

do/ initiate delivery

DeliveredWaiting

[All items checked && all

items available]

DeliveredItems Received [all items available]

[All items checked &&

some not in stock]

Item Received[some

items not in stock]

[Not all items checked] / get next item

 / get first item

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 56

OCL and State Diagrams (III)
Predefined properties on all objects

oclInState (s : OclState) : Boolean

oclInState (s : OclState) : Boolean

This operation returns true if the object is in the state s.
Values for s are the names of the states in the statemachine(s) attached to the

Classifier of object. For nested states the statenames can be combined using
the double colon.

On StandBy NoPower

Off

Here the values for s can be
– On

– Off

– Off::Standby

– Off::NoPower.

If the classifier of object has the
above associated statemachine
valid OCL expressions are:
– object.oclInState(On)

– object.oclInState(Off)

– object.oclInstate(Off::Standby)

– object.oclInState(Off::NoPower)

If there are multiple statemachines attached to
the object’s classifier, then the statename
can be prefixed with the name of the
statemachine containing the state and the
double colon ‘::’, as with nested states.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 57

OCL and Interaction Diagrams

:Order
careful:

Distributor
regular:

Distributor
: Messenger

dispatch

dispatch

confirm

dispatch

[for each line item]loop

[value>10K]alt

[needsConfirm]opt

[else]

OCL can be used for expressing the conditions under which a message (in a
sequence or communication diagram) is sent

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 58

Which UML CASE Tools support OCL and how?

• We can attach OCL constraints to our diagrams using an

appropriate stereotype and a dashed line should connect it to its
contextual element

• OCL constraints are exchanged using XMI

• Tools that support OCL

– ArgoUML allows expressing them

– OCL Evaluator (a tool for editing, syntax checking & evaluating OCL)

– Octopus OCL 2.0 Plug-in for Eclipse

Assertions and Programming Languages

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 60

Assertions and Programming Languages

• Assertion techniques (preconditions, postconditions, invariants)

• History of assertion techniques:

– Hoare 1972

– Meyer 97a (he proposed the idea Design by Contract)

• Assertions support in Programming Language:

– Eiffel supports them

– In Java it is also possible (e.g. using JAF)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 61

Techniques for adding Assertion Support in a PL

• Built in

– Syntactic correctness of assertions is checked by the compiler

– The runtime environment performs the runtime assertion checks

• Preprocessing

– Formulate assertions separate from the program or include the assertions as

comments. A preprocessor translates the assertions to program code

– Pros : separation (separation of programmatic logic from contracts)

– Con: the original program code is modified (e.g. the line numbers of compiler errors

do not fit the line numbers of the program)

• Metaprogramming

– Traditionally this is possible only in dynamically typed and interpreted languages

– Programs that have the possibility to reason about themselves have so called

reflective capabilities (Java has a reflection API)

– The main advantage of metaprogramming approaches is that no specialized

preprocessor has to be used but the native compiler. Nevertheless a specialized

runtime environment has to be used to enable assertion checking

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 62

Assertions and Java

• "An assertion is a statement containing a boolean expression that the programmer
believes to be true at the time the statement is executed".

• It is a facility provided within the java programming language to test the correctness or
assumptions made by your program. Assertions are checks provided within the system to
ensure the smooth running of the program.

• Why Assertions?

• Why we need another level of checking when exceptions can do the job?

• Exceptions are primarily used to handle unusual (abnormal) conditions arising during
program execution.

– They do not guarantee smooth or correct execution of the program.

• Assertions are used to specify conditions that a programmer assumes are true.

– If a programmer can swear that the value being passed into a particular method is positive no
matter what a calling client passes, it can be documented using an assertion to state it.
Assertions help state scenarios that ensure the program is running smoothly. Assertions can be
efficient tools to ensure correct execution of a program. They also improve the confidence about
the program.

– We can turn them off

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 63

Java Assertion Facility (JAF)

The expression is the one we wish to assert as true.
If the assumption fails, the expression evaluates to be false which
means the assertion failed. In case the expression succeeds the
program continues normally.

assert expression1;Syntax

When an assertion fails the program throws an AssertionError
on to the stack trace.

Examples:
assert i<0;
assert (!myString.equals(""));

Java Assertion Facility (JAF)

(builtin since Java 1.4)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 64

Java Assertion Facility (JAF)

Syntax assert expression1 : expression2;

The first argument takes a Boolean expression, while the second expression
would be the resulting action to be taken if the assertion fails. The Expression2
should be a value and can also be a result of executing a function. The compiler
would throw an error if the second expression returns a void value.

When an assertion fails the program throws an AssertionError on to the stack trace.
The program creates an object AssertionError with the return type of
Expression2. The overloaded AssertionError constructor would then convert the
returned data type into String and dump it on the stack trace with a meaningful
message.

Examples:
assert age>0 : "The value of age cannot be negative” +age;
assert ((i/2*23-12)>0):checkArgumentValue();
assert isParameterValid():throwIllegalParameterError();

In the last example the method checkArgumentValue() must return a value

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 65

OCL Constraints and Java

class Account {

private float balance = 0 ;

public void withdraw(float amount){

assert amount<= balance;

balance = balance - amount;

}

public float getBalance(){

return balance;

}

Context Account:withdraw(amount:Real)
pre: amount <= balance
post: balance = balance@pre - amount

Context Account:getBalance():Real
post: result = balance

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 66

OCL Constraints in Java (2)

class Employee {

public void SetAge(int age){

assert age>0;

this.age = age;

}

}

Context Employee:SetAge (age)
pre: age > 0

Design by contract

class Employee {

public void SetAge(int age) throws ArgumentException {

if (age<=0) {

throw new ArgumentException(“negative age”);

}

this.age = age;

}

}

Defensive Programming

(throwing exceptions)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 67

Example: Rectangle and Square

Rectangle

setWidth(w)

setHeight(h)

getArea()

itsWidth

itsHeight

Square

setWidth(w)

setHeight(h)

class Rectangle {

public:

virtual void setWidth(double w) {itsWidth=w;}

virtual void setHeight(double h){itsHeight=h;}

double getArea() {return itsHeight * itsWidth;}

private:

double itsWidth;

double itsHeight;

};

class Square: public Rectangle {

public:

virtual void setWidth(double w);

virtual void setHeight(double h);

};

void Square::setWidth(double w)

{Rectangle::setWidth(w); Rectangle::setHeight(w); };

void Square::setHeight(double h)

{Rectangle::setWidth(h); Rectangle::setHeight(h); };

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 68

Example: Rectangle and Square (II)

class Rectangle {

public:

virtual void setWidth(double w) {itsWidth=w;}

virtual void setHeight(double h){itsHeight=h;}

double getArea() {return itsHeight * itsWidth;}

private:

double itsWidth;

double itsHeight;

};

class Square: public Rectangle {

public:

virtual void setWidth(double w);

virtual void setHeight(double h);

};

void Square::setWidth(double w)

{Rectangle::setWidth(w); Rectangle::setHeight(w); };

void Square::setHeight(double h)

{Rectangle::setWidth(h); Rectangle::setHeight(h); };

void g(Rectangle* r)

{

r->setWidth(5);

r->setHeight(4);

assert(r->getArea()==20);

}

It will function correctly if r is a rectangle.

It will not function correctly if r is a square

The class Rectangle actually violates an
“invariant” of the class Rectangle,

specifically the width-height independence.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 69

Example: Rectangle and Square (III)

This could be expressed in OCL with

a post condition of setWidth: i.e. the height is the old value of height;

and a post condition of setHeight i.e. the width is the old value of width.

Context Rectangle:setWidth(w)
post: itsWidth = w and

itsHeight = itsHeight@pre

Context Rectangle:setHeight(w)
post: itsHeight = h and

itsWidth = itsWidth@pre

[Meyers]:

When we override a method A with a method B

the precondition of B should be that of A or a weaker condition, and

the postcondition of B should be that of A or a stronger (more strict) condition.

This reveals the problem in our example: the postcondition of Square:setWidth is weaker

(although it should be stronger according to the above rule).

So, if for example we had copied the postconditions of the Rectangle’s methods to the

methods of Square, we would have seen the problem while testing the class Square .

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 70

Reading and References

• How to download the current (UML 2.0 OCL) specification

– http://www.omg.org/cgi-bin/doc?ptc/2005-06-06

– http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UM
L

• Tools

– OCL Evaluator (a tool for editing, syntax checking & evaluating OCL)

– Octopus OCL 2.0 Plug-in for Eclipse

• J. Warmer and A. Kleppe, “The Object Constraint Language: Precise Modeling
with UML”, Addison-Wesley 1999.

